Bridging Light and Immersion: Visible Optical Interfaces for Extended Reality
Abstract
1. Introduction
2. XR Technologies, Applications, and Communication Requirements
2.1. Evolution and Characteristics of XR Technologies
2.1.1. Virtual Reality
2.1.2. Augmented Reality
2.1.3. Mixed Reality
2.2. Applications of XR Technologies
2.2.1. Entertainment and Gaming
2.2.2. Industry and Manufacturing
2.2.3. Commerce and Retail
2.2.4. Medicine and Healthcare
2.2.5. Education
2.2.6. Simulation and Specialized Training
2.2.7. Tourism and Cultural Heritage
2.3. Requirements of Communication
2.3.1. User Experience Assurance
2.3.2. QoS Requirement
2.4. Challenges of Conventional Wireless Communication in XR Systems
3. Opportunities of VLC Systems
3.1. Overview of the VLC System
- PHY Layer Enhancements for High Throughput: 802.11bb aligns its physical layer with the High-Efficiency (HE) and Very-High-Throughput (VHT) specifications of 802.11ax/ac. By supporting bandwidths up to 160 MHz and advanced OFDM schemes, it achieves multi-gigabit speeds (up to 9.6 Gbps). For XR, this provides the necessary pipe for uncompressed, ultra-low-latency 8K video streaming, effectively eliminating the MTP latency.
- MAC Layer and Coexistence: A key feature of 802.11bb is its seamless integration with the 802.11 MAC, allowing VLC to operate as a complementary band to RF. This enables the hybrid RF-VLC link, which can ensure the immersive experience for XR applications. The standard supports fast session transfer, ensuring that if the line-of-sight (LoS) VLC link is momentarily obstructed by user movement, the session can immediately failover to the RF band without dropping the immersive experience.
3.2. Properties of VLC
3.2.1. LoS Transmission
3.2.2. Limited Beam Divergence
3.2.3. High Security and EMC
3.2.4. Duality of Illumination and Communication
3.3. Opportunities of VLC in XR
4. Enabling Technologies for VLC-Based XR Systems
4.1. Technologies for Enhancing Capacity and Throughput
4.1.1. Advanced Optical Sources
4.1.2. High-Efficiency Modulation and Coding
4.1.3. Multiplexing
4.2. Technologies for Latency Reduction
4.2.1. Edge-Assisted Computing and Rendering Offload
4.2.2. High-Efficiency Multiple Access
4.3. Technologies for Ensuring Stability and Mobility
4.3.1. Wide FoV Receiver
4.3.2. Dynamic Beam Steering and Link Adaptation
4.3.3. VLC-RF Hybrid System
4.3.4. Handover
4.4. Technologies for Positioning and Sensing
4.4.1. VLC-Based Positioning
4.4.2. Gesture and Motion Sensing via VLC
5. Perspective of Future Directions
5.1. Artificial Intelligent Enhanced VLC Systems
5.2. Multi-Element Cooperative VLC
5.3. Sensing–Communication Integrated VLC
5.4. Cross-Layer Optimization
6. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
| XR | Extended reality |
| VR | Virtual reality |
| AR | Augmented reality |
| MR | Mixed reality |
| VLC | Visible light communication |
| QoS | Quality of service |
| QoE | Quality of experience |
| CAGR | Compound annual growth rate |
| MTP | Motion-to-photon |
| mmWave | Millimeter wave |
| ISAC | Integrated sensing and communication |
| HMD | Head mounted display |
| IMU | Inertial measurement unit |
| SLAM | Simultaneous localization and mapping |
| IoT | Internet of things |
| FoV | Field of view |
| PPD | Pixels per degree |
| LED | Light emitting diode |
| AP | Access point |
| PD | Photodiode |
| PHY | Physical |
| MAC | Medium access control |
| IM/DD | Intensity modulation and direct detection |
| LoS | Line-of-sight |
| NLoS | Non-line-of-sight |
| ISI | Inter-symbol interference |
| SNR | Signal-to-noise ratio |
| RIS | Reconfigurable intelligent surfaces |
| µLED | Micro-LED |
| WDM | Wavelength-division multiplexing |
| OOK | On–off keying |
| PAM | Pulse amplitude modulation |
| CAP | Carrierless amplitude and phase |
| QAM | Quadrature amplitude modulation |
| OFDM | Orthogonal frequency division multiplexing |
| DMT | Discrete multi-tone |
| PAPR | Peak-to-average power ratio |
| DSP | Digital signal processing |
| GS | Geometrical shaping |
| PS | Probabilistic shaping |
| MIMO | Multiple-input multiple-output |
| TDMA | Time division multiple access |
| SDMA | Space division multiple access |
| OFDMA | Orthogonal frequency division multiple access |
| NOMA | Non-orthogonal multiple access |
| SIC | Successive interference cancelation |
| ADR | Angle diversity receiver |
| SINR | Interference plus noise ratio |
| SC | Selection combining |
| EGC | Equal gain combining |
| MRC | Maximal ratio combining |
| MEMS | Micro-electro-mechanical system |
| RSS | Received signal strength |
| CoMP | Coordinated multipoint |
| TOA | Time of arrival |
| TDOA | Time difference of arrival |
| AOA | Angle of arrival |
| AI | Artificial intelligence |
| D-MIMO | Distributed MIMO |
References
- Kyaw, B.M.; Saxena, N.; Posadzki, P.; Vseteckova, J.; Nikolaou, C.K.; George, P.P.; Divakar, U.; Masiello, I.; Kononowicz, A.A.; Zary, N.; et al. Virtual Reality for Health Professions Education: Systematic Review and Meta-Analysis by the Digital Health Education Collaboration. J. Med. Internet Res. 2019, 21, e12959. [Google Scholar] [CrossRef]
- Ansari, S.Z.A.; Shukla, V.K.; Saxena, K.; Filomeno, B. Implementing Virtual Reality in Entertainment Industry. In Cyber Intelligence and Information Retrieval; Tavares, J.M.R.S., Dutta, P., Dutta, S., Samanta, D., Eds.; Springer: Singapore, 2022; pp. 561–570. [Google Scholar]
- Chirico, A.; Lucidi, F.; De Laurentiis, M.; Milanese, C.; Napoli, A.; Giordano, A. Virtual Reality in Health System: Beyond Entertainment. A Mini-Review on the Efficacy of VR During Cancer Treatment. J. Cell. Physiol. 2016, 231, 275–287. [Google Scholar] [CrossRef]
- Hilty, D.M.; Randhawa, K.; Maheu, M.M.; McKean, A.J.; Pantera, R.; Mishkind, M.C.; Rizzo, A.S. A Review of Telepresence, Virtual Reality, and Augmented Reality Applied to Clinical Care. J. Technol. Behav. Sci. 2020, 5, 178–205. [Google Scholar] [CrossRef]
- Mangiante, S.; Klas, G.; Navon, A.; GuanHua, Z.; Ran, J.; Silva, M.D. VR Is on the Edge: How to Deliver 360° Videos in Mobile Networks. In Proceedings of the Workshop on Virtual Reality and Augmented Reality Network, Los Angeles, CA, USA, 25 August 2017; pp. 30–35. [Google Scholar]
