A Generalized Cost Model for Techno-Economic Analysis in Optical Networks
Abstract
1. Introduction
2. Methodology
2.1. Network Model Architecture
2.2. Commercially Available Devices
2.2.1. Transceivers
Gray Transceivers
WDM Transceivers
DSCM Coherent Transceivers
2.2.2. C-Band Amplifiers
2.2.3. Layer 3 Switches and Routers
2.2.4. Compute and Storage
2.3. Cost and Power Consumption Estimation as a Function of Equipment Capacity
2.4. Method to Estimate the Cost of Amplifiers for Multiband Systems
3. Application Examples and Discussion
3.1. CAPEX Savings of Node Architectures for High-Capacity MBoSDM Optical Networks
3.2. Comparison of Different Transport Solutions in the RAN
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
| AI | Artificial Intelligence |
| c.u. | Cost Unit |
| CAPEX | Capital Expenditure |
| CO | Central Office |
| CPU | Central Processing Unit |
| CWDM | Coarse WDM |
| DC | Data center |
| DPU | Data Processing Unit |
| DSCM | Digital Subcarrier Multiplexing |
| DU | Distributed Unit |
| DWDM | Dense WDM |
| EDFA | Erbium-Doped Fiber Amplifiers |
| FH | Fronthaul |
| GPU | Graphics Processing Unit |
| LAN | Local Area Network |
| LT | Long Term |
| MB | Multiband |
| MBoSDM | MB over SDM |
| MIMO | Multiple-input Multiple-output |
| MSA | Multi Source Agreement |
| MT | Medium Term |
| NIC | Network Interface Card |
| NLS | Nonlinear Least Squares |
| NRZ | Non-return-to-zero |
| OPEX | Operational Expenditures |
| P2MP | Point-to-multipoint |
| P2P | Point-to-point |
| PAM4 | Pulse Amplitude Modulation with 4 levels |
| QSFP-DD | Quad SFP- Double Density |
| RAN | Radio Access Network |
| ROADM | Reconfigurable Optical Add-Drop Multiplexer |
| RU | Radio Unit |
| SC | Subcarrier |
| SDM | Space Division Multiplexing |
| SFP | Small Form-factor Pluggable |
| S-OXC | Spatial Optical Cross-connects |
| SW | Software |
| TEA | Techno-economic Analysis |
| TOR | Top-of-Rack |
| UPF | User Plane Function |
| VAT | Value-added Tax |
| vCU | Virtual Centralized Unit |
| vDU | Virtual Distributed Unit |
| WAN | Wide Area Network |
| WDM | Wavelength Division Multiplexing |
| WSS | Wavelength Selective Switch |
References
- Burk, C. Techno-economic analysis for new technology development. Adv. Mater. 2017, 1, 266–269. [Google Scholar]
- Chai, S.Y.W.; Phang, F.J.F.; Yeo, L.S.; Ngu, L.H.; How, B.S. Future era of techno-economic analysis: Insights from review. Front. Sustain. 2022, 3, 924047. [Google Scholar] [CrossRef]
- Capital, F. Cost Modeling Challenges: How to Overcome the Common Difficulties and Problems of Cost Modeling. Available online: https://fastercapital.com/content/Cost-Modeling-Challenges--How-to-Overcome-the-Common-Difficulties-and-Problems-of-Cost-Modeling.html (accessed on 27 August 2025).
- Scalable, Tunable and Resilient Optical Networks Guaranteeing Extremely-High Speed Transport (STRONGEST) Project Website. Available online: https://cordis.europa.eu/project/id/247674/reporting/ (accessed on 23 September 2025).
- Industry-Driven Elastic and Adaptive Lambda Infrastructure for Service and Transport Networks (IDEALIST) Project Website. Available online: https://cordis.europa.eu/project/id/317999/reporting/ (accessed on 23 September 2025).
- METRO High Bandwidth, 5G Application-Aware Optical Network, with Edge Storage, Compute and Low Latency (Metro-Haul) Project Website. Available online: https://metro-haul.eu/ (accessed on 23 September 2025).
