The Performance of Orbital Angular Momentum Mode (|l| = 1~3) Amplification Based on Ring-Core Erbium-Doped Fibers
Abstract
:1. Introduction
2. Characterization of the Ring-Core Erbium-Doped Fibers for OAM Modes
3. Experimental Setup and Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Essiambre, R.J.; Foschini, G.J.; Kramer, G.; Winzer, P.J. Capacity Limits of Information Transport in Fiber-Optic Networks. Phys. Rev. Lett. 2008, 101, 163901. [Google Scholar] [CrossRef] [PubMed]
- Richardson, D.J.; Fini, J.M.; Nelson, L.E. Space-Division Multiplexing in Optical Fibres. Nat. Photonics 2013, 7, 354–362. [Google Scholar] [CrossRef] [Green Version]
- Van Uden, R.G.H.; Correa, R.A.; Lopez, E.A.; Huijskens, F.M.; Xia, C.; Li, G.; Schulzgen, A.; de Waardt, H.; Koonen, A.M.J.; Okonkwo, C.M. Ultra-High-Density Spatial Division Multiplexing with a Few-Mode Multicore Fibre. Nat. Photonics 2014, 8, 865–870. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.; Jin, C.; Huang, B.; Fontaine, N.K.; Ryf, R.; Shang, K.; Gregoire, N.; Morency, S.; Essiambre, R.J.; Li, G.; et al. Integrated Cladding-Pumped Multicore Few-Mode Erbium-Doped Fibre Amplifier for Space-Division-Multiplexed Communications. Nat. Photonics 2016, 10, 529–533. [Google Scholar] [CrossRef] [Green Version]
- Rademacher, G.; Luis, R.S.; Puttnam, B.J.; Eriksson, T.A.; Ryf, R.; Agrell, E.; Maruyama, R.; Aikawa, K.; Awaji, Y.; Furukawa, H.; et al. High Capacity Transmission with Few-Mode Fibers. J. Lightwave Technol. 2019, 37, 425–432. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Yang, J.Y.; Fazal, I.M.; Ahmed, N.; Yan, Y.; Huang, H.; Ren, Y.X.; Yue, Y.; Dolinar, S.; Tur, M.; et al. Terabit Free-Space Data Transmission Employing Orbital Angular Momentum Multiplexing. Nat. Photonics 2012, 6, 488–496. [Google Scholar] [CrossRef]
- Bozinovic, N.; Yue, Y.; Ren, Y.X.; Tur, M.; Kristensen, P.; Huang, H.; Willner, A.E.; Ramachandran, S. Terabit-Scale Orbital Angular Momentum Mode Division Multiplexing in Fibers. Science 2013, 340, 1545–1548. [Google Scholar] [CrossRef] [Green Version]
- Ma, Z.L.; Ramachandran, S. Propagation Stability in Optical Fibers: Role of Path Memory and Angular Momentum. Nanophotonics 2021, 10, 209–224. [Google Scholar] [CrossRef]
- Gregg, P.; Kristensen, P.; Ramachandran, S. Conservation of Orbital Angular Momentum in Air-Core Optical Fibers. Optica 2015, 2, 267–270. [Google Scholar] [CrossRef] [Green Version]
- Ramachandran, S.; Gregg, P.; Kristensen, P.; Golowich, S.E. On the Scalability of Ring Fiber Designs for Oam Multiplexing. Opt. Express 2015, 23, 3721–3730. [Google Scholar] [CrossRef]
- Rojas-Rojas, S.; Canas, G.; Saavedra, G.; Gomez, E.S.; Walborn, S.P.; Lima, G. Evaluating the Coupling Efficiency of Oam Beams into Ring-Core Optical Fibers. Opt. Express 2021, 29, 23381–23392. [Google Scholar] [CrossRef] [PubMed]
