Visual Performance and Photobiological Effects of White LED Systems Based on Spectral Compensation
Abstract
1. Introduction
2. Analysis and Modeling
2.1. The Total Optical Power (Popt)
2.2. The Ratio of Scotopic Vision Luminous Flux to the Photopic Vision Luminous Flux (S/P)
2.3. Blue Light Hazard (BLH) Efficacy
2.4. Circadian Action Factor (CAF)
- (1)
- For the compensated white LED systems studied, the spectral power distribution is determined by the operating states of the PC white LED, the monochromatic red LED, and the monochromatic green LED. The PC white LED serves as the core component, operating in a steady state to provide the necessary luminous flux for lighting. Meanwhile, the operating states of the monochromatic red and green LEDs are adjustable considering their stable monochromaticity.
- (2)
- The established models of total optical power, S/P, BLH and CAF can be expressed as functions of the driving currents IR and IG corresponding to the monochromatic red LED and monochromatic green LED, respectively. As a consequence, by controlling these two LEDs’ electrical driving conditions, the spectral structure of the mixed white light can be altered, enabling the regulation of visual performance and photobiological effects.
- (3)
- The S/P, BLH and CAF of a light source primarily depend on the spectral power distribution. The approach of spectral compensation can alter the intensity of light stimuli on different types of photoreceptor cells in the human retina, thereby influencing visual performance and photobiological effects.
- (4)
- Although the models of S/P, BLH and CAF exhibit non-linearity, lighting design engineers can still achieve a rapid estimation of these factors from the driving currents of the monochromatic red and green LEDs, and thus effectively understand the visual perception and photobiological effects of the illumination environments. Furthermore, these models provide valuable reference frameworks to develop lighting solutions that are more human-centered and health-oriented.
3. Verifications and Discussion
3.1. Measuring Instruments and Operating Conditions
3.2. Result Analysis
3.3. Performance Comparison
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Nian, L.; Pei, X.; Zhao, Z.; Wang, X. Review of optical designs for light-emitting diode packaging. IEEE Trans. Compon. Packag. Manuf. Technol. 2019, 9, 642–648. [Google Scholar] [CrossRef]
- Mitterhofer, S.; Korošak, Ž.; Rojec, Ž.; Jankovec, M.; Topič, M. Development and analysis of a modular LED array light source. Photonics 2020, 7, 92. [Google Scholar] [CrossRef]
- Liu, G.; Chen, H.; Zheng, Y.; Lin, H.; Lin, S.; Wu, Y. Two-dimensional photothermal modeling of multichip LEDs device with thermal coupling matrix by microscopic hyperspectral imaging. IEEE Trans. Electr. Dev. 2024, 71, 6198–6207. [Google Scholar] [CrossRef]
- Nie, J.; Chen, Z.; Jiao, F.; Zhan, J.; Chen, Y.; Pan, Z.; Deng, C.; Xi, X.; Kang, X.; Wang, Y.; et al. Optimization of the dynamic light source considering human age effect on visual and non-visual performances. Opt. Laser Technol. 2022, 145, 107463. [Google Scholar] [CrossRef]
- Berson, D.M.; Dunn, F.A.; Takao, M. Phototransduction by retinal ganglion cells that set the circadian clock. Science 2002, 295, 1070–1073. [Google Scholar] [CrossRef] [PubMed]
- Llenas, A.; Carreras, J. A simple yet counterintuitive optical feedback controller for spectrally tunable lighting systems. Opt. Eng. 2019, 58, 075104. [Google Scholar] [CrossRef]
- Dick, M.; Pohl, W.; Lackner, H.K.; Weiss, E.M.; Canazei, M. Effects of personalized lighting on subjective ratings, cognitive performance, and physiological stress response in a simulated office environment. LEUKOS 2024, 20, 347–366. [Google Scholar] [CrossRef]
- Ham, W.T.; Mueller, H.A.; Sliney, D.H. Retinal sensitivity to damage from short wavelength light. Nature 1967, 260, 153–155. [Google Scholar] [CrossRef] [PubMed]
- Ouyang, X.; Yang, J.; Hong, Z.; Wu, Y.; Xie, Y.; Wang, G. Mechanisms of blue light-induced eye hazard and protective measures: A review. Biomed. Pharmacother. 2020, 130, 110577. [Google Scholar] [CrossRef]