- Hernandez, J.A.; Quagliotti, M.; Serra, L.; Luque, L.; Lopez da Silva, R.; Rafel, A.; Gonzalez de Dios, O.; Lopez, V.; Eira, A.; Casellas, R.; et al. Comprehensive model for technoeconomic studies of next-generation central offices for metro networks. J. Opt. Commun. Netw. 2020, 12, 414–427. [Google Scholar] [CrossRef]
- Beyond 5G—OPtical nEtwork coNtinuum (B5G-OPEN) Project Website. Available online: https://www.b5g-open.eu/ (accessed on 24 September 2025).
- Jana, R.K.; Srivastava, A.; Lord, A.; Mitra, A. Optical cable deployment versus fiber leasing: An operator’s perspective on CapEx savings for capacity upgrade in an elastic optical core network. J. Opt. Commun. Netw. 2023, 15, C179–C191. [Google Scholar] [CrossRef]
- Souza, A.; Correia, B.; Napoli, A.; Curri, V.; Costa, N.; Pedro, J.; Pires, J. Cost analysis of ultrawideband transmission in optical networks. J. Opt. Commun. Netw. 2024, 16, 81–93. [Google Scholar] [CrossRef]
- Arpanaei, F.; Rivas-Moscoso, J.M.; Francesca, I.D.; Hernández, J.A.; Sánchez-Macián, A.; Zefreh, M.R.; Larrabeiti, D.; Fernández-Palacios, J.P. Enabling seamless migration of optical metro-urban networks to the multi-band: Unveiling a cutting-edge 6D planning tool for the 6G era. J. Opt. Commun. Netw. 2024, 16, 463–480. [Google Scholar] [CrossRef]
- SEASON: Seasonal Energy Storage and Optimization Network. 2025. Available online: https://www.season-project.org (accessed on 25 September 2025).
- FS. Available online: https://www.fs.com/ (accessed on 2 October 2025).
- Approved Networks. Available online: https://www.approvednetworks.com/ (accessed on 2 October 2025).
- Dell Technologies. Available online: https://www.dell.com/ (accessed on 2 October 2025).
- Welch, D.; Napoli, A.; Bäck, J.; Sande, W.; Pedro, J.; Masoud, F.; Fludger, C.; Duthel, T.; Sun, H.; Hand, S.J.; et al. Point-to-Multipoint Optical Networks Using Coherent Digital Subcarriers. J. Light. Technol. 2021, 39, 5232–5247. [Google Scholar] [CrossRef]
- Welch, D.; Napoli, A.; Bäck, J.; Buggaveeti, S.; Castro, C.; Chase, A.; Chen, X.; Dominic, V.; Duthel, T.; Eriksson, T.A.; et al. Digital Subcarrier Multiplexing: Enabling Software-Configurable Optical Networks. J. Light. Technol. 2023, 41, 1175–1191. [Google Scholar] [CrossRef]
- Open XR Optics Forum. Available online: https://www.openxropticsforum.org/ (accessed on 2 October 2025).
- Farmer, J.D.; Lafond, F. How predictable is technological progress? Res. Policy 2016, 45, 647–665. [Google Scholar] [CrossRef]
- A Simplification Agenda for European Telecoms. Available online: https://www.telefonica.com/en/wp-content/uploads/sites/5/2025/07/A-Simplification-Agenda-for-European-telecoms-2025-ADL-for-Connect-Europe.pdf (accessed on 1 December 2025).