- Schatz, R.; Sackl, A.; Timmerer, C.; Gardlo, B. Towards Subjective Quality of Experience Assessment for Omnidirectional Video Streaming. In Proceedings of the 2017 Ninth International Conference on Quality of Multimedia Experience (QoMEX), Erfurt, Germany, 31 May–2 June 2017; pp. 1–6. [Google Scholar]
- Torres Vega, M.; Liaskos, C.; Abadal, S.; Papapetrou, E.; Jain, A.; Mouhouche, B.; Kalem, G.; Ergüt, S.; Mach, M.; Sabol, T.; et al. Immersive Interconnected Virtual and Augmented Reality: A 5G and IoT Perspective. J. Netw. Syst. Manag. 2020, 28, 796–826. [Google Scholar] [CrossRef]
- Zabels, R.; Smukulis, R.; Fenuks, R.; Kučiks, A.; Linina, E.; Osmanis, K.; Osmanis, I. Reducing Motion to Photon Latency in Multi-Focal Augmented Reality near-Eye Display. In Proceedings of the Optical Architectures for Displays and Sensing in Augmented, Virtual, and Mixed Reality (AR, VR, MR) II, Online, 28 March–1 April 2021; Volume 11765, pp. 213–224. [Google Scholar]
- Hazarika, A.; Rahmati, M. Towards an Evolved Immersive Experience: Exploring 5G- and Beyond-Enabled Ultra-Low-Latency Communications for Augmented and Virtual Reality. Sensors 2023, 23, 3682. [Google Scholar] [CrossRef]
- Hossain, M.F.; Jamalipour, A.; Munasinghe, K. A Survey on Virtual Reality over Wireless Networks: Fundamentals, QoE, Enabling Technologies, Research Trends and Open Issues. TechRxiv 2023. [Google Scholar] [CrossRef]
- Hu, F.; Deng, Y.; Saad, W.; Bennis, M.; Aghvami, A.H. Cellular-Connected Wireless Virtual Reality: Requirements, Challenges, and Solutions. IEEE Commun. Mag. 2020, 58, 105–111. [Google Scholar] [CrossRef]
- Bao, X.; Yu, G.; Dai, J.; Zhu, X. Li-Fi: Light Fidelity-a Survey. Wirel. Netw. 2015, 21, 1879–1889. [Google Scholar] [CrossRef]
- Matheus, L.E.M.; Vieira, A.B.; Vieira, L.F.M.; Vieira, M.A.M.; Gnawali, O. Visible Light Communication: Concepts, Applications and Challenges. IEEE Commun. Surv. Tutor. 2019, 21, 3204–3237. [Google Scholar] [CrossRef]
- Wu, X.; Soltani, M.D.; Zhou, L.; Safari, M.; Haas, H. Hybrid LiFi and WiFi Networks: A Survey. IEEE Commun. Surv. Tutor. 2021, 23, 1398–1420. [Google Scholar] [CrossRef]
- Tang, L.; Wu, Y.; Cheng, Z.; Teng, D.; Liu, L. Over 23.43 Gbps Visible Light Communication System Based on 9 V Integrated RGBP LED Modules. Opt. Commun. 2023, 534, 129317. [Google Scholar] [CrossRef]
- Loureiro, P.A.; Fernandes, G.M.; Correia, S.F.H.; Ferreira, R.A.S.; Guiomar, F.P.; Monteiro, P.P. Multi-Gigabit RGB-VLC Transmission With Jointly Optimized Lighting and Communications. J. Light. Technol. 2024, 42, 4425–4432. [Google Scholar] [CrossRef]
- Xie, E.; Bian, R.; He, X.; Islim, M.S.; Chen, C.; McKendry, J.J.D.; Gu, E.; Haas, H.; Dawson, M.D. Over 10 Gbps VLC for Long-Distance Applications Using a GaN-Based Series-Biased Micro-LED Array. IEEE Photonics Technol. Lett. 2020, 32, 499–502. [Google Scholar] [CrossRef]
- Kouhini, S.M.; Kottke, C.; Ma, Z.; Freund, R.; Jungnickel, V.; Müller, M.; Behnke, D.; Vazquez, M.M.; Linnartz, J.-P.M.G. LiFi Positioning for Industry 4.0. IEEE J. Sel. Top. Quantum Electron. 2021, 27, 1–15. [Google Scholar] [CrossRef]
- Shi, G.; Li, Y.; Cheng, W.; Dong, L.; Yang, J.; Zhang, W. Accuracy Analysis of Indoor Visible Light Communication Localization System Based on Received Signal Strength in Non-Line-of-Sight Environments by Using Least Squares Method. Opt. Eng. 2019, 58, 056102. [Google Scholar] [CrossRef]
- Zolala, E.; Amir Dastgheib, M.; Beyranvand, H.; Salehi, J.A. Toward More Energy Efficient VLC Networks: A Study on Space Division Multiplexing and Smart Lighting. IEEE Trans. Green Commun. Netw. 2025, 9, 96–107. [Google Scholar] [CrossRef]
- Abuella, H.; Elamassie, M.; Uysal, M.; Xu, Z.; Serpedin, E.; Qaraqe, K.A.; Ekin, S. Hybrid RF/VLC Systems: A Comprehensive Survey on Network Topologies, Performance Analyses, Applications, and Future Directions. IEEE Access 2021, 9, 160402–160436. [Google Scholar] [CrossRef]
- Rauschnabel, P.A.; Felix, R.; Hinsch, C.; Shahab, H.; Alt, F. What Is XR? Towards a Framework for Augmented and Virtual Reality. Comput. Hum. Behav. 2022, 133, 107289. [Google Scholar] [CrossRef]
- Heilig, M.L. Sensorama Simulator. U.S. Patent US3050870A, 28 August 1962. [Google Scholar]
- Turning “Virtual” Reality into an Everyday Reality—CBS News. Available online: https://www.cbsnews.com/news/turning-virtual-reality-into-an-everyday-reality/ (accessed on 19 October 2025).
- Lee, K. Augmented Reality in Education and Training. TechTrends 2012, 56, 13–21. [Google Scholar] [CrossRef]
- Milgram, P.; Takemura, H.; Utsumi, A.; Kishino, F. Augmented Reality: A Class of Displays on the Reality-Virtuality Continuum. In Proceedings of the Telemanipulator and Telepresence Technologies, Boston, MA, USA, 31 October–4 November 1994; Volume 2351, pp. 282–292. [Google Scholar]
- Magic Leap|Groundbreaking Augmented Reality Solutions. Available online: https://www.magicleap.com (accessed on 19 October 2025).
- Virtual Reality in Gaming Market Size & Share Report [2032]. Available online: https://www.fortunebusinessinsights.com/industry-reports/virtual-reality-gaming-market-100271 (accessed on 22 October 2025).
- Febrer-Coll, E. Immersive Environments in Video Games as a New Stage for Popular Music Performance. In Music, Sound and Identity in Video Games; López Gómez, L., Ed.; Springer Nature: Cham, Switzerland, 2025; pp. 115–136. [Google Scholar]
- PricewaterhouseCoopers Seeing Is Believing: How VR and AR Will Transform Business and the Economy Globally and in the UAE. Available online: https://www.pwc.com/m1/en/services/consulting/technology/emerging-technology/seeing-is-believing-ar-vr-uae.html (accessed on 23 October 2025).
- Reinhart, G.; Patron, C. Integrating Augmented Reality in the Assembly Domain—Fundamentals, Benefits and Applications. CIRP Ann. 2003, 52, 5–8. [Google Scholar] [CrossRef]
- Zhang, T.; Li, G.; Tayi, G.K. A Strategic Analysis of Virtual Showrooms Deployment in Online Retail Platforms. Omega 2023, 117, 102824. [Google Scholar] [CrossRef]
- Osso VR. Available online: https://www.ossovr.com (accessed on 24 October 2025).