- Zhu, L.; Wang, A.D.; Chen, S.; Liu, J.; Mo, Q.; Du, C.; Wang, J. Orbital Angular Momentum Mode Groups Multiplexing Transmission over 2.6-Km Conventional Multi-Mode Fiber. Opt. Express 2017, 25, 25637–25645. [Google Scholar] [CrossRef] [PubMed]
- Fang, Y.H.; Zeng, Y.; Qin, Y.W.; Xu, O.; Li, J.P.; Fu, S.N. Design of Ring-Core Few-Mode-Edfa with the Enhanced Saturation Input Signal Power and Low Differential Modal Gain. IEEE Photonics J. 2021, 13, 1–6. [Google Scholar] [CrossRef]
- Deng, Y.F.; Zhang, H.; Li, H.; Tang, X.F.; Xi, L.X.; Zhang, W.B.; Zhang, X.G. Erbium-Doped Amplification in Circular Photonic Crystal Fiber Supporting Orbital Angular Momentum Modes. Appl. Opt. 2017, 56, 1748–1752. [Google Scholar] [CrossRef]
- Fujisawa, T.; Saitoh, K. Arbitrary Polarization and Orbital Angular Momentum Generation Based on Spontaneously Broken Degeneracy in Helically Twisted Ring-Core Photonic Crystal Fibers. Opt. Express 2021, 29, 31689–31705. [Google Scholar] [CrossRef]
- Wang, A.D.; Zhu, L.; Wang, L.L.; Ai, J.Z.; Chen, S.; Wang, J. Directly Using 8.8-Km Conventional Multi-Mode Fiber for 6-Mode Orbital Angular Momentum Multiplexing Transmission. Opt. Express 2018, 26, 10038–10047. [Google Scholar] [CrossRef]
- Zhang, Z.Z.; Guo, C.; Cui, L.; Zhang, Y.C.; Du, C.; Li, X.Y. All-Fiber Few-Mode Erbium-Doped Fiber Amplifier Supporting Six Spatial Modes. Chin. Opt. Lett 2019, 17, 118–122. [Google Scholar] [CrossRef]
- Matte-Breton, C.; Chen, H.; Fontaine, N.K.; Ryf, R.; Essiambre, R.J.; Kelly, C.; Jin, C.; Messaddeq, Y.; LaRochelle, S. Demonstration of an Erbium-Doped Fiber with Annular Doping for Low Gain Compression in Cladding-Pumped Amplifiers. Opt. Express 2018, 26, 26633–26645. [Google Scholar] [CrossRef]
- Ma, J.W.; Xia, F.; Chen, S.; Li, S.H.; Wang, J. Amplification of 18 OAM Modes in a Ring-Core Erbium-Doped Fiber with Low Differential Modal Gain. Opt. Express 2019, 27, 38087–38097. [Google Scholar] [CrossRef]
- Lin, D.; Carpenter, J.; Feng, Y.T.; Jung, Y.M.; Alam, S.U.; Richardson, D.J. High-Power, Electronically Controlled Source of User-Defined Vortex and Vector Light Beams Based on a Few-Mode Fiber Amplifier. Photonics Res. 2021, 9, 856–864. [Google Scholar] [CrossRef]
- Jung, Y.M.; Kang, Q.Y.; Sidharthan, R.; Ho, D.; Yoo, S.; Gregg, P.; Ramachandran, S.; Alam, S.U.; Richardson, D.J. Optical Orbital Angular Momentum Amplifier Based on an Air-Hole Erbium-Doped Fiber. J. Lightwave Technol. 2017, 35, 430–436. [Google Scholar] [CrossRef] [Green Version]
- Wen, T.J.; Gao, S.C.; Li, W.; Tu, J.J.; Du, C.; Zhou, J.; Ao, Z.H.; Zhang, B.; Liu, W.P.; Li, Z.H. Third- and Fourth-Order Orbital Angular Momentum Multiplexed Amplification with Ultra-Low Differential Mode Gain. Opt. Lett. 2021, 46, 5473–5476. [Google Scholar] [CrossRef] [PubMed]
- Melkumov, M.A.; Bufetov, I.A.; Shubin, A.V.; Firstov, S.V.; Khopin, V.F.; Guryanov, A.N.; Dianov, E.M. Laser Diode Pumped Bismuth-Doped Optical Fiber Amplifier for 1430 nm Band. Opt. Lett. 2011, 36, 2408–2410. [Google Scholar] [CrossRef] [PubMed]