- Hosseini, M.M.; Pedro, J.; Napoli, A.; Costa, N.; Prilepsky, J.E.; Turitsyn, S.K. Optimization of survivable filterless optical networks exploiting digital subcarrier multiplexing. J. Opt. Commun. Netw. 2022, 14, 586–594. [Google Scholar] [CrossRef]
- Rapp, L.; Eiselt, M. Optical Amplifiers for Multi–Band Optical Transmission Systems. J. Light. Technol. 2022, 40, 1579–1589. [Google Scholar] [CrossRef]
- Ferrari, A.; Napoli, A.; Fischer, J.K.; Costa, N.; D’Amico, A.; Pedro, J.; Forysiak, W.; Pincemin, E.; Lord, A.; Stavdas, A.; et al. Assessment on the Achievable Throughput of Multi-Band ITU-T G.652.D Fiber Transmission Systems. J. Light. Technol. 2020, 38, 4279–4291. [Google Scholar] [CrossRef]
- Rapp, L. Challenges for Multiband Optical Amplification and Solutions Therefore. J. Light. Technol. 2024, 42, 4202–4212. [Google Scholar] [CrossRef]
- Aly, M.; Nasr, M.; Seleem, H. Thulium doped fiber amplifier in the S/S/sup +/ band employing different concentration profiles. In 2005 Fifth Workshop on Photonics and Its Applications, Giza, Egypt, 10 May 2005; IEEE: Piscataway Township, NJ, USA, 2005; pp. 39–49. [Google Scholar] [CrossRef]
- Souza, A.; Costa, N.; Nadal, L.; Casellas, R.; Melgar, A.; Rivas-Moscoso, J.M.; Quagliotti, M.; Riccardi, E.; Napoli, A.; Pedro, J. Node Architectures for High-Capacity Multi-band Over Space Division Multiplexed (MBoSDM) Optical Networks. In 2024 24th International Conference on Transparent Optical Networks (ICTON), Bari, Italy, 14–18 July 2024; IEEE: Piscataway Township, NJ, USA, 2024; pp. 1–7. [Google Scholar] [CrossRef]
- Sahara, A.; Kawahara, H.; Yamamoto, S.; Kawai, S.; Fukutoku, M.; Mizuno, T.; Miyamoto, Y.; Suzuki, K.; Yamaguchi, K. Proposal and experimental demonstration of SDM node enabling path assignment to arbitrary wavelengths, cores, and directions. Opt. Express 2017, 25, 4061–4075. [Google Scholar] [CrossRef] [PubMed]
- SEASON Project Deliverable D2.1, Definition of Use Cases, Requirements and Reference Network Architecture. Available online: https://www.season-project.eu/wp-content/uploads/Deliverables/Deliverable-2-1_SEASON_V2.1.pdf (accessed on 2 October 2025).
- O-RAN ALLIANCE Specification O-RAN.WG9.XTRP-REQ-v01.00, O-RAN Open Xhaul Transport Working Group 9, Xhaul Transport Requirements, Feb. 2021. Available online: https://orandownloadsweb.azurewebsites.net/specifications/ (accessed on 2 October 2025).
- SEASON Project Deliverable D2.2, Techno-Economic Analysis: First Results. Available online: https://www.season-project.eu/wp-content/uploads/Deliverables/D2.2%20%20Techno-economic%20Analysis%20-%20First%20Results.pdf (accessed on 2 October 2025).
- Marotta, A.; Centofanti, C.; Graziosi, F.; Quagliotti, M.; Agus, M. Coherent Point-to-Multipoint as a Viable Techno-Economic Solution for Mobile Network Fronthaul. In Proceedings of the 2025 International Conference on Optical Network Design and Modeling (ONDM), Pisa, Italy, 6–9 May 2025. [Google Scholar]
- Marotta, A.; Centofanti, C.; Quagliotti, M.; Agus, M. SeasonTechnoEconomic: A Techno-Economic Analysis Tool for Optical Transport Solutions in Next Generation RAN (GitHub Repository). 2025. Available online: https://github.com/andreamarotta/SeasonTechnoEconomic (accessed on 11 December 2025).