- De Vera Mudry, M.C.; Kronenberg, S.; Komatsu, S.-I.; Aguirre, G.D. Blinded by the light: Retinal phototoxicity in the context of safety studies. Toxicol. Pathol. 2013, 41, 813–825. [Google Scholar] [CrossRef]
- Maurya, M.; Nag, T.C.; Kumar, P.; Roy, T.S. Expression patterns of iron regulatory proteins after intense light exposure in a cone-dominated retina. Mol. Cell. Biochem. 2021, 476, 3483–3495. [Google Scholar] [CrossRef] [PubMed]
- Wasowicz, M.; Morice, C.; Ferrari, P.; Callebert, J.; Versaux-Botteri, C. Long-term effects of light damage on the retina of albino and pigmented rats. Investig. Ophthalmol. Vis. Sci. 2002, 43, 813–820. [Google Scholar]
- Khanh, T.Q.; Bodrogi, P.; Zandi, B.; Vinh, T.Q. Brightness perception under photopic conditions: Experiments and modeling with contributions of S-cone and ipRGC. Sci. Rep. 2023, 13, 14542. [Google Scholar] [CrossRef]
- Meng, J.-J.; Shen, J.-W.; Li, G.; Ouyang, C.-J.; Hu, J.-X.; Li, Z.-S.; Zhao, H.; Shi, Y.-M.; Zhang, M.; Liu, R.; et al. Light modulates glucose metabolism by a retina-hypothalamus-brown adipose tissue axis. Cell 2023, 186, 398–412. [Google Scholar] [CrossRef]
- Ding, J.Y.; Huang, S.; Zheng, H.; Huang, L.; Zeng, P.; Ye, S.; Wu, Q.; Zhou, J. A novel broad-band cyan light-emitting oxynitride based phosphor used for realizing the full-visible-spectrum lighting of WLEDs. J. Lumin. 2021, 231, 117786. [Google Scholar] [CrossRef]
- Andersen, M.; Mardaljevic, J.; Lockley, S. Aframe work for predicting the non-visual effects of daylight–PartI: Photobiology basedmodel. Light. Res. Technol. 2012, 44, 37–53. [Google Scholar] [CrossRef]
- Gall, D.; Bieske, K. Definition and measurement of circadian radiometric quantities. In Proceedings of the CIE Symposium ‘04 on Light and Health, Vienna, Austria, 30 September–2 October 2004; pp. 129–132. [Google Scholar]
- Yang, X.; Zhang, Y.; Zhang, Q.; Cai, Q.; Ye, Q.; Pang, H.; Wu, X. Method of matching different background spectra based on spectrally tunable light source. Opt. Eng. 2022, 61, 055104. [Google Scholar] [CrossRef]
- Spitschan, M.; Joyce, D.S. Human-centric lighting research and policy in the melanopsin age. Policy Insights Behav. Brain Sci. 2023, 10, 237–246. [Google Scholar] [CrossRef]
- Kumar, M.; Sunny; Kumar, A.; Seong, K.-S.; Park, S.-H. GaN phosphors converted white light-emitting diodes for high luminous efficacy and improved thermal stability. IET Optoelectron. 2020, 14, 155–158. [Google Scholar] [CrossRef]
- Sun, X.; Liang, Y.; Zheng, J.; Zhao, C.; Fang, Z.; Tian, T.; Liang, X.; Huan, W.; Xiang, W. Advancing Laser Lighting: High-Brightness and High-Stability Ce: YAG Phosphor-in-Glass. Ceram. Int. 2024, 50, 48909–48917. [Google Scholar] [CrossRef]
- Ramesh, B.; Dillip, G.R.; Rambabu, B.; Joo, S.W. Deva Prasad Raju. Structural studies of a green-emitting terbium doped calcium zinc phosphate phosphor. J. Mol. Struct. 2018, 1155, 568–572. [Google Scholar] [CrossRef]
- Ma, Y.; Gao, X.; Zhang, W.-T.; Yang, Z.-R.; Zhao, Z.; Qu, C. Enhanced red luminescence of Ca3Si2−xMxO7:Eu3+ (M = Al, P) phosphors via partial substitution of Si4+ for applications in white light-emitting diodes. Rare Met. 2024, 43, 736–748. [Google Scholar] [CrossRef]
- Zhang, R.; Guo, Z.; Chen, Y.; Ruan, Y.; Zhu, L.; Chen, G. A Deep Learning-Aided Remote Spectrally Tunable LED Light Source Integrated System. IEEE Trans. Instrum. Meas. 2023, 72, 7008109. [Google Scholar] [CrossRef]
- Toftum, J.; Thorseth, A.; Markvart, J.; Logadóttir, Á. Occupant response to different correlated colour temperatures of white LED lighting. Build. Environ. 2018, 143, 258–268. [Google Scholar] [CrossRef]
- Thapan, K.; Arendt, J.; Skene, D.J. An action spectrum for melatonin suppression: Evidence for a novel non-rod, non-cone photoreceptor system in humans. J. Physiol. 2021, 535, 261–267. [Google Scholar] [CrossRef]
- Solomon, S.G.; Lennie, P. The machinery of colour vision. Nat. Rev. Neurosci. 2007, 8, 276–286. [Google Scholar] [CrossRef]
