Extreme Ion Beams Produced by a Multi-PW Femtosecond Laser: Acceleration Mechanisms, Properties and Prospects for Applications
Abstract
1. Introduction
2. Ion Acceleration Mechanisms Enabling the Generation of Ultra-Intense Ion Beams
3. Research Method Used to Demonstrate and Investigate the Properties of Laser-Driven Extreme Ion Beams
4. Properties of a Uranium Ion Beam Driven by a Multi-PW Femtosecond Laser
4.1. The Effect of the Laser Focal Spot Size on the Properties of the Uranium Ion Beam
4.2. The Effect of the Target Thickness on the Properties of the Uranium Ion Beam
5. Synchrotron Radiation Accompanying the Generation of Ultra-Intense Ion Beams
6. Discussion
7. Prospects for Applications of Ultra-Intense Ion Beams Driven by a Multi-PW Femtosecond Laser
7.1. High Energy-Density Physics
7.2. Inertial Confinement Fusion
7.3. Nuclear Physics
8. Summary and Conclusions
- Changing the laser focal spot size dL at a fixed laser intensity and target thickness leads to rather small changes in the mean and maximum energy of uranium ions and the laser-to-ion energy conversion efficiency. On the other hand, the dL variation results in very rapid changes in the peak intensity and peak fluence of the ion beam; however, these changes are mainly caused by the increase in laser energy accompanying the increase in the laser focal spot size.
- Reducing the uranium target thickness LT at fixed laser pulse parameters leads to an increase in (a) mean and maximum ion energy, (b) beam intensity, (c) energetic acceleration efficiency, and (d) the percentage of Ne-like ions in the beam (the beam becomes more mono-charged), as well as to shortening the ion pulse duration. Simultaneously, reducing the target thickness results in an increase in the beam’s angular divergence and a reduction in ion fluence (the number of ions per unit area). Changes in these beam parameters with changes in target thickness are relatively rapid, which allows for control of these parameters by varying the target thickness.
- The energy fluence, ion fluence, and beam intensity decreases rapidly, while the ion pulse duration increases with increasing distance between the beam detection point and the ion target (these changes occur while the ion energy remains constant). Changing this distance can therefore be a simple and effective way to control these parameters, e.g., in ion beam-target interaction experiments.
- At high laser intensities ~> 1023 W/cm2, ion acceleration is accompanied by the emission of synchrotron gamma radiation (SR). Under the considered laser-target interaction conditions, the efficiency of converting laser energy into SR is an order of magnitude lower than the laser-to-ion energy conversion efficiency, and therefore the effect of SR emission on ion beam parameters is small. Despite this, the emitted ultra-short (~30 fs) gamma radiation pulses have high power (~PW) and can be used in various applications.
- The energy and power deposited in the solid target by the ion beam driven by a laser can be easily controlled by changing the distance of this target from the ion target (ion source). Even with relatively large distances between these targets (~0.5 mm), the energies and powers deposited in the carbon target by the multi-PW laser-driven uranium ion beam are several orders of magnitude higher than those predicted for large heavy ion accelerators such as FAIR and HIAF.