- Fundamental XR. Fundamental XR—Immersive Technology to Accelerate Human Excellence. Available online: https://www.fundamentalxr.com (accessed on 24 October 2025).
- Alaker, M.; Wynn, G.R.; Arulampalam, T. Virtual Reality Training in Laparoscopic Surgery: A Systematic Review & Meta-Analysis. Int. J. Surg. 2016, 29, 85–94. [Google Scholar] [CrossRef]
- Aïm, F.; Lonjon, G.; Hannouche, D.; Nizard, R. Effectiveness of Virtual Reality Training in Orthopaedic Surgery. Arthrosc. J. Arthrosc. Relat. Surg. 2016, 32, 224–232. [Google Scholar] [CrossRef]
- Fida, B.; Cutolo, F.; di Franco, G.; Ferrari, M.; Ferrari, V. Augmented Reality in Open Surgery. Updates Surg. 2018, 70, 389–400. [Google Scholar] [CrossRef]
- Tepper, O.M.; Rudy, H.L.; Lefkowitz, A.; Weimer, K.A.; Marks, S.M.; Stern, C.S.; Garfein, E.S. Mixed Reality with HoloLens: Where Virtual Reality Meets Augmented Reality in the Operating Room. Plast. Reconstr. Surg. 2017, 140, 1066. [Google Scholar] [CrossRef] [PubMed]
- Sveistrup, H. Motor Rehabilitation Using Virtual Reality. J. Neuroeng. Rehabil. 2004, 1, 10. [Google Scholar] [CrossRef] [PubMed]
- Augmented and Virtual Reality in Education Market Size, Share, Industry Report 2032. Available online: https://www.marketsandmarkets.com/Market-Reports/virtual-classroom-market-203811025.html (accessed on 25 October 2025).
- Ross, G.; Gilbey, A. Extended Reality (xR) Flight Simulators as an Adjunct to Traditional Flight Training Methods: A Scoping Review. CEAS Aeronaut. J. 2023, 14, 799–815. [Google Scholar] [CrossRef]
- Saling, F.; Casini, A.E.M.; Treuer, A.; Costantini, M.; Bensch, L.; Nilsson, T.; Ferra, L. Testing and Validation of Innovative eXtended Reality Technologies for Astronaut Training in a Partial-Gravity Parabolic Flight Campaign. arXiv 2024, arXiv:2410.14922. [Google Scholar]
- del Carmen Cardós-Alonso, M.; Otero-Varela, L.; Redondo, M.; Uzuriaga, M.; González, M.; Vazquez, T.; Blanco, A.; Espinosa, S.; Cintora-Sanz, A.M. Extended Reality Training for Mass Casualty Incidents: A Systematic Review on Effectiveness and Experience of Medical First Responders. Int. J. Emerg. Med. 2024, 17, 99. [Google Scholar] [CrossRef]
- Guttentag, D.A. Virtual Reality: Applications and Implications for Tourism. Tour. Manag. 2010, 31, 637–651. [Google Scholar] [CrossRef]
- Cranmer, E.E.; tom Dieck, M.C.; Fountoulaki, P. Exploring the Value of Augmented Reality for Tourism. Tour. Manag. Perspect. 2020, 35, 100672. [Google Scholar] [CrossRef]
- Huawei iLab, Huawei Technologies Co., Ltd. Cloud VR Network Solution White Paper; Huawei Technologies Co., Ltd.: Shenzhen, China, 2018; pp. 1–52. [Google Scholar]
- Zhao, T.; Liu, Q.; Chen, C.W. QoE in Video Transmission: A User Experience-Driven Strategy. IEEE Commun. Surv. Tutor. 2017, 19, 285–302. [Google Scholar] [CrossRef]
- Andersen, S.R. The History of the Ophthalmological Society of Copenhagen 1900–50. Acta Ophthalmol. Scand. 2002, 80, 6–17. [Google Scholar] [CrossRef]
- Carney, T.; Klein, S.A. Resolution Acuity Is Better than Vernier Acuity. Vis. Res. 1997, 37, 525–539. [Google Scholar] [CrossRef]
- Bastug, E.; Bennis, M.; Medard, M.; Debbah, M. Toward Interconnected Virtual Reality: Opportunities, Challenges, and Enablers. IEEE Commun. Mag. 2017, 55, 110–117. [Google Scholar] [CrossRef]
- Cuervo, E.; Chintalapudi, K.; Kotaru, M. Creating the Perfect Illusion: What Will It Take to Create Life-Like Virtual Reality Headsets? In Proceedings of the 19th International Workshop on Mobile Computing Systems & Applications, Tempe, AZ, USA, 12–13 February 2018; pp. 7–12. [Google Scholar]
- Boitard, R.; Mantiuk, R.K.; Pouli, T. Evaluation of Color Encodings for High Dynamic Range Pixels. In Proceedings of the Human Vision and Electronic Imaging XX, San Francisco, CA, USA, 8–12 February 2015; Volume 9394, pp. 532–540. [Google Scholar]
- Chung, J.-M. XR and Multimedia Video Technologies. In Emerging Metaverse XR and Video Multimedia Technologies: Modern Streaming and Multimedia Systems and Applications; Chung, J.-M., Ed.; Apress: Berkeley, CA, USA, 2023; pp. 183–228. [Google Scholar]
- Kelkkanen, V.; Fiedler, M. A Test-Bed for Studies of Temporal Data Delivery Issues in a TPCAST Wireless Virtual Reality Set-Up. In Proceedings of the 2018 28th International Telecommunication Networks and Applications Conference (ITNAC), Sydney, NSW, Australia, 21–23 November 2018; pp. 1–3. [Google Scholar]
- Chen, M.; Saad, W.; Yin, C. Virtual Reality Over Wireless Networks: Quality-of-Service Model and Learning-Based Resource Management. IEEE Trans. Commun. 2018, 66, 5621–5635. [Google Scholar] [CrossRef]
- Struye, J.; Van Damme, S.; Bhat, N.N.; Troch, A.; Van Liempd, B.; Assasa, H.; Lemic, F.; Famaey, J.; Vega, M.T. Toward Interactive Multi-User Extended Reality Using Millimeter-Wave Networking. IEEE Commun. Mag. 2024, 62, 54–60. [Google Scholar] [CrossRef]
- Liang, Y.; Su, X.; Cai, C.; Wang, L.; Liu, J.; Wang, H.; Wang, J. Adaptive Turbulence Compensation and Fast Auto-Alignment Link for Free-Space Optical Communications. Opt. Express 2021, 29, 40514–40523. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.; Zhuang, Y.; Huai, J.; Sun, X.; Yang, X.; Awais Javed, M.; Brown, J.; Sheng, Z.; Thompson, J. Coexistence and Interference Mitigation for WPANs and WLANs From Traditional Approaches to Deep Learning: A Review. IEEE Sens. J. 2021, 21, 25561–25589. [Google Scholar] [CrossRef]
- Siddiqui, M.U.A.; Qamar, F.; Ahmed, F.; Nguyen, Q.N.; Hassan, R. Interference Management in 5G and Beyond Network: Requirements, Challenges and Future Directions. IEEE Access 2021, 9, 68932–68965. [Google Scholar] [CrossRef]