- Shen, X.; Chen, H.; Zhang, W.; Ji, X.; Yi, Y. Analysis and tunable models for phosphor-converted white light-emitting diode based on spectral compensation. IEEE Photon. J. 2023, 15, 8200410. [Google Scholar] [CrossRef]
- Liu, G.; Chen, H.; Lin, S.; Lin, H.; Chen, J.; Chen, C. Determining 2-D optical characteristics dependent surface temperature of organic light-emitting diode. IEEE Trans. Electr. Dev. 2023, 70, 6427–6434. [Google Scholar] [CrossRef]
- Conus, V.; Geiser, M. A review of silent substitution devices for melanopsin stimulation in humans. Photonics 2020, 7, 121. [Google Scholar] [CrossRef]
- Maziarka, J.; Bena, L.; Wachta, H. Meaning of scotopic/photopic ratio of light sources in lighting of outdoor spaces. In Proceedings of the 2018 VII Lighting Conference of the Visegrad Countries (Lumen V4), Trebic, Czech Republic, 18–20 September 2018; pp. 1–4. [Google Scholar] [CrossRef]
- Zhu, X.; Guo, X.; Zhang, J.; Liu, J.; Jiang, F. Phosphor-free, color-mixed, and efficient illuminant: Multi-chip packaged LEDs for optimizing blue light hazard and non-visual biological effects. Opt. Laser Technol. 2020, 134, 106174. [Google Scholar] [CrossRef]
- Benkner, S.; Herzog, A.; Klir, S.; Van Driel, W.D.; Khanh, T.Q. Advancements in spectral power distribution modeling of light-emitting diodes. IEEE Access 2022, 10, 83612–83619. [Google Scholar] [CrossRef]
- Shen, X.; Chen, H.; Xu, M.; Ji, X.; Qin, Q. Measurement model of circadian action factor of phosphor-converted white LEDs based on photometric, electrical, and thermal properties. Metrologia 2024, 61, 025002. [Google Scholar] [CrossRef]
- Hipólito, V.; Coelho, J.M.P. Blue light and eye damage: A review on the impact of digital device emissions. Photonics 2023, 10, 560. [Google Scholar] [CrossRef]
- Sun, P.; Min, M.; Wu, Q.; Huang, W.; Xiao, Q.; Xiao, W.; Zheng, C. A four-primary-color micro-LED display with wide color gamut, low blue light hazard, and promise to improve working efficiency in the working conditions. AIP Adv. 2025, 15, 015008. [Google Scholar] [CrossRef]
- Zhang, Y.-P.; Liu, W.; Liu, B.-D.; Wang, R.-M. Morphology–structure diversity of ZnS nanostructures and their optical properties. Rare Met. 2014, 33, 1–15. [Google Scholar] [CrossRef]
- Choi, I.; Min, S.; Shim, J.-I.; Shin, D.-S. Understanding and evaluating the mean photon energy and the external quantum efficiency of light-emitting diodes. IET Optoelectron. 2023, 17, 32–37. [Google Scholar] [CrossRef]
- Samosvat, D.; Karpova, A.; Zegrya, G. Internal piezoelectric field and Auger recombination in InGaN/GaN quantum wells: Impact on device performance. Appl. Phys. A 2025, 131, 99. [Google Scholar] [CrossRef]
Maximum Absolute Error | Mean Absolute Error | Maximum Relative Error | Mean Relative Error | ||
---|---|---|---|---|---|
CW-R-G LED system | Optical power | 18.71 mW | 4.90 mW | 3.72% | 0.79% |
S/P | 0.04374 | 0.01107 | 2.16% | 0.58% | |
BLH | 0.24606 × 10−4 | 0.05845 × 10−4 | 3.52% | 0.87% | |
CAF | 0.02069 | 0.00383 | 3.26% | 0.79% | |
WW-R-G LED system | Optical power | 24.64 mW | 5.82 mW | 5.89% | 1.01% |
S/P | 0.05386 × 10−4 | 0.02068 × 10−4 | 4.41% | 1.33% | |
BLH | 0.11808 | 0.02539 | 3.04% | 0.87 | |
CAF | 0.00385 | 0.00152 | 1.75% | 0.68% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shen, X.; Chen, H.; Chen, B.; Ji, X.; Qin, F. Visual Performance and Photobiological Effects of White LED Systems Based on Spectral Compensation. Photonics 2025, 12, 917. https://doi.org/10.3390/photonics12090917
Shen X, Chen H, Chen B, Ji X, Qin F. Visual Performance and Photobiological Effects of White LED Systems Based on Spectral Compensation. Photonics. 2025; 12(9):917. https://doi.org/10.3390/photonics12090917
Chicago/Turabian StyleShen, Xuehua, Huanting Chen, Bin Chen, Xiaoxi Ji, and Fangming Qin. 2025. "Visual Performance and Photobiological Effects of White LED Systems Based on Spectral Compensation" Photonics 12, no. 9: 917. https://doi.org/10.3390/photonics12090917
APA StyleShen, X., Chen, H., Chen, B., Ji, X., & Qin, F. (2025). Visual Performance and Photobiological Effects of White LED Systems Based on Spectral Compensation. Photonics, 12(9), 917. https://doi.org/10.3390/photonics12090917