Effects of Plasmonic Au Nanoparticles on the Optical Nonlinearity of InAs/GaAs Quantum Dot Semiconductor Saturable Absorber Mirrors
Abstract
:1. Introduction
2. Experimental Section
2.1. QD-SESAM Sample Fabrication
2.2. Characterization
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Han, X.; Tian, J.; Li, Z.; Wu, T.; Ji, G.; Li, S.; Xing, F.; Zhang, Y. Broadband refractive index sensor based on localized surface plasmon for highly sensitive detection of fluid pressure. Appl. Surf. Sci. 2022, 587, 152873. [Google Scholar] [CrossRef]
- Xu, G.; Du, X.; Wang, W.; Qu, Y.; Liu, X.; Zhao, M.; Li, W.; Li, Y.Q. Plasmonic Nanozymes: Leveraging Localized Surface Plasmon Resonance to Boost the Enzyme-Mimicking Activity of Nanomaterials. Small 2022, 18, 2204131. [Google Scholar] [CrossRef]
- Araujo, T.P.; Quiroz, J.; Barbosa, E.C.M.; Camargo, P.H.C. Understanding plasmonic catalysis with controlled nanomaterials based on catalytic and plasmonic metals. Curr. Opin. Colloid Interface Sci. 2019, 39, 110–122. [Google Scholar] [CrossRef]
- Feng, Y.; Dechezelles, J.-F.; D’Acremont, Q.; Courtade, E.; De Waele, V.; Pera-Titus, M.; Nardello-Rataj, V. Light-driven Pickering interfacial catalysis for the oxidation of alkenes at near-room temperature. Green Chem. 2023, 25, 1417–1423. [Google Scholar] [CrossRef]
- Rodrigues, M.P.d.S.; Dourado, A.H.B.; Cutolo, L.d.O.; Parreira, L.S.; Alves, T.V.; Slater, T.J.A.; Haigh, S.J.; Camargo, P.H.C.; Cordoba de Torresi, S.I. Gold–Rhodium Nanoflowers for the Plasmon-Enhanced Hydrogen Evolution Reaction under Visible Light. ACS Catal. 2021, 11, 13543–13555. [Google Scholar] [CrossRef]
- Zhao, J.; Xue, S.; Ji, R.; Li, B.; Li, J. Localized surface plasmon resonance for enhanced electrocatalysis. Chem. Soc. Rev. 2021, 50, 12070–12097. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Tang, Y.; Jin, Y. Modulating Catalytic Performance of Metal–Organic Framework Composites by Localized Surface Plasmon Resonance. ACS Catal. 2019, 9, 11502–11514. [Google Scholar] [CrossRef]
- Luo, X.; Liu, J. Ultrasmall Luminescent Metal Nanoparticles: Surface Engineering Strategies for Biological Targeting and Imaging. Adv. Sci. 2021, 9, 2103971. [Google Scholar] [CrossRef] [PubMed]
- Lenzi, E.; Jimenez de Aberasturi, D.; Liz-Marzán, L.M. Surface-Enhanced Raman Scattering Tags for Three-Dimensional Bioimaging and Biomarker Detection. ACS Sens. 2019, 4, 1126–1137. [Google Scholar] [CrossRef] [PubMed]
- Si, P.; Razmi, N.; Nur, O.; Solanki, S.; Pandey, C.M.; Gupta, R.K.; Malhotra, B.D.; Willander, M.; de la Zerda, A. Gold nanomaterials for optical biosensing and bioimaging. Nanoscale Adv. 2021, 3, 2679–2698. [Google Scholar] [CrossRef] [PubMed]
- Ou, X.; Liu, Y.; Zhang, M.; Hua, L.; Zhan, S. Plasmonic gold nanostructures for biosensing and bioimaging. Microchim. Acta 2021, 188, 304. [Google Scholar] [CrossRef]
- Tan, P.; Li, H.; Wang, J.; Gopinath, S.C.B. Silver nanoparticle in biosensor and bioimaging: Clinical perspectives. Biotechnol. Appl. Biochem. 2021, 68, 1236–1242. [Google Scholar] [CrossRef]
- Ma, J.; Wang, X.; Feng, J.; Huang, C.; Fan, Z. Individual Plasmonic Nanoprobes for Biosensing and Bioimaging: Recent Advances and Perspectives. Small 2021, 17, 2004287. [Google Scholar] [CrossRef]
- de la Encarnación, C.; Jimenez de Aberasturi, D.; Liz-Marzán, L.M. Multifunctional plasmonic-magnetic nanoparticles for bioimaging and hyperthermia. Adv. Drug Deliv. Rev. 2022, 189, 114484. [Google Scholar] [CrossRef]