- Feng, L.; Hu, R.Q.; Wang, J.; Xu, P.; Qian, Y. Applying VLC in 5G Networks: Architectures and Key Technologies. IEEE Netw. 2016, 30, 77–83. [Google Scholar] [CrossRef]
- Garon, M.; Lalonde, J.-F. Deep 6-DOF Tracking. IEEE Trans. Vis. Comput. Graph. 2017, 23, 2410–2418. [Google Scholar] [CrossRef] [PubMed]
- Sagayam, K.M.; Hemanth, D.J. Hand Posture and Gesture Recognition Techniques for Virtual Reality Applications: A Survey. Virtual Real. 2017, 21, 91–107. [Google Scholar] [CrossRef]
- Yang, C.; Shao, H. WiFi-Based Indoor Positioning. IEEE Commun. Mag. 2015, 53, 150–157. [Google Scholar] [CrossRef]
- Komine, T.; Nakagawa, M. Fundamental Analysis for Visible-Light Communication System Using LED Lights. IEEE Trans. Consum. Electron. 2004, 50, 100–107. [Google Scholar] [CrossRef]
- Chi, Y.-C.; Hsieh, D.-H.; Tsai, C.-T.; Chen, H.-Y.; Kuo, H.-C.; Lin, G.-R. 450-Nm GaN Laser Diode Enables High-Speed Visible Light Communication with 9-Gbps QAM-OFDM. Opt. Express 2015, 23, 13051. [Google Scholar] [CrossRef]
- Niu, W.; Xu, Z.; Liu, Y.; Lin, X.; Cai, J.; Shi, J.; Wang, X.; Wang, G.; Zhang, J.; Jiang, F.; et al. Key Technologies for High-Speed Si-Substrate LED Based Visible Light Communication. J. Light. Technol. 2023, 41, 3316–3331. [Google Scholar] [CrossRef]
- Yahia, S.; Meraihi, Y.; Ramdane-Cherif, A.; Gabis, A.B.; Eldeeb, H.B. Performance Evaluation of Vehicular Visible Light Communication Based on Angle-Oriented Receiver. Comput. Commun. 2022, 191, 500–509. [Google Scholar] [CrossRef]
- Rahman, M.T.; Bakibillah, A.S.M.; Saha, A.K. Modeling of 5G-Enabled Hybrid Visible Light Communication Systems for Autonomous Vehicles. In Proceedings of the 2024 2nd International Conference on Information and Communication Technology (ICICT), Dhaka, Bangladesh, 21–22 October 2024; pp. 56–60. [Google Scholar]
- Wang, Q.; Giustiniano, D.; Puccinelli, D. OpenVLC: Software-Defined Visible Light Embedded Networks. In Proceedings of the 1st ACM MobiCom Workshop on Visible Light Communication Systems, Maui, HI, USA, 7 September 2014; pp. 15–20. [Google Scholar]
- Liang, Y.; Cao, S.; Liu, L.; Liu, F.; Yin, X.; Lv, P.; Zhang, Y.; Zou, Y.; Fang, L.; Zheng, S.; et al. Coherent Detector for the Non-Separability Measurement of Vectorial Structured Light. Light Sci. Appl. 2025, 14, 343. [Google Scholar] [CrossRef]
- IEEE Std 802.15.7-2011; IEEE Standard for Local and Metropolitan Area Networks–Part 15.7: Short-Range Wireless Optical Communication Using Visible Light. IEEE: New York, NY, USA, 2011; pp. 1–309. [CrossRef]
- IEEE Std 802.15.7-2018 (Revision of IEEE Std 802.15.7-2011); IEEE Standard for Local and Metropolitan Area Networks–Part 15.7: Short-Range Optical Wireless Communications. IEEE: New York, NY, USA, 2019; pp. 1–407. [CrossRef]
- IEEE Std 802.11bb-2023 (Amendment to IEEE Std 802.11-2020 as amended by IEEE Std 802.11ax-2021, IEEE Std 802.11ay-2021, IEEE Std 802.11ba-2021, IEEE Std 802.11az-2022, IEEE Std 802.11-2020/Cor 1-2022, and IEEE Std 802.11bd-2023); IEEE Standard for Information Technology–Telecommunications and Information Exchange Between Systems Local and Metropolitan Area Networks–Specific Requirements Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications Amendment 6: Light Communications. IEEE: New York, NY, USA, 2023; pp. 1–37. [CrossRef]
- ITU-T G.9991; High-Speed Indoor Visible Light Communication Transceiver—System Architecture, Physical Layer and Data Link Layer Specification. ITU: Geneva, Switzerland, 2019.
- Eldeeb, H.B.; Eso, E.; Jarchlo, E.A.; Zvanovec, S.; Uysal, M.; Ghassemlooy, Z.; Sathian, J. Vehicular VLC: A Ray Tracing Study Based on Measured Radiation Patterns of Commercial Taillights. IEEE Photonics Technol. Lett. 2021, 33, 904–907. [Google Scholar] [CrossRef]
- Alnajjar, S.H.; Majid Hameed, A. Effect of Bidirectional Reflector Technology on the Non-Line-of-Sight Propagation of Light Fidelity System. In Proceedings of the 2021 3rd International Conference on Electronics Representation and Algorithm (ICERA), Yogyakarta, Indonesia, 29–30 July 2021; pp. 29–34. [Google Scholar]
- Mishra, S.; Grover, J.; Gupta, N. Short Range Visible Light Communication: LED Based Applications. In Cognitive Computing and Cyber Physical Systems; Pareek, P., Mishra, S., Reis, M.J.C.S., Gupta, N., Eds.; Springer Nature: Cham, Switzerland, 2025; pp. 438–450. [Google Scholar]
- Wang, F.; Yang, F.; Pan, C.; Song, J.; Han, Z. Joint Illumination and Communication Optimization in Indoor VLC for IoT Applications. IEEE Internet Things J. 2022, 9, 20788–20800. [Google Scholar] [CrossRef]
- Nawaz, T.; Seminara, M.; Caputo, S.; Mucchi, L.; Cataliotti, F.S.; Catani, J. IEEE 802.15.7-Compliant Ultra-Low Latency Relaying VLC System for Safety-Critical ITS. IEEE Trans. Veh. Technol. 2019, 68, 12040–12051. [Google Scholar] [CrossRef]
- Caputo, S.; Mucchi, L.; Umair, M.A.; Meucci, M.; Seminara, M.; Catani, J. The Role of Bidirectional VLC Systems in Low-Latency 6G Vehicular Networks and Comparison with IEEE802.11p and LTE/5G C-V2X. Sensors 2022, 22, 8618. [Google Scholar] [CrossRef]
- Huang, J.; Wang, G.; Xu, H.; Xu, F.; Zhi, T.; Chen, W.; Sang, Y.; Zhang, D.; Yu, J.; He, H.; et al. GaN-Based Freestanding Micro-LEDs with GHz Bandwidth and Low Efficiency Droop for Visible Light Communication. IEEE Trans. Electron Devices 2024, 71, 6826–6830. [Google Scholar] [CrossRef]
- Rashidi, A.; Monavarian, M.; Aragon, A.; Okur, S.; Nami, M.; Rishinaramangalam, A.; Mishkat-Ul-Masabih, S.; Feezell, D. High-Speed Nonpolar InGaN/GaN LEDs for Visible-Light Communication. IEEE Photonics Technol. Lett. 2017, 29, 381–384. [Google Scholar] [CrossRef]