- Based on the results of our earlier work [79], it can be assumed that the general properties of ultra-intense ion beams driven by a multi-PW femtosecond laser demonstrated in this paper for uranium ions will be similar for beams of other super-heavy ions such as gold, lead or thorium ions.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Daido, H.; Nishiuchi, M.; Pirozhkov, A.S. Review of laser driven ion sources and their applications. Rep. Prog. Phys. 2012, 75, 056401. [Google Scholar] [CrossRef]
- Macchi, A.; Borghesi, M.; Passoni, M. Ion acceleration by superintense laser-plasma interaction. Rev. Mod. Phys. 2013, 85, 751. [Google Scholar] [CrossRef]
- Qiao, B.; Shen, X.F.; He, H.; Xie, Y.; Zhang, H.; Zhou, C.T.; Zhu, S.P.; He, X.T. Revisit on ion acceleration mechanisms in solid targets driven by intense laser pulses. Plasma Phys. Control. Fusion 2019, 61, 014039. [Google Scholar] [CrossRef]
- Wang, P.; Gong, Z.; Lee, S.G.; Shou, Y.; Geng, Y.; Jeon, C.; Kim, I.J.; Lee, H.W.; Yoon, J.W.; Sung, J.H.; et al. Super-Heavy Ions Acceleration Driven by Ultrashort Laser Pulses at Ultrahigh Intensity. Phys. Rev. X 2021, 11, 021049. [Google Scholar] [CrossRef]
- Yoon, J.W.; Kim, Y.G.; Choi, I.W.; Sung, J.H.; Lee, H.W.; Lee, S.K.; Nam, C.H. Realization of laser intensity over 1023 W/cm2. Optica 2021, 8, 630. [Google Scholar] [CrossRef]
- Radier, C.; Chalus, O.; Charbonneau, M.; Thambirajah, S.; Deschamps, G.; David, S.; Barbe, J.; Etter, E.; Matras, G.; Ricaud, S.; et al. 10 PW peak power femtosecond laser pulse at ELI-NP. High Power Laser Sci. Eng. 2022, 10, e21. [Google Scholar] [CrossRef]
- Badziak, J.; Domański, J. Acceleration of Heavy Ions by Ultrafast High-Peak-Power Lasers: Advances, Challenges, and Perspectives. Photonics 2025, 12, 184. [Google Scholar] [CrossRef]
- Danson, C.N.; Haefner, C.; Bromage, J.; Butcher, T.; Chanteloup, J.-C.F.; Chowdhury, E.A.; Galvanauskas, A.; Gizzi, L.A.; Hein, J.; Hillier, D.I.; et al. Petawatt and exawatt class lasers worldwide. High Power Laser Sci. Eng. 2019, 7, e54. [Google Scholar] [CrossRef]
- Mourou, G. Nobel Lecture: Extreme light physics and application. Rev. Mod. Phys. 2019, 91, 030501. [Google Scholar] [CrossRef]
- Khazanov, E.; Shaykin, A.; Kostyukov, I.; Ginzburg, V.; Mukhin, I.; Yakovlev, I.; Soloviev, A.; Kuznetsov, I.; Mironov, S.; Korzhimanov, A.; et al. Exawatt Center for Extreme Light Studies (XCELS). High Power Laser Sci. Eng. 2023, 11, e78. [Google Scholar] [CrossRef]
- Wang, X.; Liu, X.; Lu, X.; Chen, J.; Long, Y.; Li, W.; Chen, H.; Chen, X.; Bai, P.; Li, Y.; et al. 13.4fs, 0.1 Hz OPCPA Front End for the 100PW-Class Laser Facility. Ultrafast Sci. 2022, 2022, 9894358. [Google Scholar] [CrossRef]
- Badziak, J.; Jabłoński, S.; Wołowski, J. Progress and prospect of fast ignition of ICF targets. Plasma Phys. Control. Fusion 2007, 49, B651. [Google Scholar] [CrossRef]
- Badziak, J.; Jabłoński, S.; Parys, P.; Rosiński, M.; Wołowski, J.; Szydłowski, A.; Antici, P.; Fuchs, J.; Mancic, A. Ultraintense proton beams from laser-induced skin-layer ponderomotive acceleration. J. Appl. Phys. 2008, 104, 063310. [Google Scholar] [CrossRef]
- Badziak, J. Laser-driven ion acceleration: Methods, challenges and prospects. J. Phys. Conf. Series 2018, 959, 012001. [Google Scholar] [CrossRef]
- Badziak, J.; Domanski, J. Towards ultra-intense ultra-short ion beams driven by a multi-PW laser. Laser Part. Beams 2019, 37, 288. [Google Scholar] [CrossRef]
- Honrubia, J.J.; Fernandez, J.C.; Temporal, M.; Hegelich, B.M.; Meyer-ter-Vehn, J. Fast ignition of inertial fusion targets by laser-driven carbon beams. Phys. Plasmas 2009, 16, 102701. [Google Scholar] [CrossRef]
- Fernandez, J.C.; Albright, B.J.; Beg, F.N.; Foord, M.E.; Hegelich, B.M.; Honrubia, J.J.; Roth, M.; Stephens, R.B.; Yin, L. Fast ignition with laser-driven proton and ion beams. Nucl. Fusion 2014, 54, 054006. [Google Scholar] [CrossRef]
