Research on Integrated Technology for Simultaneous Detection, Ranging, and Data Transmission Using an Optical DSSS Transceiver
Abstract
1. Introduction
2. System Structure
2.1. PN Code Generation
2.2. System Operating Principle
3. Accuracy Analysis
4. Experimental Results and Analysis
- (1)
- Spot detection accuracy in spatial optical links;
- (2)
- Laser ranging accuracy;
- (3)
- Data transmission.
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
| Symbols | Specification | Symbols | Specification |
|---|---|---|---|
| Early correlation value | Speed of light | ||
| Prompt correlation value | Data bit | ||
| Late correlation value | Position detection precision | ||
| Received signal | Signal-to-noise ratio | ||
| Early local code, and the late local code | Spreading gain | ||
| Prompt local code, | Ranging error due to phase-locked loop | ||
| Late local code | Chip period | ||
| Normalized phase error | Loop bandwidth | ||
| Normalized phase error from the previous integration period | Carrier-to-noise ratio | ||
| , | Loop parameter | Natural frequency | |
| Integration time | Damping ratio | ||
| Phase adjustment | Time error | ||
| Pseudocode frequency | Ideal clock count time | ||
| (xr, yr) | Relative position coordinates | Actual clock count time | |
| (xo, yo) | Absolute position coordinates | Ideal clock frequency | |
| ω | Spot radius | Actual clock frequency | |
| Distance | Frequency error |
References
- Palmer, C. NASA Satellite Sets Blistering Optical Communication Speed Record. Engineering 2024, 34, 9–11. [Google Scholar] [CrossRef]
- Watkins, M.M.; Flechtner, F.; Morton, P.; Webb, F. Current Status of the GRACE Follow-On Mission. In AGU Fall Meeting Abstracts, Proceedings of the Agu Fall Meeting, San Francisco, CA, USA, 12–16 December 2016; AGU: Washington, DC, USA, 2016. [Google Scholar]
- Amaro-Seoane, P.; Audley, H.; Babak, S.; Baker, J.; Barausse, E.; Bender, P.; Berti, E.; Binetruy, P.; Born, M.; Zweifel, P.; et al. Laser Interferometer Space Antenna. arXiv 2017, arXiv:1702.00786. [Google Scholar] [CrossRef]
- Gong, Y.; Luo, J.; Wang, B. Concepts and status of Chinese space gravitational wave detection projects. Nat. Astron. 2021, 5, 881–889. [Google Scholar] [CrossRef]
- Liu, X.; Ba, D.; Jiao, D.; Shao, X.; Mu, X.; Wang, Y. Influences of Analog-to-Digital Conversion Accuracy and Response Uniformity of CCD on Small-Scale Laser Focal Spot Measurements. Laser Part. Beams 2021, 2021, e20. [Google Scholar] [CrossRef]
- Yu, X.; Chen, S.; Xu, L.; Weng, R.; Zhao, B.; Zhang, Z.; Lin, P.; Guo, X.; Wang, T.; Song, Y.; et al. A CDMA Method for Multibeacon Codomain Detection by a Quadrant Detector in Free-Space Optical Networking. J. Light. Technol. 2025, 43, 61–70. [Google Scholar] [CrossRef]
- Gao, W.; Zhou, W.; Zhou, S.; Chen, G.; Huang, Y.; Qu, W.; Hu, X. A method for estimating the rotation errors of BDS broadcast ephemeris using global satellite laser ranging data. Meas. Sci. Technol. 2024, 11, 35. [Google Scholar] [CrossRef]
- Wang, Z.; Yang, S.; Jia, F.; Wu, K.; Liao, F.; Duan, H.; Yeh, H.-C. Alternative Approach to Tilt-to-Length Coupling Estimation for Laser Ranging Interferometers in Future Gravity Missions. Remote Sens. 2024, 16, 862. [Google Scholar] [CrossRef]
- Yuan, Y.; Li, X.; Zheng, H.; Gao, C.; Yao, X. Incorporating Satellite Laser Ranging observations into BDS analysis: From the perspectives of orbit validation, precise orbit determination, and geodetic parameters estimation. J. Geod. 2025, 99, 13. [Google Scholar] [CrossRef]
- Wang, J.; Zhu, W.; Gong, W. An efficient real-time signal processing method for satellite laser ranging. PLoS ONE 2024, 19, e0315375. [Google Scholar] [CrossRef] [PubMed]
- Xing, L.; Li, Z.; Huang, Y.; Zhang, Z. Efficient coding schemes for blue–green laser cross-medium communication based on polar codes. Opt. Eng. 2025, 64, 058106. [Google Scholar] [CrossRef]
- Chen, T.; Liu, Z.; Yang, Q.; Meng, J.; Wang, T.; He, J.J.; Li, Q.; Li, M. 4*10 Gbps WDM communication system based on a tunable V-cavity semiconductor laser. Opt. Express 2023, 31, 28174–28184. [Google Scholar] [CrossRef] [PubMed]