- Liu, X.; Wei, Z.; Li, M.; Wang, L.; Liu, Z.; Yu, C.; Wang, L.; Luo, Y.; Fu, H.Y. Experimental Investigation of 16.6 Gbps SDM-WDM Visible Light Communication Based on a Neural Network Receiver and Tricolor Mini-LEDs. Opt. Lett. 2021, 46, 2888. [Google Scholar] [CrossRef] [PubMed]
- Ndjiongue, A.R.; Ngatched, T.M.N.; Dobre, O.A.; Haas, H. Toward the Use of Re-Configurable Intelligent Surfaces in VLC Systems: Beam Steering. IEEE Wirel. Commun. 2021, 28, 156–162. [Google Scholar] [CrossRef]
- Chun, H.; Gomez, A.; Quintana, C.; Zhang, W.; Faulkner, G.; O’Brien, D. A Wide-Area Coverage 35 Gb/s Visible Light Communications Link for Indoor Wireless Applications. Sci. Rep. 2019, 9, 4952. [Google Scholar] [CrossRef]
- Aboagye, S.; Ngatched, T.M.N.; Ndjiongue, A.R.; Dobre, O.A.; Shin, H. Liquid Crystal-Based RIS for VLC Transmitters: Performance Analysis, Challenges, and Opportunities. IEEE Wirel. Commun. 2024, 31, 98–105. [Google Scholar] [CrossRef]
- James Singh, K.; Huang, Y.-M.; Ahmed, T.; Liu, A.-C.; Huang Chen, S.-W.; Liou, F.-J.; Wu, T.; Lin, C.-C.; Chow, C.-W.; Lin, G.-R.; et al. Micro-LED as a Promising Candidate for High-Speed Visible Light Communication. Appl. Sci. 2020, 10, 7384. [Google Scholar] [CrossRef]
- Ndjiongue, A.R.; Ngatched, T.M.N.; Dobre, O.A.; Haas, H. Re-Configurable Intelligent Surface-Based VLC Receivers Using Tunable Liquid-Crystals: The Concept. J. Light. Technol. 2021, 39, 3193–3200. [Google Scholar] [CrossRef]
- Chow, C.-W. Recent Advances and Future Perspectives in Optical Wireless Communication, Free Space Optical Communication and Sensing for 6G. J. Light. Technol. 2024, 42, 3972–3980. [Google Scholar] [CrossRef]
- Khoshafa, M.H.; Maraqa, O.; Moualeu, J.M.; Aboagye, S.; Ngatched, T.M.N.; Ahmed, M.H.; Gadallah, Y.; Di Renzo, M. RIS-Assisted Physical Layer Security in Emerging RF and Optical Wireless Communications Systems: A Comprehensive Survey. IEEE Commun. Surv. Tutor. 2025, 27, 2156–2203. [Google Scholar] [CrossRef]
- Aboagye, S.; Ndjiongue, A.R.; Ngatched, T.M.N.; Dobre, O.A.; Poor, H.V. RIS-Assisted Visible Light Communication Systems: A Tutorial. IEEE Commun. Surv. Tutor. 2023, 25, 251–288. [Google Scholar] [CrossRef]
- Alijani, M.; Cock, C.D.; Joseph, W.; Plets, D. Device-Free Visible Light Sensing: A Survey. IEEE Commun. Surv. Tutor. 2025, 28, 3791–3829. [Google Scholar] [CrossRef]
- Jacintha, V.; Maheswari, S.; Kalpanadevi, G.; Narayana, A.L.; Vinodhkumar, N. Advancing Gallium Nitride LED Technology: Principles, Challenges, and Future Directions. J. Mater. Sci. 2025, 60, 13781–13834. [Google Scholar] [CrossRef]
- Tian, P.; McKendry, J.J.D.; Gong, Z.; Guilhabert, B.; Watson, I.M.; Gu, E.; Chen, Z.; Zhang, G.; Dawson, M.D. Size-Dependent Efficiency and Efficiency Droop of Blue InGaN Micro-Light Emitting Diodes. Appl. Phys. Lett. 2012, 101, 231110. [Google Scholar] [CrossRef]
- Rashidi, A.; Monavarian, M.; Aragon, A.; Rishinaramangalam, A.; Feezell, D. Nonpolar m -Plane InGaN/GaN Micro-Scale Light-Emitting Diode With 1.5 GHz Modulation Bandwidth. IEEE Electron Device Lett. 2018, 39, 520–523. [Google Scholar] [CrossRef]
- Jin, Z.; Lin, R.; Liu, X.; Sun, D.; Liu, B.; Tao, T.; Xu, F.; Fang, Z.; Cui, X.; Tian, P. Green Micro-LED With a Bandwidth Exceeding 2 GHz for 9-Gbps Visible Light Communication Based on SNR Gap-Dependent Bit and Power Loading. J. Light. Technol. 2025, 43, 472–480. [Google Scholar] [CrossRef]
- Qiu, P.; Zhu, S.; Jin, Z.; Zhou, X.; Cui, X.; Tian, P. Beyond 25 Gbps Optical Wireless Communication Using Wavelength Division Multiplexed LEDs and Micro-LEDs. Opt. Lett. 2022, 47, 317. [Google Scholar] [CrossRef]
- Hu, F.; Chen, S.; Li, G.; Zou, P.; Zhang, J.; Hu, J.; Zhang, J.; He, Z.; Yu, S.; Jiang, F.; et al. Si-Substrate LEDs with Multiple Superlattice Interlayers for beyond 24 Gbps Visible Light Communication. Photon. Res. 2021, 9, 1581–1591. [Google Scholar] [CrossRef]
- Islim, M.S.; Ferreira, R.X.; He, X.; Xie, E.; Videv, S.; Viola, S.; Watson, S.; Bamiedakis, N.; Penty, R.V.; White, I.H.; et al. Towards 10 Gb/s Orthogonal Frequency Division Multiplexing-Based Visible Light Communication Using a GaN Violet Micro-LED. Photon. Res. 2017, 5, A35–A43. [Google Scholar] [CrossRef]
- Ferreira, R.X.G.; Xie, E.; McKendry, J.J.D.; Rajbhandari, S.; Chun, H.; Faulkner, G.; Watson, S.; Kelly, A.E.; Gu, E.; Penty, R.V.; et al. High Bandwidth GaN-Based Micro-LEDs for Multi-Gb/s Visible Light Communications. IEEE Photonics Technol. Lett. 2016, 28, 2023–2026. [Google Scholar] [CrossRef]
- Wu, F.M.; Lin, C.T.; Wei, C.C.; Chen, C.W.; Chen, Z.Y.; Huang, H.T.; Chi, S. Performance Comparison of OFDM Signal and CAP Signal Over High Capacity RGB-LED-Based WDM Visible Light Communication. IEEE Photonics J. 2013, 5, 7901507. [Google Scholar] [CrossRef]
- McKendry, J.J.D.; Green, R.P.; Kelly, A.E.; Gong, Z.; Guilhabert, B.; Massoubre, D.; Gu, E.; Dawson, M.D. High-Speed Visible Light Communications Using Individual Pixels in a Micro Light-Emitting Diode Array. IEEE Photonics Technol. Lett. 2010, 22, 1346–1348. [Google Scholar] [CrossRef]
- Xu, H.; Delmade, A.; Browning, C.; Atieh, A.; Yu, Y.; Barry, L.P. Demonstration of High Capacity Bidirectional A-RoF System Using Wavelength Reuse and Frequency Multiplexing. J. Light. Technol. 2023, 41, 2343–2350. [Google Scholar] [CrossRef]
- Dissanayake, S.D.; Armstrong, J. Comparison of ACO-OFDM, DCO-OFDM and ADO-OFDM in IM/DD Systems. J. Light. Technol. 2013, 31, 1063–1072. [Google Scholar] [CrossRef]
- PAPR Reduction in PAM-DMT Based WDM VLC. Available online: https://ieeexplore.ieee.org/abstract/document/9907952 (accessed on 11 January 2026).