- Honrubia, J.J.; Murakami, M. Ion beam requirements for fast ignition of inertial fusion targets. Phys. Plasmas 2015, 22, 012703. [Google Scholar] [CrossRef]
- Badziak, J.; Domański, J. Laser-driven acceleration of ion beams for high-gain inertial confinement fusion. Nucl. Fusion 2021, 61, 046011. [Google Scholar] [CrossRef]
- Domański, J.; Badziak, J. Towards single-charge heavy ion beams driven by an ultra-intense laser. Plasma Phys. Control. Fusion 2022, 64, 085002. [Google Scholar] [CrossRef]
- Hoffmann, D.H.H.; Fortov, V.E.; Kuster, M.; Mintsev, V.; Sharkov, B.Y.; Tahir, N.A.; Udrea, S.; Varentsov, D.; Weyrich, K. High energy density physics generated by intense heavy ion beams. Astrophys. Space Sci. 2009, 322, 167. [Google Scholar] [CrossRef]
- Sharkov, B.Y.; Hoffmann, D.H.H.; Golubev, A.A.; Zhao, Y. High energy density physics with intense ion beams. Matter Radiat. Extrem. 2016, 1, 28. [Google Scholar] [CrossRef]
- Wilks, S.C.; Langdon, A.B.; Cowan, T.E.; Roth, M.; Singh, M.; Hatchett, S.; Key, M.H.; Pennington, D.; McKinnon, A.; Snavely, R.A. Energetic proton generation in ultra-intense laser-solid interactions. Phys. Plasmas 2001, 8, 542. [Google Scholar] [CrossRef]
- Mackinnon, A.J.; Borghesi, M.; Hatchett, S.; Key, M.H.; Patel, P.K.; Campbell, H.; Schiavi, A.; Snavely, R.; Wilks, S.C.; Willi, O. Effect of Plasma Scale Length on Multi-MeV Proton Production by Intense Laser Pulse. Phys. Rev. Lett. 2001, 86, 1769. [Google Scholar] [CrossRef]
- Badziak, J.; Woryna, E.; Parys, P.; Platonov, K.Y.; Jabłoński, S.; Ryć, L.; Vankov, A.B.; Wołowski, J. Fast Proton Generation from Ultrashort Laser Pulse Interaction with Double-Layer Foil Targets. Phys. Rev. Lett. 2001, 87, 215001. [Google Scholar] [CrossRef]
- Borghesi, M.; Mackinnon, A.J.; Campbell, D.H.; Hicks, D.G.; Kar, S.; Patel, P.K.; Price, D.; Romagnani, L.; Schiavi, A.; Willi, O. Multi-MeV Proton Source Investigations in Ultraintense Laser-Foil Interactions. Phys. Rev. Lett. 2004, 92, 055003. [Google Scholar] [CrossRef]
- Zou, D.B.; Zhuo, H.B.; Yang, X.H.; Yu, T.P.; Shao, F.Q.; Pukhov, A. Control of target-normal-sheath-accelerated protons from a guiding cone. Phys. Plasmas 2015, 22, 063103. [Google Scholar] [CrossRef]
- Khan, I.; Saxena, V. Enhanced target normal sheath acceleration with a grooved hydrocarbon target. Phys. Plasmas 2023, 30, 063102. [Google Scholar] [CrossRef]
- Esirkepov, T.; Borghesi, M.; Bulanov, S.V.; Mourou, G.; Tajima, T. Highly Efficient Relativistic-Ion Generation in the Laser-Piston Regime. Phys. Rev. Lett. 2004, 92, 175003. [Google Scholar] [CrossRef]
- Macchi, A.; Cattani, F.; Liseykina, T.V.; Cornalti, F. Laser Acceleration of Ion Bunches at the Front Surface of Overdense Plasmas. Phys. Rev. Lett. 2005, 94, 165003. [Google Scholar] [CrossRef]
- Robinson, A.P.L.; Zepf, M.; Kar, S.; Evans, R.G.; Bellei, C. Radiation pressure acceleration of thin foils with circularly polarized laser pulses. New J. Phys. 2008, 10, 013021. [Google Scholar] [CrossRef]
- Grech, M.; Skupin, S.; Diaw, A.; Schlegel, T.; Tikhonchuk, V.T. Energy dispersion in radiation pressure accelerated ion beams. New J. Phys. 2011, 13, 123003. [Google Scholar] [CrossRef]
- Sgattoni, A.; Sinigardi, S.; Macchi, A. High energy gain in three-dimensional simulations of light sail acceleration. Appl. Phys. Lett. 2014, 105, 084105. [Google Scholar] [CrossRef]
- Petrov, G.M.; McGuffey, C.; Thomas, A.G.R.; Krushelnick, K.; Beg, F.N. Generation of heavy ion beams using femtosecond laser pulses in the target normal sheath acceleration and radiation pressure acceleration regimes. Phys. Plasmas 2016, 23, 063108. [Google Scholar] [CrossRef]