- Yang, M.-C.; Hardiansyah, A.; Cheng, Y.-W.; Liao, H.-L.; Wang, K.-S.; Randy, A.; Harito, C.; Chen, J.-S.; Jeng, R.-J.; Liu, T.-Y. Reduced graphene oxide nanosheets decorated with core-shell of Fe3O4-Au nanoparticles for rapid SERS detection and hyperthermia treatment of bacteria. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2022, 281, 121578. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Yang, M.; Zhao, S.; Cong, C.; Li, X.; Cheng, X.; Yang, J.; Gao, D. Regulatory Mechanism of Localized Surface Plasmon Resonance Based on Gold Nanoparticles-Coated Paclitaxel Nanoliposomes and Their Antitumor Efficacy. ACS Sustain. Chem. Eng. 2018, 6, 13543–13550. [Google Scholar] [CrossRef]
- Garcés, V.; González, A.; Gálvez, N.; Delgado-López, J.M.; Calvino, J.J.; Trasobares, S.; Fernández-Afonso, Y.; Gutiérrez, L.; Dominguez-Vera, J.M. Magneto-optical hyperthermia agents based on probiotic bacteria loaded with magnetic and gold nanoparticles. Nanoscale 2022, 14, 5716–5724. [Google Scholar] [CrossRef] [PubMed]
- Rommelfanger, N.J.; Ou, Z.; Keck, C.H.C.; Hong, G. Differential Heating of Metal Nanostructures at Radio Frequencies. Phys. Rev. Appl. 2021, 15, 054007. [Google Scholar] [CrossRef] [PubMed]
- Maamoun, W.; Badawi, M.I.; Aly, A.A.; Khedr, Y. Nanoparticles in enhancing microwave imaging and microwave Hyperthermia effect for liver cancer treatment. Rev. Adv. Mater. Sci. 2021, 60, 223–236. [Google Scholar] [CrossRef]
- Alharbi, R.; Irannejad, M.; Yavuz, M. A Short Review on the Role of the Metal-Graphene Hybrid Nanostructure in Promoting the Localized Surface Plasmon Resonance Sensor Performance. Sensors 2019, 19, 862. [Google Scholar] [CrossRef]
- Wang, L.; Hasanzadeh Kafshgari, M.; Meunier, M. Optical Properties and Applications of Plasmonic-Metal Nanoparticles. Adv. Funct. Mater. 2020, 30, 2005400. [Google Scholar] [CrossRef]
- Li, R.; Pang, C.; Li, Z.; Yang, M.; Amekura, H.; Dong, N.; Wang, J.; Ren, F.; Wu, Q.; Chen, F. Fused Silica with Embedded 2D-Like Ag Nanoparticle Monolayer: Tunable Saturable Absorbers by Interparticle Spacing Manipulation. Laser Photonics Rev. 2020, 14, 1900302. [Google Scholar] [CrossRef]
- Pang, C.; Li, R.; Li, Z.; Dong, N.; Cheng, C.; Nie, W.; Böttger, R.; Zhou, S.; Wang, J.; Chen, F. Lithium Niobate Crystal with Embedded Au Nanoparticles: A New Saturable Absorber for Efficient Mode-Locking of Ultrafast Laser Pulses at 1 µm. Adv. Opt. Mater. 2018, 6, 1800357. [Google Scholar] [CrossRef]
- Sun, X.; Ye, Q.; Liu, Y.; Sun, W.; Pang, C.; Jia, Y.; Chen, F. Plasmon-enhanced Raman scattering of 2D materials via embedded silver nanoparticles in glass. J. Appl. Phys. 2023, 133, 084304. [Google Scholar] [CrossRef]
- Sun, X.; Jia, Y.; Nie, H.; Ren, F.; Zhang, B.; Chen, F. Near-Surface Buried Plasmonic Nanoparticles in Glass as Novel Nonlinear Saturable Absorbers for Ultrafast Lasers. Adv. Opt. Mater. 2021, 10, 2101664. [Google Scholar] [CrossRef]
- Dai, H.; Wang, H.; Chu, H.; Huang, Y.; Wei, C.; Zhang, Z.; Jiang, C. Cascade amplification of optical absorption on III–V semiconductors via plasmon-coupled graphene. Appl. Phys. Lett. 2023, 123, 221101. [Google Scholar] [CrossRef]
- Mohammadi, M.h.; Eskandari, M.; Fathi, D. Effects of the location and size of plasmonic nanoparticles (Ag and Au) in improving the optical absorption and efficiency of perovskite solar cells. J. Alloys Compd. 2021, 877, 160177. [Google Scholar] [CrossRef]
- Gong, H.; Cui, Z.; Shao, W.; Ma, X. Investigation of a novel surface inlay composite nanoparticle based on local surface plasmon resonance-enhanced solar absorption. Renew. Energy 2022, 197, 452–461. [Google Scholar] [CrossRef]