- Zhao, Z.; Liu, Y.; Liang, Z.; Yang, B.-R.; Qin, Z. Multi-Input and Multi-Objective Design for a Mini-LED LCD Integrated with MIMO Visible Light Communication. Opt. Express 2025, 33, 17842–17857. [Google Scholar] [CrossRef]
- Nyamtiga, B.W.; Hermawan, A.A.; Luckyarno, Y.F.; Kim, T.-W.; Jung, D.-Y.; Kwak, J.S.; Yun, J.-H. Edge-Computing-Assisted Virtual Reality Computation Offloading: An Empirical Study. IEEE Access 2022, 10, 95892–95907. [Google Scholar] [CrossRef]
- Huang, L.; Li, Y.; Liang, H.; Chi, K.; Wu, Y. Enhanced VR Experience With Edge Computing: The Impact of Decoding Latency. IEEE Trans. Mob. Comput. 2025, 24, 6275–6292. [Google Scholar] [CrossRef]
- Yang, J.; Guo, Z.; Luo, J.; Shen, Y.; Yu, K. Cloud-Edge-End Collaborative Caching Based on Graph Learning for Cyber-Physical Virtual Reality. IEEE Syst. J. 2023, 17, 5097–5108. [Google Scholar] [CrossRef]
- Abdelhady, A.M.; Amin, O.; Chaaban, A.; Shihada, B.; Alouini, M.-S. Downlink Resource Allocation for Dynamic TDMA-Based VLC Systems. IEEE Trans. Wirel. Commun. 2019, 18, 108–120. [Google Scholar] [CrossRef]
- Morelli, M.; Kuo, C.-C.J.; Pun, M.-O. Synchronization Techniques for Orthogonal Frequency Division Multiple Access (OFDMA): A Tutorial Review. Proc. IEEE 2007, 95, 1394–1427. [Google Scholar] [CrossRef]
- Huang, X.; Yang, F.; Pan, C.; Song, J. Advanced ADO-OFDM With Adaptive Subcarrier Assignment and Optimized Power Allocation. IEEE Wirel. Commun. Lett. 2019, 8, 1167–1170. [Google Scholar] [CrossRef]
- Mohsan, S.A.H.; Sadiq, M.; Li, Y.; Shvetsov, A.V.; Shvetsova, S.V.; Shafiq, M. NOMA-Based VLC Systems: A Comprehensive Review. Sensors 2023, 23, 2960. [Google Scholar] [CrossRef]
- Chen, Z.; Basnayaka, D.A.; Wu, X.; Haas, H. Interference Mitigation for Indoor Optical Attocell Networks Using an Angle Diversity Receiver. J. Light. Technol. 2018, 36, 3866–3881. [Google Scholar] [CrossRef]
- Saxena, V.N.; Gupta, J.; Dwivedi, V.K. Diversity Combining Techniques in Indoor VLC Communication. In Proceedings of the 2021 IEEE 4th International Conference on Computing, Power and Communication Technologies (GUCON), Kuala Lumpur, Malaysia, 24–26 September 2021; pp. 1–4. [Google Scholar]
- Harada, R.; Popoola, W.O. Study, Design, and Implementation of VLC With Angular Diversity Receiver for IoT Systems. IEEE Internet Things J. 2024, 11, 38861–38870. [Google Scholar] [CrossRef]
- Goto, Y.; Takai, I.; Yamazato, T.; Okada, H.; Fujii, T.; Kawahito, S.; Arai, S.; Yendo, T.; Kamakura, K. A New Automotive VLC System Using Optical Communication Image Sensor. IEEE Photonics J. 2016, 8, 6802716. [Google Scholar] [CrossRef]
- Palitharathna, K.W.S.; Skouroumounis, C.; Krikidis, I. Liquid Lens-Based Imaging Receiver for MIMO VLC Systems. arXiv 2025, arXiv:2503.10316. [Google Scholar] [CrossRef]
- Bera, K.; Karmakar, N. Interference Mitigation in VLC Systems Using a Variable Focus Liquid Lens. Photonics 2024, 11, 506. [Google Scholar] [CrossRef]
- Jian, Y.-H.; Wei, T.-C.; Hung, T.-Y.; Chen, J.-W.; Wang, C.-C.; Chow, C.-W. Reconfigurable and Multiple Beam Steerable Non-Orthogonal-Multiple-Access System for Optical Wireless Communication. Opt. Laser Technol. 2024, 170, 110194. [Google Scholar] [CrossRef]
- Papanikolaou, V.K.; Bamidis, P.P.; Diamantoulakis, P.D.; Karagiannidis, G.K. Li-Fi and Wi-Fi with Common Backhaul: Coordination and Resource Allocation. In Proceedings of the 2018 IEEE Wireless Communications and Networking Conference (WCNC), Barcelona, Spain, 15–18 April 2018; pp. 1–6. [Google Scholar]
- Kashef, M.; Ismail, M.; Abdallah, M.; Qaraqe, K.A.; Serpedin, E. Energy Efficient Resource Allocation for Mixed RF/VLC Heterogeneous Wireless Networks. IEEE J. Sel. Areas Commun. 2016, 34, 883–893. [Google Scholar] [CrossRef]
- Tabassum, H.; Hossain, E. Coverage and Rate Analysis for Co-Existing RF/VLC Downlink Cellular Networks. IEEE Trans. Wirel. Commun. 2018, 17, 2588–2601. [Google Scholar] [CrossRef]
- Wang, Y.; Wu, X.; Haas, H. Analysis of Area Data Rate with Shadowing Effects in Li-Fi and RF Hybrid Network. In Proceedings of the 2016 IEEE International Conference on Communications (ICC), Kuala Lumpur, Malaysia, 22–27 May 2016; pp. 1–5. [Google Scholar]
- Wang, F.; Yang, F.; Song, J.; Han, Z. Access Frameworks and Application Scenarios for Hybrid VLC and RF Systems: State of the Art, Challenges, and Trends. IEEE Commun. Mag. 2022, 60, 55–61. [Google Scholar] [CrossRef]
- Popovski, P.; Stefanović, Č.; Nielsen, J.J.; de Carvalho, E.; Angjelichinoski, M.; Trillingsgaard, K.F.; Bana, A.-S. Wireless Access in Ultra-Reliable Low-Latency Communication (URLLC). IEEE Trans. Commun. 2019, 67, 5783–5801. [Google Scholar] [CrossRef]
- Soltani, M.D.; Kazemi, H.; Safari, M.; Haas, H. Handover Modeling for Indoor Li-Fi Cellular Networks: The Effects of Receiver Mobility and Rotation. In Proceedings of the 2017 IEEE Wireless Communications and Networking Conference (WCNC), San Francisco, CA, USA, 19–22 March 2017; pp. 1–6. [Google Scholar]
- Wu, X.; O’Brien, D.C.; Deng, X.; Linnartz, J.-P.M.G. Smart Handover for Hybrid LiFi and WiFi Networks. IEEE Trans. Wirel. Commun. 2020, 19, 8211–8219. [Google Scholar] [CrossRef]
- Demir, M.S.; Eldeeb, H.B.; Uysal, M. CoMP-Based Dynamic Handover for Vehicular VLC Networks. IEEE Commun. Lett. 2020, 24, 2024–2028. [Google Scholar] [CrossRef]
- Demir, M.S.; Eldeeb, H.B.; Uysal, M. Relay-Assisted Handover Technique for Vehicular VLC Networks. ITU J. Future Evol. Technol. 2022, 3, 11–18. [Google Scholar] [CrossRef]