- Kim, I.J.; Pae, K.H.; Choi, I.W.; Lee, C.-L.; Kim, H.T.; Singhal, H.; Sung, J.H.; Lee, S.K.; Lee, H.W.; Nickles, P.V.; et al. Radiation pressure acceleration of protons to 93 MeV with circularly polarized petawatt laser pulses. Phys. Plasmas 2016, 23, 070701. [Google Scholar] [CrossRef]
- Gong, Z.; Shou, Y.; Tang, Y.; Hu, R.; Yu, J.; Ma, W.; Lin, C.; Yan, X. Proton sheet crossing in thin relativistic plasma irradiated by a femtosecond petawatt laser pulse. Phys. Rev. E 2020, 102, 013207. [Google Scholar] [CrossRef]
- Shou, Y.; Gong, Z.; Pae, K.H.; Yoon, J.W.; Sung, J.H.; Lee, S.K.; Kim, S.Y.; Kim, S.H.; Wu, X.; Yan, X.; et al. Proton Acceleration Associated with Sheet Crossing in Petawatt-Laser-Irradiated Nanometre Foils. Phys. Rev. Lett. 2025, 135, 215002. [Google Scholar] [CrossRef]
- Shou, Y.; Wu, X.; Pae, K.H.; Ahn, G.-E.; Kim, S.Y.; Kim, S.H.; Yoon, J.W.; Sung, J.H.; Lee, S.K.; Gong, Z.; et al. Laser-driven proton acceleration beyond 100 MeV by radiation pressure and Coulomb repulsion in a conduction-restricted plasma. Nat. Commun. 2025, 16, 1487. [Google Scholar] [CrossRef]
- Silva, L.O.; Marti, M.; Davies, J.R.; Fonseca, R.A. Proton shock acceleration in laser-plasma interactions. Phys. Rev. Lett. 2004, 92, 015002. [Google Scholar] [CrossRef]
- Wei, M.S.; Mangles, S.P.D.; Najmudin, Z.; Walton, B.; Gopal, A.; Tatarakis, M.; Dangor, A.E.; Clark, E.L.; Evans, R.G.; Fritzler, S.; et al. Ion acceleration by collisionless shocks in high-intensity-laser–underdense-plasma interaction. Phys. Rev. Lett. 2004, 93, 155003. [Google Scholar] [CrossRef]
- Badziak, J.; Głowacz, S.; Jabłoński, S.; Parys, P.; Wołowski, J.; Hora, H. Laser-driven generation of high-current ion beams using skin-layer ponderomotive acceleration. Laser Part. Beams 2005, 23, 401. [Google Scholar] [CrossRef]
- Głowacz, S.; Hora, H.; Badziak, J.; Jabłoński, S.; Cang, Y.; Osman, F. Analytical description of rippling effect and ion acceleration in plasma produced by a short laser pulse. Laser. Part. Beams 2006, 24, 15–25. [Google Scholar] [CrossRef]
- Esirkepov, T.; Bingham, R.; Bulanov, S.; Honda, T.; Nishihara, K.; Pegoraro, F. Coulomb explosion of a cluster irradiated by a high intensity laser pulse. Laser Part. Beams 2000, 18, 503. [Google Scholar] [CrossRef]
- Braenzel, J.; Andreev, A.A.; Platonov, K.; Klingsporn, M.; Ehrentraut, L.; Sandner, W.; Schnurer, M. Coulomb-Driven Energy Boost of Heavy Ions for Laser-Plasma Acceleration. Phys. Rev. Lett. 2015, 114, 124801. [Google Scholar] [CrossRef]
- Barman, M.; Choudhury, J.; Das, N. Laser driven ion acceleration due to Direct Coulomb Explosion from hydrogen target using PIC simulations. Appl. Phys. B 2025, 131, 102. [Google Scholar] [CrossRef]
- Yin, L.; Albright, B.J.; Hegelich, B.M.; Fernandez, J.C. GeV laser ion acceleration from ultrathin targets: The laser breakout afterburner. Laser Part. Beams 2006, 24, 291–298. [Google Scholar] [CrossRef]
- Yin, L.; Albright, B.J.; Hegelich, B.M.; Browers, K.J.; Flippo, K.A.; Kwan, T.J.T.; Fernandez, J.C. Monoenergetic and GeV ion acceleration from the laser breakout afterburner using ultrathin targets. Phys. Plasmas 2007, 14, 056706. [Google Scholar] [CrossRef]
- Hegelich, B.M.; Pomerantz, I.; Yin, L.; Wu, H.C.; Jung, D.; Albright, B.J.; Gautier, D.C.; Letzring, S.; Palaniyappan, S.; Shah, R.; et al. Laser-driven ion acceleration from relativistically transparent nanotargets. New J. Phys. 2013, 15, 085015. [Google Scholar] [CrossRef]
- Higginson, A.; Gray, R.J.; King, M.; Dance, R.J.; Williamson, S.D.R.; Butler, N.M.H.; Wilson, R.; Capdessus, R.; Armstrong, C.; Green, J.S.; et al. Near-100 MeV protons via a laser-driven transparency-enhanced hybrid acceleration scheme. Nat. Commun. 2018, 9, 724. [Google Scholar] [CrossRef]