| Challenge | Description | Impact | Mitigation |
|---|---|---|---|
| 1. Data Availability and Quality | Reliable cost data (especially for emerging technologies) can be scarce, proprietary, or outdated. | Inaccurate data can lead to misleading conclusions. | Use validated sources, expert input, and sensitivity analysis to test assumptions. |
| 2. Uncertainty and Variability | Many input parameters are uncertain or fluctuate over time. | Results may not reflect real- world performance or future scenarios. | Incorporate stochastic modeling or Monte Carlo simulations to capture uncertainty. |
| 3. Complexity of Systems | Complex systems with multiple interdependent steps are difficult to model accurately. | Oversimplification can omit key cost drivers; overcomplication can obscure insights. | Strike a balance between detail and usability; modularize the model where possible. |
| 4. Scale-Up Assumptions | Extrapolating lab- or pilot-scale data to commercial scale introduces uncertainty. | Cost estimates may not hold true at industrial scale. | Use scale-up factors based on industry benchmarks and include scale sensitivity analysis. |
| 5. Regional and Temporal Variability | Costs vary by location and over time (e.g., inflation, market trends). | A model valid in one region or year may not apply elsewhere or later. | Localize models and update them regularly with current data. |
| 6. Lack of Standardization | Different studies use different methodologies, assumptions, and cost categories. | Difficult to compare results across technologies or studies. | Follow established guidelines and clearly state document assumptions. |
| Reach Class | Typical Maximum Distance |
|---|---|
| SR | 300 m |
| LR | 10 km |
| ER | 40 km |
| ZR | 80 km |
| ZR+ | 450 km |
| LH | 2000 km |
| Transceiver | Cost [c.u.] | Power [W] |
|---|---|---|
| 10 G SR | 0.004 | 1 |
| 25 G SR | 0.008 | 1 |
| 50 G SR | 0.054 | 1.5 |
| 100 G SR | 0.020 | 2.5 |
| 400 G SR | 0.040 | 10 |
| 10 G LR | 0.005 | 1 |
| 25 G LR | 0.012 | 1.2 |
| 50 G LR | 0.152 | 3.5 |
| 100 G LR | 0.080 | 3.5 |
| 400 G LR | 0.160 | 9 |
| 10 G ER | 0.008 | 1.5 |
| 10 G ER C-band | 0.026 | 1.5 |
| 25 G ER | 0.056 | 2 |
| 50 G ER | 0.360 | 4.5 |
| 100 G ER | 0.400 | 4.5 |
| 400 G ER | 1.400 | 10 |
| Transceiver | Cost [c.u.] | Power [W] |
|---|---|---|
| 10 G ER (CWDM fixed) | 0.044 | 1.7 |
| 10 G ZR a (CWDM fixed) | 0.080 | 2 |
| 10 G ZR b | 0.12 | 2.5 |
| 10 G ZR+ | 0.18 | 3 |
| 100 G ZR a (WDM fixed) | 0.48 | 7 |
| 100 G ZR b | 0.80 | 5.5 |
| 100 G ZR+ (QSFP-DD) | 1.00 | 17 |
| 400 G ZR | 1.20 | 18 |
| 400 G ZR+ (100 G LH) | 1.50 | 22.5 |
| Transceiver | Cost [c.u.] | Power [W] |
|---|---|---|
| 4 SC 100 G ZR | 0.80–1.00 | 5.50–6.05 |
| 4 SC 100 G ZR+ | 1.00–1.25 | 17.00–18.70 |
| 16 SC 400 G ZR | 1.20–1.50 | 18.00–19.80 |
| 16 SC 400 G ZR+ | 1.50–1.88 | 22.50–24.75 |
| Amplifier | Cost [c.u.] | Power [W] |
|---|---|---|
| C-band Single Stage | 0.43 | 15 |
| C-band Dual Stage | 0.86 | 20 |
| Extended-C-band Single Stage | 0.48 | 15 |
| Extended-C-band Dual Stage | 0.96 | 20 |
| Switch Model | Cost [c.u.] | Power [W] |
|---|---|---|
| EES—400 Gb/s | 0.6 | 110 |