- Shao, Z.; Jia, H.; Zhang, Y.; Yang, X.; Zhong, M.; Chang, C. Oxygen Vacancy-Mediated Interfacial Charge Transfer of Au/ZnO Schottky Heterojunctions for Enhanced UV Photodegradation. Int. J. Photoenergy 2020, 2020, 2456968. [Google Scholar] [CrossRef]
- Qiu, C.; Zhang, H.; Tian, C.; Jin, X.; Song, Q.; Xu, L.; Ijaz, M.; Blaikie, R.J.; Xu, Q. Breaking bandgap limitation: Improved photosensitization in plasmonic-based CsPbBr3 photodetectors via hot-electron injection. Appl. Phys. Lett. 2023, 122, 243502. [Google Scholar] [CrossRef]
- Yuan, C.; Yin, H.; Lv, H.; Zhang, Y.; Li, J.; Xiao, D.; Yang, X.; Zhang, Y.; Zhang, P. Defect and Donor Manipulated Highly Efficient Electron–Hole Separation in a 3D Nanoporous Schottky Heterojunction. JACS Au 2023, 3, 3127–3140. [Google Scholar] [CrossRef]
- Song, J.; Long, J.; Liu, Y.; Xu, Z.; Ge, A.; Piercy, B.D.; Cullen, D.A.; Ivanov, I.N.; McBride, J.R.; Losego, M.D.; et al. Highly Efficient Plasmon Induced Hot-Electron Transfer at Ag/TiO2 Interface. ACS Photonics 2021, 8, 1497–1504. [Google Scholar] [CrossRef]
- Yu, Y.; Sun, Y.; Hu, Z.; An, X.; Zhou, D.; Zhou, H.; Wang, W.; Liu, K.; Jiang, J.; Yang, D.; et al. Fast Photoelectric Conversion in the Near-Infrared Enabled by Plasmon-Induced Hot-Electron Transfer. Adv. Mater. 2019, 31, 1903829. [Google Scholar] [CrossRef]
- Kumar, A.; Ahuja, J.; Mondal, A.; Bag, A. Ga-In Nanoparticle Induced UV Plasmonic Impact on Heterojunction Based Deep UV Photodetector. IEEE Trans. Nanotechnol. 2022, 21, 196–203. [Google Scholar] [CrossRef]
- Khan, M.R.; Chuan, T.W.; Yousuf, A.; Chowdhury, M.N.K.; Cheng, C.K. Schottky barrier and surface plasmonic resonance phenomena towards the photocatalytic reaction: Study of their mechanisms to enhance photocatalytic activity. Catal. Sci. Technol. 2015, 5, 2522–2531. [Google Scholar] [CrossRef]
- Li, Z.; Wang, Z.; Li, J.; Zhu, Q.; Wang, Z.; Dai, Z. Enhancing Photoelectric Response of an Au@Ag/AgI Schottky Contact through Regulation of Localized Surface Plasmon Resonance. J. Am. Chem. Soc. 2021, 143, 13478–13482. [Google Scholar] [CrossRef]
- Di Bartolomeo, A. Graphene Schottky diodes: An experimental review of the rectifying graphene/semiconductor heterojunction. Phys. Rep. 2016, 606, 1–58. [Google Scholar] [CrossRef]
- Huang, J.; Li, Q.; Lu, X.; Meng, J.; Li, Z. LSPR-Enhanced Pyro-Phototronic Effect for UV Detection with an Ag–ZnO Schottky Junction Device. Adv. Mater. Interfaces 2022, 9, 2200327. [Google Scholar] [CrossRef]
- Xu, Y.; Qiu, P.; Mao, J.; Jile, H.; Jiang, P. Dual-band narrow-band absorber with perfect absorption peaks in mid-infrared and near-infrared based on surface plasmon resonance. Diam. Relat. Mater. 2023, 132, 109624. [Google Scholar] [CrossRef]
- Patra, N.; Manikandan, M.; Singh, V.; Palani, I.A. Investigations on LSPR effect of Cu/Al nanostructures on ZnO nanorods towards photodetector applications. J. Lumin. 2021, 238, 118331. [Google Scholar] [CrossRef]
- Gao, Y.; Murai, S.; Shinozaki, K.; Ishii, S.; Tanaka, K. Aluminum for Near Infrared Plasmonics: Amplified Up-Conversion Photoluminescence from Core–Shell Nanoparticles on Periodic Lattices. Adv. Opt. Mater. 2021, 9, 2001040. [Google Scholar] [CrossRef]
- Hong, M.; Kwo, J.; Kortan, A.R.; Mannaerts, J.P.; Sergent, A.M. Epitaxial Cubic Gadolinium Oxide as a Dielectric for Gallium Arsenide Passivation. Science 1999, 283, 1897–1900. [Google Scholar] [CrossRef]