- Nakamura, T.; Bulanov, S.V.; Esirkepov, T.Z.; Kando, M. High-Energy Ions from Near-Critical Density Plasmas via Magnetic Vortex Acceleration. Phys. Rev. Lett. 2010, 105, 135002. [Google Scholar] [CrossRef]
- Park, J.; Bulanov, S.S.; Bin, J.; Ji, Q.; Steinke, S.; Vay, J.-L.; Geddes, C.G.R.; Schroeder, C.B.; Leemans, W.P.; Schenkel, T.; et al. Ion acceleration in laser generated megatesla magnetic vortex. Phys. Plasmas 2019, 26, 103108. [Google Scholar] [CrossRef]
- Patel, P.K.; Mackinnon, A.J.; Key, M.H.; Cowan, T.E.; Foord, M.E.; Allen, M.; Price, D.F.; Ruhl, H.; Springer, P.T.; Stephens, R. Isochoric heating of solid-density matter with an ultrafast proton beam. Phys. Rev. Lett. 2003, 91, 125004. [Google Scholar] [CrossRef] [PubMed]
- Bartal, T.; Foord, M.E.; Bellei, C.; Key, M.H.; Flippo, K.A.; Gaillard, S.A.; Offermann, D.T.; Patel, P.K.; Jarrott, L.C.; Higginson, D.P.; et al. Focusing of short-pulse high-intensity laser-accelerated proton beams. Nat. Phys. 2012, 8, 139. [Google Scholar] [CrossRef]
- McGuffey, C.; Kim, J.; Wei, M.S.; Nilson, P.M.; Chen, S.N.; Fuchs, J.; Fuchs, P.; Fitzsimmons, P.P.; Foord, M.E.; Mariscal, D.; et al. Focussing protons from a kilojoule laser for intense beam heating using proximal target structures. Sci. Rep. 2020, 10, 9415. [Google Scholar] [CrossRef] [PubMed]
- Kemp, A.J.; Wilks, S.C.; Tabak, M.; Higginson, D.P. On the role of self-generated magnetic fields in focused ion beams driven by intense picosecond laser pulses. Phys. Plasmas 2025, 32, 093102. [Google Scholar] [CrossRef]
- Atzeni, S.; Meyer-ter-Vehn, J. The Physics of Inertial Fusion; Clarendon: Oxford, UK, 2004. [Google Scholar]
- Betti, R.; Hurricane, O.A. Inertial-confinement fusion with lasers. Nat. Phys. 2016, 12, 435. [Google Scholar] [CrossRef]
- Hurricane, O.A.; Patel, P.K.; Betti, R.; Froula, D.H.; Regan, S.P.; Slutz, S.A.; Gomez, M.R.; Sweeney, M.A. Physics principles of inertial confinement fusion and U.S. program overview. Rev. Mod. Phys. 2023, 95, 025005. [Google Scholar] [CrossRef]
- Karasik, M.; Weaver, J.L.; Aglitskiy, Y.; Watari, T.; Arikawa, Y.; Sakaiya, T.; Oh, J.; Velikovich, A.L.; Zalesak, S.T.; Bates, J.W.; et al. Acceleration to high velocities and heating by impact using Nike KrF laser. Phys. Plasmas 2010, 17, 056317. [Google Scholar] [CrossRef]
- Shui, M.; Chu, G.; Zhu, B.; He, W.; Xi, T.; Fan, W.; Xin, J.; Gu, Y. Hypervelocity launching of flyers at the SG-III prototype laser facility. J. Appl. Phys. 2016, 119, 035903. [Google Scholar] [CrossRef]
- Shui, M.; Chu, G.-B.; Xin, J.-T.; Wu, Y.-C.; Zhu, B.; He, W.-H.; Xi, T.; Gu, Y.-Q. Laser-driven flier impact experiments at the SG-III prototype laser facility. Chin. Phys. B 2015, 24, 094701. [Google Scholar] [CrossRef]
- Badziak, J.; Borodziuk, S.; Pisarczyk, T.; Chodukowski, T.; Krousky, E.; Masek, K.; Skala, J.; Ullschmied, J.; Rhee, Y.-J. Highly efficient acceleration and collimation of high-density plasma using laser-induced cavity pressure. Appl. Phys. Lett. 2010, 96, 251502. [Google Scholar] [CrossRef]
- Badziak, J.; Jabłoński, S.; Pisarczyk, T.; Rączka, P.; Krousky, E.; Liska, R.; Kucharik, M.; Chodukowski, T.; Kalinowska, Z.; Parys, P.; et al. Highly efficient accelerator of dense matter using laser-induced cavity pressure acceleration. Phys. Plasmas 2012, 19, 053105. [Google Scholar] [CrossRef]
- Badziak, J.; Krousky, E.; Marczak, J.; Parys, P.; Pisarczyk, T.; Rosiński, M.; Sarzynski, A.; Chodukowski, T.; Dostal, J.; Dudzak, R.; et al. Efficient acceleration of a dense plasma projectile to hyper velocities in the laser-induced cavity pressure acceleration scheme. Laser Part. Beams 2018, 36, 49–54. [Google Scholar] [CrossRef]
