High-Sensitivity Optical Sensor Driven by the High-Q Quasi-Bound States in the Continuum of an Asymmetric Bow-Tie Metasurface
Abstract
1. Introduction
2. Design and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hsiao, H.H.; Chu, C.H.; Tsai, D.P. Fundamentals and Applications of Metasurfaces. Small Methods 2017, 1, 1600064. [Google Scholar] [CrossRef]
- Hu, J.; Bandyopadhyay, S.; Liu, Y.H.; Shao, L.Y. A Review on Metasurface: From Principle to Smart Metadevices. Front. Phys. 2021, 8, 586087. [Google Scholar] [CrossRef]
- Tseng, M.L.; Jahani, A.; Leitis, A.; Altug, H. Dielectric Metasurfaces Enabling Advanced Optical Biosensors. ACS Photonics 2021, 8, 47–60. [Google Scholar] [CrossRef]
- Kazanskiy, N.L.; Khonina, S.N.; Butt, M.A. Plasmonic sensors based on Metal-insulator-metal waveguides for refractive index sensing applications: A brief review. Phys. E-Low-Dimens. Syst. Nanostruct. 2020, 117, 113798. [Google Scholar] [CrossRef]
- Adhikari, R.; Chauhan, D.; Mola, G.T.; Dwivedi, R.P. A review of the current state-of-the-art in Fano resonance-based plasmonic metal-insulator-metal waveguides for sensing applications. Opto-Electron. Rev. 2021, 29, 148–166. [Google Scholar] [CrossRef]
- Xu, T.P.; Geng, Z.X.; Su, Y. A Potential Plasmonic Biosensor Based Asymmetric Metal Ring Cavity with Extremely Narrow Linewidth and High Sensitivity. Sensors 2021, 21, 752. [Google Scholar] [CrossRef]
- Luo, M.; Zhou, Y.; Zhao, X.Y.; Guo, Z.H.; Li, Y.X.; Wang, Q.; Liu, J.J.; Luo, W.; Shi, Y.Z.; Liu, A.Q.; et al. High-Sensitivity Optical Sensors Empowered by Quasi-Bound States in the Continuum in a Hybrid Metal-Dielectric Metasurface. Acs Nano 2024, 18, 6477–6486. [Google Scholar] [CrossRef]
- Genevet, P.; Capasso, F.; Aieta, F.; Khorasaninejad, M.; Devlin, R. Recent advances in planar optics: From plasmonic to dielectric metasurfaces. Optica 2017, 4, 139–152. [Google Scholar] [CrossRef]
- Wang, W.D.; Qi, J.G.; Li, B.Y. Gap-enhanced toroidal dipole and magnetic Fano resonances with polarization independence in all-dielectric metamaterials for sensing. J. Nanophotonics 2020, 14, 046006. [Google Scholar] [CrossRef]
- Yang, Y.Y.; Chai, F.M.; Huang, X.; Zhao, T.Q.; Zhang, P.; Li, C.X.; Fang, B.; Hong, Z.; Yu, M.Z.; Jing, X.F. Terahertz wave biomolecular sensor based on all-dielectric high Q metasurface. Opt. Laser Technol. 2024, 169, 110106. [Google Scholar] [CrossRef]
- Zheng, Y.Y.; Chen, Y.; Xu, Y.Y. Toroidal Dipole All-Dielectric Metasurfaces with High Sensitivity, High Figure of Merit, and Robustness for Refractive Index Sensing. J. Electron. Mater. 2024, 53, 674–682. [Google Scholar] [CrossRef]
- Limonov, M.F.; Rybin, M.V.; Poddubny, A.N.; Kivshar, Y.S. Fano resonances in photonics. Nat. Photonics 2017, 11, 543–554. [Google Scholar] [CrossRef]
- Limonov, M.F. Fano resonance for applications. Adv. Opt. Photonics 2021, 13, 703–771. [Google Scholar] [CrossRef]
- Lu, L.D.; Zhu, L.Q.; Zeng, Z.M.; Cui, Y.P.; Zhang, D.L.; Yuan, P. Progress of silicon photonic devices-based Fano resonance. Acta Phys. Sin. 2021, 70, 034204. [Google Scholar] [CrossRef]
- Su, W.; Ding, Y.M.; Luo, Y.L.; Liu, Y. A high figure of merit refractive index sensor based on Fano resonance in all-dielectric metasurface. Results Phys. 2020, 16, 102833. [Google Scholar] [CrossRef]
- Hao, Z.Q.; Gao, Y.N.; Song, C.Y. High Q-factor multiple Fano resonances in all-dielectric metamaterial for refractive index sensing. J. Nanophotonics 2021, 15, 046013. [Google Scholar] [CrossRef]