- Wang, F.; Wang, Z.; Qian, C.; Dai, L.; Yang, Z. Efficient Vertical Handover Scheme for Heterogeneous VLC-RF Systems. J. Opt. Commun. Netw. 2015, 7, 1172–1180. [Google Scholar] [CrossRef]
- Babalola, O.P.; Balyan, V. Vertical Handover Prediction Based on Hidden Markov Model in Heterogeneous VLC-WiFi System. Sensors 2022, 22, 2473. [Google Scholar] [CrossRef]
- Tashan, W.; Shayea, I.; Aldirmaz-Colak, S.; El-Saleh, A.A.; Arslan, H. Optimal Handover Optimization in Future Mobile Heterogeneous Network Using Integrated Weighted and Fuzzy Logic Models. IEEE Access 2024, 12, 57082–57102. [Google Scholar] [CrossRef]
- Liang, S.; Zhang, Y.; Fan, B.; Tian, H. Multi-Attribute Vertical Handover Decision-Making Algorithm in a Hybrid VLC-Femto System. IEEE Commun. Lett. 2017, 21, 1521–1524. [Google Scholar] [CrossRef]
- Wang, Y.; Basnayaka, D.A.; Wu, X.; Haas, H. Optimization of Load Balancing in Hybrid LiFi/RF Networks. IEEE Trans. Commun. 2017, 65, 1708–1720. [Google Scholar] [CrossRef]
- Camporez, H.; Costa, W.; Segatto, M.; Silva, J.; Deters, J.K.; Wörtche, H.; Rocha, H. AI-Driven Enhancements for Handover in Visible Light Communication Systems. J. Light. Technol. 2024, 42, 8191–8202. [Google Scholar] [CrossRef]
- Zhou, B.; Liu, A.; Lau, V. Performance Limits of Visible Light-Based User Position and Orientation Estimation Using Received Signal Strength Under NLOS Propagation. IEEE Trans. Wirel. Commun. 2019, 18, 5227–5241. [Google Scholar] [CrossRef]
- Harlakin, A.; Krohn, A.; Hoeher, P.A. Liquid Crystal Display Based Angle-of-Arrival Estimation of a Single Light Source. IEEE Photonics J. 2022, 14, 6829312. [Google Scholar] [CrossRef]
- Li, T.; An, C.; Tian, Z.; Campbell, A.T.; Zhou, X. Human Sensing Using Visible Light Communication. In Proceedings of the 21st Annual International Conference on Mobile Computing and Networking, Paris, France, 7–11 September 2015; pp. 331–344. [Google Scholar]
- Tang, T.; Shang, T.; Li, Q. Impact of Multiple Shadows on Visible Light Communication Channel. IEEE Commun. Lett. 2021, 25, 513–517. [Google Scholar] [CrossRef]
- Zhang, Y.; Cai, O.; Yang, Y. Shadow Effect of Human Obstacles on Indoor Visible Light Communication System with Multiple Light Sources. Appl. Sci. 2023, 13, 6356. [Google Scholar] [CrossRef]
- Zhao, J.; Ishwar, P.; Konrad, J. Privacy-Preserving Indoor Localization via Light Transport Analysis. In Proceedings of the 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), New Orleans, LA, USA, 5–9 March 2017; pp. 3331–3335. [Google Scholar]
- Alijani, M.; Joseph, W.; De Poorter, E.; Deruyck, M.; Plets, D. ChickSense: Toward Poultry Welfare With Machine Learning-Assisted Visible Light Sensing. IEEE Sens. J. 2024, 24, 36178–36193. [Google Scholar] [CrossRef]
- Lee, G.; Park, J.K.; Kim, J.T. Multitarget Passive Indoor Visible Light Positioning Method Based on Specular Reflection. IEEE Sens. J. 2023, 23, 31196–31208. [Google Scholar] [CrossRef]
- Ngo, K.T.; Mangione, S.; Tinnirello, I. AI-Enhanced VLC/RF Hybrid for Smart IoT: A Revolution. In Proceedings of the 2024 International Conference on Advanced Technologies for Communications (ATC), Ho Chi Minh City, Vietnam, 17–19 October 2024; pp. 986–991. [Google Scholar]
- Imran, A.; Chowdhury, M.Z.; Joha, M.I.; Rahman, M.M.; Kabir, M.S.; Jang, Y.M. Machine Learning and Deep Learning in VLC Systems: A Comprehensive Survey. IEEE Open J. Commun. Soc. 2025, 6, 7955–8006. [Google Scholar] [CrossRef]
- Bing, R.; Yuan, G.; Zhu, M.; Meng, F.; Ma, H.; Qiao, S. Heterogeneous Graph Neural Networks Analysis: A Survey of Techniques, Evaluations and Applications. Artif. Intell. Rev. 2023, 56, 8003–8042. [Google Scholar] [CrossRef]
- Cao, S.; Ruan, Z.; Ren, W.; Qin, S.; Yin, X.; Liu, L.; Liang, Y.; Xu, H. Tailoring Perfect Optical Vortex Combs Based on Diffractive Neural Networks. Laser Photonics Rev. 2025, e02383. [Google Scholar] [CrossRef]
- Ruan, Z.; Yan, R.; Zhang, J.; Yin, X.; Liu, L.; Liang, Y.; Xu, H. Versatile Manipulation of Orbital Angular Momentum Combs Enabled by Diffractive Neural Networks. Opt. Express 2025, 33, 6771–6787. [Google Scholar] [CrossRef]
- Yang, Z.; Chen, M.; Li, G.; Yang, Y.; Zhang, Z. Secure Semantic Communications: Fundamentals and Challenges. IEEE Netw. 2024, 38, 513–520. [Google Scholar] [CrossRef]
- Willhammar, S.; Iimori, H.; Vieira, J.; Sundström, L.; Tufvesson, F.; Larsson, E.G. Achieving Distributed MIMO Performance with Repeater-Assisted Cellular Massive MIMO. IEEE Commun. Mag. 2025, 63, 114–119. [Google Scholar] [CrossRef]
- Jafri, M.; Srivastava, S.; Venkategowda, N.K.D.; Jagannatham, A.K.; Hanzo, L. Cooperative Hybrid Transmit Beamforming in Cell-Free mmWave MIMO Networks. IEEE Trans. Veh. Technol. 2023, 72, 6023–6038. [Google Scholar] [CrossRef]
- Shi, E.; Zhang, J.; Du, H.; Ai, B.; Yuen, C.; Niyato, D.; Letaief, K.B.; Shen, X. RIS-Aided Cell-Free Massive MIMO Systems for 6G: Fundamentals, System Design, and Applications. Proc. IEEE 2024, 112, 331–364. [Google Scholar] [CrossRef]
- Wei, Z.; Jia, J.; Niu, Y.; Wang, L.; Wu, H.; Yang, H.; Feng, Z. Integrated Sensing and Communication Channel Modeling: A Survey. IEEE Internet Things J. 2025, 12, 18850–18864. [Google Scholar] [CrossRef]
- Liang, C.; Li, J.; Liu, S.; Yang, F.; Dong, Y.; Song, J.; Zhang, X.-P.; Ding, W. Integrated Sensing, Lighting and Communication Based on Visible Light Communication: A Review. Digit. Signal Process. 2024, 145, 104340. [Google Scholar] [CrossRef]