- Esteban, J.J.; García, A.F.; Barke, S.; Peinado, A.M.; Cervantes, F.G.; Bykov, I.; Heinzel, G.; Danzmann, K. Experimental demonstration of weak-light laser ranging and data communication for LISA. Opt. Express 2011, 19, 15937–15946. [Google Scholar] [CrossRef] [PubMed]
- Stevens, M.L.; Parenti, R.R.; Willis, M.M.; Greco, J.A.; Khatri, F.I.; Robinson, B.S.; Boroson, D.M. The lunar laser communication demonstration time-of-flight measurement system: Overview, on-orbit performance, and ranging analysis. In Free-Space Laser Communication and Atmospheric Propagation XXVIII, Proceedings of the SPIE LASE 2016, San Francisco, CA, USA, 13–18 February 2016; SPIE: Bellingham, WA, USA, 2016; Volume 9739. [Google Scholar]
- Tomio, H.; Kammerer, W.; Grenfell, P.; Cierny, O.; Garcia, M.; Lindsay, C.; Belsten, N.; Serra, P.; Cahoy, K.; Clark, M.; et al. Transmitter and fine pointing system development and testing for the CubeSat Laser Infrared Crosslink (CLICK) B/C mission. In Proceedings of the 2023 SPIE, San Francisco, CA, USA, 28 January–2 February 2023; Volume 12777. [Google Scholar]
- Chen, S.; Yu, X.; Ye, J.; Lin, P.; Zhang, Z.; Wang, T.; Xu, L. High-Precision Position Detection and Communication Fusion Technology Using Beacon Spread-Spectrum Modulation with Four-Quadrant Detector. Appl. Sci. 2024, 14, 3362. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, Y.; Deng, Y.; Du, A.; Liu, J. Design of a Free Space Optical Communication System for an Unmanned Aerial Vehicle Command and Control Link. Photonics 2021, 8, 163. [Google Scholar] [CrossRef]
- Rabinovich, J.; Ferraro, M.S.; Page, T.A.; Thomas, L.M.; Rabinovich, W.S.; Mahon, R.; Menas, A.J. Effects of combinatorial sensing on tracking algorithms for FSO systems. In Free-Space Laser Communications XXXII; SPIE: Bellingham, WA, USA, 2020; Volume 55. [Google Scholar]
- Menn, M. Autonomous navigation for GPS via crosslink ranging. In Proceedings of the PLANS ‘86-Position Location and Navigation Symposium, Las Vegas, NV, USA, 4–7 November 1986. [Google Scholar]
- Yamamoto, K.; Bykov, I.; Reinhardt, J.N.; Bode, C.; Grafe, P.; Staab, M.; Messied, N.; Clark, M.; Heinzel, G. Experimental end-to-end demonstration of intersatellite absolute ranging for LISA. Phys. Rev. Appl. 2024, 22, 054020. [Google Scholar] [CrossRef]
- Glennon, E. Cross Correlation Mitigation for C/A Code GPS Receivers. Doctoral Dissertation, The University of New South Wales, Sydney, Australia, 2009. [Google Scholar] [CrossRef]
- Weng, R.; Zhang, M.; Fan, G.; Jiao, W.; Lin, P.; Zhang, Z.; Zeng, D.; Yu, X. Research on a CDMA-Based Integrated Single-Terminal Detection System for Laser Communication Networking with Micrometer-Level Disturbance Error. Opt. Commun. 2025, 586, 131928. [Google Scholar] [CrossRef]
- Yu, X.; Tong, S.; Zhao, X.; Jiang, J.; Chen, X. Two-way laser regeneration pseudocode rangefinder of intersatellite optical crosslink. Opt. Eng. 2020, 59, 036101. [Google Scholar] [CrossRef]
- Photonics, G. MDL-002 Miniature Motorized Variable Optical Delay Line Operation Manual; Version:1.3; General Photonics Corporation: Chino, CA, USA, 2015. [Google Scholar]















Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Jiao, W.; Zhang, M.; Weng, R.; Fan, G.; Zeng, D.; Zhao, B.; Yu, X. Research on Integrated Technology for Simultaneous Detection, Ranging, and Data Transmission Using an Optical DSSS Transceiver. Photonics 2026, 13, 116. https://doi.org/10.3390/photonics13020116
Jiao W, Zhang M, Weng R, Fan G, Zeng D, Zhao B, Yu X. Research on Integrated Technology for Simultaneous Detection, Ranging, and Data Transmission Using an Optical DSSS Transceiver. Photonics. 2026; 13(2):116. https://doi.org/10.3390/photonics13020116
Chicago/Turabian StyleJiao, Wenfang, Min Zhang, Rui Weng, Guosheng Fan, Dixiang Zeng, Baiqiu Zhao, and Xiaonan Yu. 2026. "Research on Integrated Technology for Simultaneous Detection, Ranging, and Data Transmission Using an Optical DSSS Transceiver" Photonics 13, no. 2: 116. https://doi.org/10.3390/photonics13020116
APA StyleJiao, W., Zhang, M., Weng, R., Fan, G., Zeng, D., Zhao, B., & Yu, X. (2026). Research on Integrated Technology for Simultaneous Detection, Ranging, and Data Transmission Using an Optical DSSS Transceiver. Photonics, 13(2), 116. https://doi.org/10.3390/photonics13020116