- Cauble, R.; Phillion, D.W.; Hoover, T.J.; Holmes, N.C.; Kilkenny, J.D.; Lee, R.W. Demonstration of 0.75 Gbar planar shocks in X-ray driven colliding foils. Phys. Rev. Lett. 1993, 70, 2102. [Google Scholar] [CrossRef]
- Badziak, J.; Krousky, E.; Kucharik, M.; Liska, R. The LICPA-driven collider—A novel efficient tool for the production of ultra-high pressures in condensed media. JINST 2016, 11, C03043. [Google Scholar] [CrossRef]
- Prencipe, I.; Fuchs, J.; Pascarelli, S.; Schumacher, D.W.; Stephens, R.B.; Alexander, N.B.; Briggs, R.; Büscher, M.; Cernaianu, M.O.; Choukourov, A.; et al. Targets for high repetition rate laser facilities: Needs, challenges and perspectives. High Power Laser Sci. Eng. 2017, 5, e17. [Google Scholar] [CrossRef]
- Jipa, F.; Ionel, L.; Zamfirescu, M. Advances in Design and Fabrication of Micro-Structured Solid Targets for High-Power Laser-Matter Interaction. Photonics 2024, 11, 1008. [Google Scholar] [CrossRef]
- Domański, J.; Badziak, J. Generation of ion beams from a high-Z target irradiated by a laser pulse of ultra-relativistic intensity. Acta Phys. Polon. A 2020, 138, 586. [Google Scholar] [CrossRef]
- Li, J.; Arefiev, A.V.; Bulanov, S.S.; Kawahito, D.; Bailly-Grandvaux, M.; Petrov, G.M.; McGuffey, C.; Beg, F.N. Ionization injection of highly-charged copper ions for laser driven acceleration from ultra-thin foils. Sci. Rep. 2019, 9, 666. [Google Scholar] [CrossRef]
- Tamburini, M.; Pegoraro, F.; Di Piazza, A.; Keitel, C.H.; Macchi, A. Radiation reaction effects on radiation pressure acceleration. New J. Phys. 2010, 12, 123005. [Google Scholar] [CrossRef]
- Ridgers, C.P.; Brady, C.S.; Duclous, R.; Kirk, J.G.; Bennett, K.; Arber, T.D.; Robinson, A.P.L.; Bell, A.R. Dense electron-positron plasmas and ultraintense γ rays from laser-irradiated solids. Phys. Rev. Lett. 2012, 108, 165006. [Google Scholar] [CrossRef] [PubMed]
- Brady, C.S.; Ridges, C.P.; Arber, T.D.; Bell, A.R. Synchrotron radiation, pair production, and longitudinal electron motion during 10-100 PW laser solid interaction. Phys. Plasmas 2014, 21, 033108. [Google Scholar] [CrossRef]
- Capdessus, R.; McKenna, P. Influence of radiation force on ultraintense laser-driven ion acceleration. Phys. Rev. E 2015, 91, 053105. [Google Scholar] [CrossRef] [PubMed]
- Ammosov, M.V.; Delone, N.B.; Krainov, V.P. Tunnel ionization of complex atoms and of atomic ions in an alternating electromagnetic field. Sov. Phys. JETP 1986, 64, 1191. [Google Scholar]
- Badziak, J.; Domański, J. Laser-driven acceleration of ion beams for ion fast ignition: The effect of the laser wavelength on the ion beam properties. Plasma Phys. Control. Fusion 2021, 63, 055005. [Google Scholar] [CrossRef]
- Sokolov, I.V.; Nees, J.A.; Yanovsky, V.P.; Naumova, N.M.; Mourou, G.A. Emission and its back-reaction accompanying electron motion in relativisticaly strong and QED-strong laser fields. Phys. Rev. E 2010, 81, 036412. [Google Scholar] [CrossRef]
- Badziak, J.; Domański, J. Ultra-intense laser-accelerated ion beams for high-gain inertial fusion: The effect of the ion mass on the beam properties. Nucl. Fusion 2022, 62, 086040. [Google Scholar] [CrossRef]
- Domański, J.; Badziak, J. Super-heavy ion beams generated by a multi-PW femtosecond laser. Phys. Plasmas 2024, 31, 023110. [Google Scholar] [CrossRef]
- d’Humières, E.; Brantov, A.; Bychenkov, V.Y.; Tikhonchuk, T. Optimalization of laser-target interaction for proton acceleration. Phys. Plasmas 2013, 20, 023103. [Google Scholar] [CrossRef]