- Zhao, H.N.; Fan, X.Y.; Wei, X.; Li, C.C.; Zhao, T.G.; Fang, W.J.; Niu, H.J.; Bai, C.L.; Kumar, S. Highly sensitive multiple fano resonances excitation on all-dielectric metastructure. Opt. Rev. 2023, 30, 208–216. [Google Scholar] [CrossRef]
- Koshelev, K.L.; Sadrieva, Z.F.; Shcherbakov, A.A.; Kivshar, Y.S.; Bogdanov, A.A. Bound states in the continuum in photonic structures. Phys. Uspekhi 2023, 66, 494–517. [Google Scholar] [CrossRef]
- Feng, G.; Chen, Z.H.; Wang, Y.; Liu, X.; Liu, Y.S.; Liu, X.; Sun, F.; Yang, Y.B.; Chen, S.Q. Enhanced Fano resonance for high-sensitivity sensing based on bound states in the continuum. Chin. Opt. Lett. 2023, 21, 031202. [Google Scholar] [CrossRef]
- Li, Z.; Xie, M.; Nie, G.; Wang, J.; Huang, L. Pushing Optical Virus Detection to a Single Particle through a High-Q Quasi-bound State in the Continuum in an All-dielectric Metasurface. J. Phys. Chem. Lett. 2023, 14, 10762–10768. [Google Scholar] [CrossRef]
- Ma, W.; Zhou, C. Quasi-symmetry-protected BICs in a double-notched silicon nanodisk metasurface. Opt. Lett. 2023, 48, 2158–2161. [Google Scholar] [CrossRef] [PubMed]
- Zhou, R.J.; Luo, S.; Tian, J.Y.; Zhang, Y.S.; Tao, C.N.; Ling, Q.; Chen, D.R. Switchable magnetic dipole assisted double QBICs in an asymmetry four-leaf clover-shaped Ge2Sb2Te5 metasurface. Results Phys. 2023, 52, 106901. [Google Scholar] [CrossRef]
- Qin, J.; Jiang, S.B.; Wang, Z.S.; Cheng, X.B.; Li, B.J.; Shi, Y.Z.; Tsai, D.P.; Liu, A.Q.; Huang, W.; Zhu, W.M. Metasurface Micro/Nano-Optical Sensors: Principles and Applications. Acs Nano 2022, 16, 11598–11618. [Google Scholar] [CrossRef]
- Liu, Z.Q.; Du, J.S.; Chi, Z.T.; Cong, H.L.; Wang, B. An all-dielectric metasurface based on Fano resonance with tunable dual-peak insensitive polarization for high-performance refractive index sensing. Phys. Chem. Chem. Phys. 2023, 25, 28094–28103. [Google Scholar] [CrossRef] [PubMed]
- Zanganeh, E.; Sadrieva, Z.; Kapitanova, P.; Bogdanov, A. High-Q Mie resonators for refractive-index sensing. Phys. Rev. Appl. 2024, 21, 024028. [Google Scholar] [CrossRef]
- Wang, T.Y.; Liu, S.Q.; Zhang, J.H.; Xu, L.; Yang, M.Y.; Ma, D.; Jiang, S.J.; Jiao, Q.B.; Tan, X. Dual high-Q Fano resonances metasurfaces excited by asymmetric dielectric rods for refractive index sensing. Nanophotonics 2024, 13, 463–475. [Google Scholar] [CrossRef]
- Chen, H.W.; Fan, X.Y.; Fang, W.J.; Zhang, B.Y.; Cao, S.S.; Sun, Q.H.; Wang, D.D.; Niu, H.J.; Li, C.C.; Wei, X.; et al. High-Q Fano resonances in all-dielectric metastructures for enhanced optical biosensing applications. Biomed. Opt. Express 2024, 15, 294–305. [Google Scholar] [CrossRef]
- Zhao, J.J.; Fan, X.Y.; Fang, W.J.; Xiao, W.X.; Sun, F.X.; Li, C.C.; Wei, X.; Tao, J.F.; Wang, Y.L.; Kumar, S. High-Performance Refractive Index and Temperature Sensing Based on Toroidal Dipole in All-Dielectric Metasurface. Sensors 2024, 24, 3943. [Google Scholar] [CrossRef]
- Zhang, X.; Li, J.G.; Liu, C.; Huang, H.S.; Gu, M.H.; Jiang, S.J.; Jiao, Q.B.; Ma, D.; Yang, M.Y.; Xu, L.; et al. Research on an all-medium two-parameter metasurface sensor based on Fano resonance. Biomed. Opt. Express 2025, 16, 2415–2429. [Google Scholar] [CrossRef]
- Sun, P.; Zhao, Q.; Li, Y.; Liu, S.; Su, C.; Jiang, J.; Yun, M.; Zhao, Y.; Wang, J. Dual high-Q resonance sensing for refractive index and temperature based on all-dielectric asymmetric metasurface. Opt. Commun. 2024, 554, 130134. [Google Scholar] [CrossRef]
- Badri, S.H.; Gilarlue, M.M.; SaeidNahaei, S.; Kim, J.S. High-Q Fano resonance in all-dielectric metasurfaces for molecular fingerprint detection. J. Opt. Soc. Am. B Opt. Phys. 2022, 39, 563–569. [Google Scholar] [CrossRef]