| ES—800 Gb/s | 0.9 | 130 |
| S—1.6 Tb/s | 1.2 | 260 |
| M—3.2 Tb/s | 1.5 | 520 |
| L—6.4 Tb/s | 2.3 | 850 |
| XL—12.8 Tb/s | 4 | 1500 |
| XXL—25.6 Tb/s | 6 | 2400 |
| HW System | Price [c.u.] | Power [W] |
|---|---|---|
| SERVER XS with accelerator, DPU, and NIC @25 G | 1.00 | 1000 |
| SERVER S with DPU and NIC @100 G | 5.28 | 1200 |
| SERVER M basic for compute | 2.80 | 1000 |
| SERVER M for distributed storage | 4.04 | 1100 |
| SERVER M with GPU and distributed storage | 6.16 | 1450 |
| GPU | 1.76 | 350 |
| NIC 2 × 200 G | 0.40 | 30 |
| Super NIC 1 × 400 G | 0.40 | 200 |
| DPU 2 × 25 G | 0.20 | 350 |
| DPU 2 × 200 G | 0.70 | 450 |
| Amplifier Band | Cost Increment | Power Increment |
|---|---|---|
| L | 5–15% | 5–10% |
| S | 25–50% | 5–10% |
| E | 30–50% | 160–175% |
| O | 15–30% | 60–70% |
| Reference Arch. | SBS-OXC | MBS-OXC | SB | |
|---|---|---|---|---|
| S-OXC Count | 0 | B | 1 | 0 |
| S-OXC Port Count | – | – | ||
| WSS Count | B | 1 | B | |
| WSS Port Count | ||||
| Optical Amplifier Count | ||||
| Cell Type-BR id. | Band Range | N.Bands | C.W. [MHz] | MIMO | FH [Gb/s] |
|---|---|---|---|---|---|
| Macro-BR1 | SubGHz | 4 | 10 | 16 × 16 | 4.32 |
| Macro-BR2 | 1–3 GHz | 4 | 20 | 16 × 16 | 8.64 |
| Macro-BR3 | 3–7 GHz | 2 | 100 | 8 × 8 | 21.16 |
| Small-BR1 | 3–7 Ghz | 3 | 100 | 4 × 4 | 10.58 |
| Small-BR2 | 7–15 GHz | 1 | 2000 | 4 × 4 | 211.6 |
| Small-BR3 | 24–26 GHz | 2 | 1000 | 4 × 4 | 105.8 |
| Cell Type-BR id. | Dense Urban | Urban | Suburban | Rural | ||||
|---|---|---|---|---|---|---|---|---|
| MT | LT | MT | LT | MT | LT | MT | LT | |
| Macro-BR1 | 8 | 8 | 8 | 12 | 8 | 16 | 4 | 12 |
| Macro-BR2 | 12 | 16 | 8 | 16 | 8 | 12 | 4 | 8 |
| Macro-BR3 | 8 | 8 | 4 | 8 | 4 | 8 | 4 | 4 |
| Small-BR1 | 8 | 12 | 4 | 8 | 0 | 4 | 0 | 0 |
| Small-BR2 | 0 | 4 | 0 | 4 | 0 | 0 | 0 | 0 |
| Small-BR3 | 4 | 8 | 4 | 4 | 0 | 4 | 0 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Souza, A.; Quagliotti, M.; Hosseini, M.M.; Marotta, A.; Centofanti, C.; Arpanaei, F.; Paz, A.V.; Rivas-Moscoso, J.M.; Gambari, G.; Nadal, L.; et al. A Generalized Cost Model for Techno-Economic Analysis in Optical Networks. Photonics 2026, 13, 125. https://doi.org/10.3390/photonics13020125
Souza A, Quagliotti M, Hosseini MM, Marotta A, Centofanti C, Arpanaei F, Paz AV, Rivas-Moscoso JM, Gambari G, Nadal L, et al. A Generalized Cost Model for Techno-Economic Analysis in Optical Networks. Photonics. 2026; 13(2):125. https://doi.org/10.3390/photonics13020125
Chicago/Turabian StyleSouza, André, Marco Quagliotti, Mohammad M. Hosseini, Andrea Marotta, Carlo Centofanti, Farhad Arpanaei, Arantxa Villavicencio Paz, José Manuel Rivas-Moscoso, Gianluca Gambari, Laia Nadal, and et al. 2026. "A Generalized Cost Model for Techno-Economic Analysis in Optical Networks" Photonics 13, no. 2: 125. https://doi.org/10.3390/photonics13020125
APA StyleSouza, A., Quagliotti, M., Hosseini, M. M., Marotta, A., Centofanti, C., Arpanaei, F., Paz, A. V., Rivas-Moscoso, J. M., Gambari, G., Nadal, L., Ruiz, M., Parker, S., & Pedro, J. (2026). A Generalized Cost Model for Techno-Economic Analysis in Optical Networks. Photonics, 13(2), 125. https://doi.org/10.3390/photonics13020125