- Liu, J.-L.; Chen, M.; Zheng, J.; Sheng, Z.-M.; Liu, C.-S. Three dimensional effects on proton acceleration by intense laser solid target interaction. Phys. Plasmas 2013, 20, 063107. [Google Scholar] [CrossRef]
- Xiao, K.D.; Zhou, C.T.; Jiang, K.; Yang, Y.C.; Li, R.; Zhang, H.; Qiao, B.; Huang, T.W.; Cao, J.M.; Cai, T.X.; et al. Multidimensional effects on proton acceleration using high-power laser pulses. Phys. Plasmas 2018, 25, 023103. [Google Scholar] [CrossRef]
- Psikal, J.; Matys, M. Dominance of hole-boring radiation pressure acceleration regime with thin ribbon of ionized solid hydrogen. Plasma Phys. Control. Fusion 2018, 60, 044003. [Google Scholar] [CrossRef]
- Palmer, C.A.J.; Schreiber, J.; Nagel, S.R.; Dover, N.P.; Bellei, C.; Beg, F.N.; Bott, S.; Clarke, R.J.; Dangor, A.E.; Hassan, S.M.; et al. Rayleigh-Taylor Instability of an Ultrathin Foil Accelerated by the Radiation Pressure of an Intense Laser. Phys. Rev. Lett. 2012, 108, 225002. [Google Scholar] [CrossRef] [PubMed]
- Sgattoni, A.; Sinigardi, S.; Fedeli, L.; Pegoraro, F.; Macchi, A. Laser-driven Rayleigh-Taylor instability: Plasmonic effects and three-dimensional structures. Phys. Rev. E 2015, 91, 013106. [Google Scholar] [CrossRef]
- Eliasson, B. Instability of thin conducting foil accelerated by a finite wavelength intense laser. New J. Phys. 2015, 17, 033026. [Google Scholar] [CrossRef]
- Wan, Y.; Pai, C.-H.; Zhang, C.J.; Li, F.; Wu, Y.P.; Hua, J.F.; Lu, W.; Gu, Y.Q.; Silva, L.O.; Joshi, C.; et al. Physical Mechanism of the Transverse Instability in Radiation Pressure Ion Acceleration. Phys. Rev. Lett. 2016, 117, 23480. [Google Scholar] [CrossRef]
- Weibel, E.S. Spontaneously Growing Transverse Waves in a Plasma Due to an Anisotropic Velocity Distribution. Phys. Rev. Lett. 1959, 2, 83. [Google Scholar] [CrossRef]
- Shukla, N.; Schoeffler, K.; Boella, E.; Vieira, J.; Fonseca, R.; Silva, L.O. Interplay between the Weibel instability and the Biermann battery in realistic laser-solid interactions. Phys. Rev. Res. 2020, 2, 023129. [Google Scholar] [CrossRef]
- Zhai, S.; Tikhonchuk, V.; Yi, L.; Araudo, A.; Weber, S. Weibel instability mediated laser hole boring and ion acceleration in an electrostatic shock. Plasma Phys. Control. Fusion 2021, 63, 085013. [Google Scholar] [CrossRef]
- Choi, I.W.; Jean, C.; Lee, S.G.; Kim, S.Y.; Kim, T.Y.; Kim, I.J.; Lee, H.W.; Yoon, J.W.; Sung, J.H.; Lee, S.K.; et al. Highly efficient double plasma mirror producing ultrahigh-contrast multi-petawatt laser pulses. Opt. Lett. 2020, 45, 6342 and references therein. [Google Scholar] [CrossRef]
- Zhu, P.; Zigler, A.; Xie, X.; Zhang, D.; Yang, Q.; Sun, M.; Papeer, J.; Kang, J.; Gao, Q.; Liang, X.; et al. Temporal contrast enhancement of ultrashort pulses using a spatiotemporal plasma-lens filter. Opt. Lett. 2020, 45, 2279 and references therein. [Google Scholar] [CrossRef]
- Woryna, E.; Parys, P.; Wołowski, J.; Mróz, W. Corpuscular diagnostics and processing methods applied in investigations of laser-produced plasma as a source of highly ionized ions. Laser Part. Beams 1996, 14, 293–321. [Google Scholar] [CrossRef]
- Woryna, E.; Parys, P.; Wołowski, J.; Laska, L.; Krasa, J.; Masek, K.; Pfeifer, M.; Kralikova, B.; Skala, J.; Straka, P. Au49+, Pb50+, and Ta48+ ions from laser-produced plasmas. Appl. Phys. Lett. 1996, 69, 1547–1549. [Google Scholar] [CrossRef]
- Domański, J.; Badziak, J. Properties of heavy ion beams produced by a PW sub-picosecond laser. J. Instrum. 2020, 15, C05037. [Google Scholar] [CrossRef]
- Drake, R.P. High-Energy-Density Physics; Springer-Verlag: Berlin/Hidelberg, Germany, 2006. [Google Scholar]
- Ziegler, J.F. SRIM 2003. 2004. Available online: http://www.srim.org (accessed on 15 December 2025).