- Edwards, A. Silicon (Si). In Handbook of Optical Constants of Solids, 2nd ed.; Palik, E.D., Ed.; Academic Press: Cambridge, MA, USA, 1985. [Google Scholar]
- Li, H.; Yu, S.L.; Yang, L.; Zhao, T.G. High Q-factor multi-Fano resonances in all-dielectric double square hollow metamaterials. Opt. Laser Technol. 2021, 140, 107072. [Google Scholar] [CrossRef]
- Yang, Y.M.; Kravchenko, I.I.; Briggs, D.P.; Valentine, J. All-dielectric metasurface analogue of electromagnetically induced transparency. Nat. Commun. 2014, 5, 5753. [Google Scholar] [CrossRef] [PubMed]
- Pang, J.L.; Fang, W.J.; Fan, X.Y.; Chen, Q.T.; Guo, H.Y.; Wang, T.T.; Wei, X.; Bai, C.L.; Kumar, S. Polarization-independent tetramer metastructure with multi-Fano resonances governed by quasi-bound states in the continuum. Opt. Express 2024, 32, 31905–31919. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.D.; Fan, X.Y.; Fang, W.J.; Niu, H.J.; Tao, J.F.; Li, C.N.; Wei, X.; Sun, Q.H.; Chen, H.W.; Zhao, H.I.; et al. Excitation of multiple Fano resonances on all-dielectric nanoparticle arrays. Opt. Express 2023, 31, 10805–10819. [Google Scholar] [CrossRef] [PubMed]
- Sun, W.W.; Liang, Z.Z.; Shi, X.Y.; Yang, F.M.; Dong, Y.J.; Dai, R.; Jia, Y.; Xin, W.; Hou, E.Z.; Wu, Z. Potential of high Q dual band Mid-Infrared metasurfaces with Quasi-BIC for refractive index sensing. Opt. Laser Technol. 2024, 174, 110631. [Google Scholar] [CrossRef]
- Song, S.Z.; Yu, S.L.; Li, H.; Zhao, T.G. Ultra-high Q-factor toroidal dipole resonance and magnetic dipole quasi-bound state in the continuum in an all-dielectric hollow metasurface. Laser Phys. 2022, 32, 025403. [Google Scholar] [CrossRef]
- Guo, L.H.; Zhang, Z.X.; Xie, Q.; Li, W.X.; Xia, F.; Wang, M.; Feng, H.; You, C.L.; Yun, M.J. Toroidal dipole bound states in the continuum in all-dielectric metasurface for high-performance refractive index and temperature sensing. Appl. Surf. Sci. 2023, 615, 156408. [Google Scholar] [CrossRef]












| Sensor Structure Type | S (nm/RIU) | FOM (RIU−1) | Ref. |
|---|---|---|---|
| Silicon nanorod | 528.7 | 1823 | [26] |
| cross-shaped silicon | 350 | 1000 | [27] |
| silicon nanoblock | 256 | 2519.7 | [35] |
| circular nanodisk | 2307 | 1792 | [37] |
| silicon cuboid | 139.29 | 2136.35 | [20] |
| nanocylinders | 355 | 1375.97 | [24] |
| asymmetric bow-tie | 454 | 3159 | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Chen, Z.; Huang, J.; Tan, Q.; Xiao, G.; Sun, T.; Zhang, F.; Idris, A.S.; Zou, Q.; Li, H.; Lu, G. High-Sensitivity Optical Sensor Driven by the High-Q Quasi-Bound States in the Continuum of an Asymmetric Bow-Tie Metasurface. Photonics 2026, 13, 77. https://doi.org/10.3390/photonics13010077
Chen Z, Huang J, Tan Q, Xiao G, Sun T, Zhang F, Idris AS, Zou Q, Li H, Lu G. High-Sensitivity Optical Sensor Driven by the High-Q Quasi-Bound States in the Continuum of an Asymmetric Bow-Tie Metasurface. Photonics. 2026; 13(1):77. https://doi.org/10.3390/photonics13010077
Chicago/Turabian StyleChen, Zanhui, Jiandao Huang, Qinghao Tan, Gongli Xiao, Tangyou Sun, Fabi Zhang, Ahmad Syahrin Idris, Qiping Zou, Haiou Li, and Guowei Lu. 2026. "High-Sensitivity Optical Sensor Driven by the High-Q Quasi-Bound States in the Continuum of an Asymmetric Bow-Tie Metasurface" Photonics 13, no. 1: 77. https://doi.org/10.3390/photonics13010077
APA StyleChen, Z., Huang, J., Tan, Q., Xiao, G., Sun, T., Zhang, F., Idris, A. S., Zou, Q., Li, H., & Lu, G. (2026). High-Sensitivity Optical Sensor Driven by the High-Q Quasi-Bound States in the Continuum of an Asymmetric Bow-Tie Metasurface. Photonics, 13(1), 77. https://doi.org/10.3390/photonics13010077