- Li, S.; Jie, R.; Alsalman, O.; Huang, J.; Zhu, C. Large-Range and High-Sensitivity Displacement Sensing Based on Extrinsic Fabry–Perot Interferometer Assisted Microwave Photonic Filter. IEEE Trans. Instrum. Meas. 2025, 74, 7008511. [Google Scholar] [CrossRef]
- Li, S.; Wang, Z.; Wu, N.; Li, W.; Xia, L. Quasi-Distributed Demodulation of Fiber Ring Resonators Based on Microwave Photonic Time Division Multiplexing. Opt. Laser Technol. 2023, 163, 109411. [Google Scholar] [CrossRef]
- Li, S.; Alsalman, O.; Naku, W.; Zhu, C. Sensitivity-Improved Fiber Bragg Grating Temperature Sensor Based on Microwave-Photonic Enhanced Vernier Effect. IEEE Sens. J. 2024, 24, 20706–20712. [Google Scholar] [CrossRef]
- Li, S.; Jie, R.; Alsalman, O.; Huang, J.; Zhu, C. Tilted Fiber Bragg Grating Sensors Based on Time-Domain Measurements with Microwave Photonics. J. Light. Technol. 2025, 43, 879–885. [Google Scholar] [CrossRef]
- Zhou, X.; Campbell, A.T. Visible Light Networking and Sensing. In Proceedings of the 1st ACM workshop on Hot topics in wireless, Maui, HI, USA, 11 September 2014; pp. 55–60. [Google Scholar]
- Pan, G.; Xu, S.; Zhang, S.; Chen, X.; Sun, Y. Quality of Experience Oriented Cross-Layer Optimization for Real-Time XR Video Transmission. IEEE Trans. Circuits Syst. Video Technol. 2024, 34, 7742–7755. [Google Scholar] [CrossRef]











| Parameters | Value |
|---|---|
| FoV | 210° × 135° |
| Angular resolution | >60 pixels/degree |
| Frame rate | >1800 Hz |
| Dynamic range | 1:109 |
| Color depth | 24 bit |
| Latency | <20 ms |
| Requirement | Pre-XR | Entry-Level XR | Advanced XR | Ideal XR | |
|---|---|---|---|---|---|
| Experience duration | Less than 20 min | Less than 20 min | Less than an hour | More than an hour | |
| Video resolution | 3840 × 1920 (full-view 4K video) | 7680 × 3840 (full-view 8K video) | 11,520 × 5760 (full-view 12K video) | 23,040 × 11,520 (full view 24K video) | |
| Single-eye resolution | 1080 × 1080 | 1920 × 1920 | 3840 × 3840 | 9600 × 9600 | |
| Field of view (single-eye) | 100 × 100 | 110 × 110 | 120 × 120 | 150 × 150 | |
| Bit per color (RGB) | 8 | 8 | 10 | 12 | |
| Refresh rate | 60 | 90 | 120 | 200 | |
| Pixel per degree | 10 | 17 | 32 | 64 | |
| Data rate | Uncompressed | 10.62 Gb/s | 63.70 Gb/s | 238.89 Gb/s | 1911.03 Gb/s |
| low-latency compression 20:1 | 530 Mb/s | 3.18 Gb/s (Full-view) 796 Mb/s (FoV) | 11.94 Gb/s (Full-view) 5.31 Gb/s (FoV) | 95.55 Gb/s (Full-view) 66.36 Gb/s (FoV) | |
| Transmitting bit rate (lossy compression 300:1) | 35 Mb/s | 210 Mb/s (Full-view) 53 Mb/s (FoV) | 796 Mb/s (Full-view) 354 Mb/s (FoV) | 6.37 Gb/s (Full-view) 4.42 Gb/s (FoV) | |
| Application Type | Entry-Level XR | Advanced XR | Ideal XR |
|---|---|---|---|
| Noninteractive | ≤20 ms | ≤20 ms | ≤20 ms |
| Real-time Interactive | ≤20 ms | ≤15 ms | ≤8 ms |
| Year | Transmitter Type | Bandwidth | Modulation | Multiplexing Scheme | Data Rate | Ref. |
|---|---|---|---|---|---|---|
| 2025 | micro-LED | 2.19 GHz | OFDM | —— | 9.06 Gbps | [96] |
| 2024 | GaN micro-LED | 1.03 GHz | OFDM | —— | 4.08 Gbps | [81] |
| 2023 | Multi-chip LEDs | 3.37 GHz | OFDM | WDM | 23.43 Gbps | [15] |
| 2022 | GaN micro-LED | 517.3 MHz | OFDM | WDM | 18.43 Gbps | [97] |
| 2021 | Multi-chip LEDs | 300 MHz | PS-DMT/PS-OFDM | WDM | 24.25 Gbps | [98] |
| 2021 | Multi-chip LEDs | 859 MHz | OFDM | WDM /SDM | 16.6 Gbps | [83] |
| 2017 | GaN micro-LED | 655 MHz | OFDM | —— | 11.12 Gbps | [99] |
| 2016 | GaN micro-LED | 830 MHz | PAM /OFDM | —— | 3.8 Gbps /5.38 Gbps | [100] |
| 2013 | Multi-chip LEDs | 200 MHz | CAP | WDM | 3.22 Gbps | [101] |
| 2010 | Micro-LED | 245 MHz | OOK | —— | 1 Gbps | [102] |
| Mechanism | MEMS Mirrors | LC Deflectors | µLED Arrays |
|---|---|---|---|
| Steering Range | ±20° to ±60° | Up to ±40° | Discrete |
| Response Time | <1 ms | 5–20 ms | <10 ns |
| Optical Efficiency | High (>90%) | Moderate (60–80%) | Moderate (40–70%) |
| Main Penalty | Reflection losses | Diffraction efficiency | Fill factor, Pixel pitch |
| Metric | VLC | WiFi 7 (802.11be) | 5G NR |
|---|---|---|---|
| Typical Date Rate | 1–10 Gbps | 1–5 Gbps (Shared) | 0.1–1 Gbps (Practical) |
| Mobility | Restricted | Moderate | High |
| Latency | <1 ms | 5–10 ms (Stochastic) | 1–5 ms (URLLC) |
| FoV | Limited | Omnidirectional | Omnidirectional |
| MTP Contribution | ~5% | ~30–50% | 10–25% |
| Security | Nery High | Moderate | High |
| Range | ~5 m | ~10~30 m | Up to 500 m |
| Interference | Immune to EM interference | Susceptible to EMI/RFI | Susceptible to EMI/RFI |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Xu, H.; Wang, Z.; Sun, J.; Zhu, C.; Xia, Y. Bridging Light and Immersion: Visible Optical Interfaces for Extended Reality. Photonics 2026, 13, 115. https://doi.org/10.3390/photonics13020115
Xu H, Wang Z, Sun J, Zhu C, Xia Y. Bridging Light and Immersion: Visible Optical Interfaces for Extended Reality. Photonics. 2026; 13(2):115. https://doi.org/10.3390/photonics13020115
Chicago/Turabian StyleXu, Haixuan, Zhaoxu Wang, Jiaqi Sun, Chengkai Zhu, and Yi Xia. 2026. "Bridging Light and Immersion: Visible Optical Interfaces for Extended Reality" Photonics 13, no. 2: 115. https://doi.org/10.3390/photonics13020115
APA StyleXu, H., Wang, Z., Sun, J., Zhu, C., & Xia, Y. (2026). Bridging Light and Immersion: Visible Optical Interfaces for Extended Reality. Photonics, 13(2), 115. https://doi.org/10.3390/photonics13020115