- Paul, H. The Stopping Power of Matter for Positive Ions, Modern Practices in Radiation Therapy; Natanasabapathi, G., Ed.; InTech: London, UK, 2012; p. 124. ISBN 978-953-51-0427-8. Available online: https://cdn.intechopen.com/pdfs/34244/InTech-The_stopping_power_of_matter_for_positive_ions.pdf (accessed on 12 November 2025).
- Badziak, J.; Domański, J. In search of ways to improve the properties of a laser-accelerated heavy ion beam relevant for fusion fast ignition. Phys. Plasmas 2023, 30, 053107. [Google Scholar] [CrossRef]
- Sturm, C.; Böttcher, I.; Dȩbowski, M.; Förster, A.; Grosse, E.; Koczoń, P.; Kohlmeyer, B.; Laue, F.; Mang, M.; Naumann, L.; et al. Evidence for a Soft Nuclear Equation-of-State from Kaon Production in Heavy-Ion Collisions. Phys. Rev. Lett. 2001, 86, 39. [Google Scholar] [CrossRef]
- Di Piazza, A.; Müller, C.; Hatsagortsyan, K.Z.; Keitel, C.H. Extremely high-intensity laser interactions with fundamental quantum systems. Rev. Mod. Phys. 2012, 84, 1177. [Google Scholar] [CrossRef]
- Gonoskov, A.; Blackburn, T.G.; Marklund, M.; Bulanov, S.S. Charged particle motion and radiation in strong electromagnetic fields. Rev. Mod. Phys. 2022, 94, 045001. [Google Scholar] [CrossRef]
- Negoita, F.; Roth, M.; Thirolf, P.G.; Tudisco, S.; Hannachi, F.; Moustaizis, S.; Pomerantz, I.; McKenna, P.; Fuchs, J.; Sphor, K.; et al. Laser driven nuclear physics at ELI_NP. Rom. Rep. Phys. 2016, 68, S37–S144. [Google Scholar]
- Gales, S.; Tanaka, K.A.; Balabanski, D.L.; Negoita, F.; Stutman, D.; Tesileanu, O.; Ur, C.A.; Ursescu, D.; Andrei, I.; Ataman, S.; et al. The extreme light infrastructure-nuclear physics (ELI-NP) facility: New horizons in physics with 10 PW ultra-intense lasers and 20 MeV brilliant gamma beams. Rep. Prog. Phys. 2018, 81, 094301. [Google Scholar] [CrossRef]





















Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Badziak, J.; Domański, J. Extreme Ion Beams Produced by a Multi-PW Femtosecond Laser: Acceleration Mechanisms, Properties and Prospects for Applications. Photonics 2026, 13, 45. https://doi.org/10.3390/photonics13010045
Badziak J, Domański J. Extreme Ion Beams Produced by a Multi-PW Femtosecond Laser: Acceleration Mechanisms, Properties and Prospects for Applications. Photonics. 2026; 13(1):45. https://doi.org/10.3390/photonics13010045
Chicago/Turabian StyleBadziak, Jan, and Jarosław Domański. 2026. "Extreme Ion Beams Produced by a Multi-PW Femtosecond Laser: Acceleration Mechanisms, Properties and Prospects for Applications" Photonics 13, no. 1: 45. https://doi.org/10.3390/photonics13010045
APA StyleBadziak, J., & Domański, J. (2026). Extreme Ion Beams Produced by a Multi-PW Femtosecond Laser: Acceleration Mechanisms, Properties and Prospects for Applications. Photonics, 13(1), 45. https://doi.org/10.3390/photonics13010045