- Ramachandran, S.; Kristensen, P. Optical Vortices in Fiber. Nanophotonics 2013, 2, 455–474. [Google Scholar] [CrossRef]
- Bigot, L.; Le Cocq, G.; Quiquempois, Y. Few-Mode Erbium-Doped Fiber Amplifiers: A Review. J. Lightwave Technol. 2015, 33, 588–596. [Google Scholar] [CrossRef]
- Dissanayake, K.P.W.; Abdul-Rashid, H.A.; Safaei, A.; Oresegun, A.; Shahrizan, N.; Omar, N.Y.M.; Yusoff, Z.; Zulkifli, M.I.; Muhamad-Yassin, S.Z.; Mat-Sharif, K.A.; et al. Fabrication and Characterization of a Gallium Co-Doped Erbium Optical Fiber. In Proceedings of the 2014 IEEE 5th International Conference on Photonics (ICP), Kuala Lumpur, Malaysia, 2–4 September 2014; pp. 113–115. [Google Scholar]
- Yamasaki, Y.; Azuma, R.; Kagebayashi, Y.; Fujioka, K.; Fujimoto, Y. Optical Properties of Er3+ Heavily Doped Silica Glass Fabricated by Zeolite Method. J. Non. Cryst. Solids. 2020, 543, 120149. [Google Scholar] [CrossRef]
- Kang, Q.Y.; Gregg, P.; Jung, Y.M.; Lim, E.L.; Alam, S.U.; Ramachandran, S.; Richardson, D.J. Amplification of 12 OAM Modes in an Air-Core Erbium Doped Fiber. Opt. Express 2015, 23, 28341–28348. [Google Scholar] [CrossRef] [Green Version]
- Ono, H.; Hosokawa, T.; Ichii, K.; Matsuo, S.; Nasu, H.; Yamada, M. 2-LP Mode Few-Mode Fiber Amplifier Employing Ring-Core Erbium-Doped Fiber. Opt. Express 2015, 23, 27405–27418. [Google Scholar] [CrossRef]
- Chen, S.P.; Li, Y.G.; Lu, K.C.; Zhou, H.; Liu, Z.J. High Power L-Band Erbium-Doped Fiber Laser Pumped by a C-Band Superfluorescent Source. Laser Phys. Lett. 2008, 5, 130–134. [Google Scholar] [CrossRef]
- Harumoto, M.; Shigehara, M.; Suganuma, H. Gain-Flattening Filter Using Long-Period Fiber Gratings. J. Lightwave Technol. 2002, 20, 1027–1033. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, S.; Zhang, L.; Jiang, Q.; Xue, X.; Wen, J.; Chen, W.; Pang, F.; Wang, T. The Performance of Orbital Angular Momentum Mode (|l| = 1~3) Amplification Based on Ring-Core Erbium-Doped Fibers. Photonics 2022, 9, 491. https://doi.org/10.3390/photonics9070491
Liu S, Zhang L, Jiang Q, Xue X, Wen J, Chen W, Pang F, Wang T. The Performance of Orbital Angular Momentum Mode (|l| = 1~3) Amplification Based on Ring-Core Erbium-Doped Fibers. Photonics. 2022; 9(7):491. https://doi.org/10.3390/photonics9070491
Chicago/Turabian StyleLiu, Shuaishuai, Liang Zhang, Qi Jiang, Xiaobo Xue, Jianxiang Wen, Wei Chen, Fufei Pang, and Tingyun Wang. 2022. "The Performance of Orbital Angular Momentum Mode (|l| = 1~3) Amplification Based on Ring-Core Erbium-Doped Fibers" Photonics 9, no. 7: 491. https://doi.org/10.3390/photonics9070491
APA StyleLiu, S., Zhang, L., Jiang, Q., Xue, X., Wen, J., Chen, W., Pang, F., & Wang, T. (2022). The Performance of Orbital Angular Momentum Mode (|l| = 1~3) Amplification Based on Ring-Core Erbium-Doped Fibers. Photonics, 9(7), 491. https://doi.org/10.3390/photonics9070491