- Chu, H.; Wang, H.; Huang, Y.; Dai, H.; Lv, M.; Zhang, Z.; Jiang, C. Investigation of the Optical Nonlinearity for Au Plasmonic Nanoparticles Based on Ion Implantation. Nanomaterials 2023, 13, 2662. [Google Scholar] [CrossRef] [PubMed]
- Parker, J.S.; Sivananthan, A.; Norberg, E.; Coldren, L.A. Regrowth-free high-gain InGaAsP/InP active-passive platform via ion implantation. Opt. Express 2012, 20, 19946–19955. [Google Scholar] [CrossRef] [PubMed]
- Ramaswamy, V.; Haynes, T.E.; White, C.W.; MoberlyChan, W.J.; Roorda, S.; Aziz, M.J. Synthesis of Nearly Monodisperse Embedded Nanoparticles by Separating Nucleation and Growth in Ion Implantation. Nano Lett. 2005, 5, 373–377. [Google Scholar] [CrossRef]
- Wang, C.; Zhang, H.; Lai, F.; Xie, Z.; Hau Ng, Y.; Weng, B.; Wu, X.; Liao, Y. Engineering versatile Au-based catalysts for solar-to-fuel conversion. J. Energy Chem. 2023, 83, 341–362. [Google Scholar] [CrossRef]
- Yao, J.; Jiang, Y.; Gu, X.; Guo, X.; Ying, Y.; Wen, Y.; Liu, X.; Yang, H.; Wu, Y. Surface Plasmon Resonance-Triggered Local Electromagnetic Field Advances Photocatalytic and Photoelectrochemical Performance of Plasmonic Metal/Semiconductor Composite. J. Phys. Chem. C 2022, 127, 248–255. [Google Scholar] [CrossRef]
- Carrillo-Delgado, C.; Torres-Torres, D.; Trejo-Valdez, M.; Rebollo, N.R.; Hernández-Gómez, L.H.; Torres-Torres, C. Bidirectional optical Kerr transmittance in a bilayer nanocomposite with Au nanoparticles and carbon nanotubes. Phys. Scr. 2015, 90, 085804. [Google Scholar] [CrossRef]
- Cushing, S.K.; Li, J.; Meng, F.; Senty, T.R.; Suri, S.; Zhi, M.; Li, M.; Bristow, A.D.; Wu, N. Photocatalytic Activity Enhanced by Plasmonic Resonant Energy Transfer from Metal to Semiconductor. J. Am. Chem. Soc. 2012, 134, 15033–15041. [Google Scholar] [CrossRef]
- Jiang, C.; Ning, J.; Li, X.; Wang, X.; Zhang, Z. Development of a 1550-nm InAs/GaAs Quantum Dot Saturable Absorber Mirror with a Short-Period Superlattice Capping Structure towards Femtosecond Fiber Laser Applications. Nanoscale Res. Lett. 2019, 14, 362. [Google Scholar] [CrossRef]
- Finke, T.; Nurnberg, J.; Sichkovskyi, V.; Golling, M.; Keller, U.; Reithmaier, J.P. Temperature resistant fast InxGa1-xAs / GaAs quantum dot saturable absorber for the epitaxial integration into semiconductor surface emitting lasers. Opt. Express 2020, 28, 20954–20966. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, H.; Dai, H.; Lyu, M.; Jiang, C.; Lu, S.; Zhang, Z. Effects of Plasmonic Au Nanoparticles on the Optical Nonlinearity of InAs/GaAs Quantum Dot Semiconductor Saturable Absorber Mirrors. Photonics 2024, 11, 235. https://doi.org/10.3390/photonics11030235
Wang H, Dai H, Lyu M, Jiang C, Lu S, Zhang Z. Effects of Plasmonic Au Nanoparticles on the Optical Nonlinearity of InAs/GaAs Quantum Dot Semiconductor Saturable Absorber Mirrors. Photonics. 2024; 11(3):235. https://doi.org/10.3390/photonics11030235
Chicago/Turabian StyleWang, Hongpei, Hao Dai, Menglu Lyu, Cheng Jiang, Shulong Lu, and Ziyang Zhang. 2024. "Effects of Plasmonic Au Nanoparticles on the Optical Nonlinearity of InAs/GaAs Quantum Dot Semiconductor Saturable Absorber Mirrors" Photonics 11, no. 3: 235. https://doi.org/10.3390/photonics11030235
APA StyleWang, H., Dai, H., Lyu, M., Jiang, C., Lu, S., & Zhang, Z. (2024). Effects of Plasmonic Au Nanoparticles on the Optical Nonlinearity of InAs/GaAs Quantum Dot Semiconductor Saturable Absorber Mirrors. Photonics, 11(3), 235. https://doi.org/10.3390/photonics11030235