Submilliwatt Silicon Nitride Thermo-Optic Modulator Operating at 532 nm
Abstract
:1. Introduction
2. Design and Simulations
3. Chip Fabrication
4. Chip Characterization
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Raval, M.; Yaacobi, A.; Watts, M.R. Integrated Visible Light Phased Array System for Autostereoscopic Image Projection. Opt. Lett. 2018, 43, 3678–3681. [Google Scholar] [CrossRef]
- Chul Shin, M.; Mohanty, A.; Watson, K.; Bhatt, G.R.; Phare, C.T.; Miller, S.A.; Zadka, M.; Lee, B.S.; Ji, X.; Datta, I.; et al. Chip-Scale Blue Light Phased Array. Opt. Lett. 2020, 45, 1934–1937. [Google Scholar] [CrossRef]
- Sipahigil, A.; Evans, R.E.; Sukachev, D.D.; Burek, M.J.; Borregaard, J.; Bhaskar, M.K.; Nguyen, C.T.; Pacheco, J.L.; Atikian, H.A.; Meuwly, C.; et al. An Integrated Diamond Nanophotonics Platform for Quantum-Optical Networks. Science (1979) 2016, 354, 847–850. [Google Scholar] [CrossRef]
- Mehta, K.K.; Bruzewicz, C.D.; McConnell, R.; Ram, R.J.; Sage, J.M.; Chiaverini, J. Integrated Optical Addressing of an Ion Qubit. Nat. Nanotechnol. 2016, 11, 1066–1070. [Google Scholar] [CrossRef] [PubMed]
- Moss, D.J.; Morandotti, R.; Gaeta, A.L.; Lipson, M. New CMOS-Compatible Platforms Based on Silicon Nitride and Hydex for Nonlinear Optics. Nat. Photonics 2013, 7, 597–607. [Google Scholar] [CrossRef]
- Xiong, C.; Pernice, W.H.P.; Sun, X.; Schuck, C.; Fong, K.Y.; Tang, H.X. Aluminum Nitride as a New Material for Chip-Scale Optomechanics and Nonlinear Optics. New J. Phys. 2012, 14, 095014. [Google Scholar] [CrossRef]
- Armani, A.M.; Kulkarni, R.P.; Fraser, S.E.; Flagan, R.C.; Vahala, K.J. Label-Free, Single-Molecule Detection with Optical Microcavities. Science (1979) 2007, 317, 783–787. [Google Scholar] [CrossRef]
- Zhu, J.; Ozdemir, S.K.; Xiao, Y.-F.; Li, L.; He, L.; Chen, D.-R.; Yang, L. On-Chip Single Nanoparticle Detection and Sizing by Mode Splitting in an Ultrahigh-Q Microresonator. Nat. Photonics 2010, 4, 46–49. [Google Scholar] [CrossRef]
- Hoffman, L.; Subramanian, A.; Helin, P.; Bois, B.D.; Baets, R.; Van Dorpe, P.; Gielen, G.; Puers, R.; Braeken, D. Low Loss CMOS-Compatible PECVD Silicon Nitride Waveguides and Grating Couplers for Blue Light Optogenetic Applications. IEEE Photonics J. 2016, 8, 1–11. [Google Scholar] [CrossRef]
- Mohanty, A.; Li, Q.; Tadayon, M.A.; Roberts, S.P.; Bhatt, G.R.; Shim, E.; Ji, X.; Cardenas, J.; Miller, S.A.; Kepecs, A.; et al. Reconfigurable Nanophotonic Silicon Probes for Sub-Millisecond Deep-Brain Optical Stimulation. Nat. Biomed. Eng. 2020, 4, 223–231. [Google Scholar] [CrossRef]
- Liang, G.; Huang, H.; Mohanty, A.; Shin, M.C.; Ji, X.; Carter, M.J.; Shrestha, S.; Lipson, M.; Yu, N. Robust, Efficient, Micrometre-Scale Phase Modulators at Visible Wavelengths. Nat. Photonics 2021, 15, 908–913. [Google Scholar] [CrossRef]
- Tong, W.; Yang, E.; Pang, Y.; Yang, H.; Qian, X.; Yang, R.; Hu, B.; Dong, J.; Zhang, X. An Efficient, Fast-Responding, Low-Loss Thermo-Optic Phase Shifter Based on a Hydrogen-Doped Indium Oxide Microheater. Laser Photon Rev. 2023, 17, 2201032. [Google Scholar] [CrossRef]
- Romero-García, S.; Merget, F.; Zhong, F.; Finkelstein, H.; Witzens, J. Silicon Nitride CMOS-Compatible Platform for Integrated Photonics Applications at Visible Wavelengths. Opt. Express 2013, 21, 14036. [Google Scholar] [CrossRef]
- Shim, E.; Chen, Y.; Masmanidis, S.; Li, M. Multisite Silicon Neural Probes with Integrated Silicon Nitride Waveguides and Gratings for Optogenetic Applications. Sci. Rep. 2016, 6, 22693. [Google Scholar] [CrossRef] [PubMed]
- Poulton, C.V.; Byrd, M.J.; Raval, M.; Su, Z.; Li, N.; Timurdogan, E.; Coolbaugh, D.; Vermeulen, D.; Watts, M.R. Large-Scale Silicon Nitride Nanophotonic Phased Arrays at Infrared and Visible Wavelengths. Opt. Lett. 2017, 42, 21–24. [Google Scholar] [CrossRef] [PubMed]
- Shah Hosseini, E.; Yegnanarayanan, S.; Atabaki, A.H.; Soltani, M.; Adibi, A. High Quality Planar Silicon Nitride Microdisk Resonators for Integrated Photonics in the Visible Wavelength Range. Opt. Express 2009, 17, 14543. [Google Scholar] [CrossRef]
- Sacher, W.D.; Luo, X.; Yang, Y.; Chen, F.-D.; Lordello, T.; Mak, J.C.C.; Liu, X.; Hu, T.; Xue, T.; Guo-Qiang Lo, P.; et al. Visible-Light Silicon Nitride Waveguide Devices and Implantable Neurophotonic Probes on Thinned 200 mm Silicon Wafers. Opt. Express 2019, 27, 37400. [Google Scholar] [CrossRef]
- Gorin, A.; Jaouad, A.; Grondin, E.; Aimez, V.; Charette, P. Fabrication of Silicon Nitride Waveguides for Visible-Light Using PECVD: A Study of the Effect of Plasma Frequency on Optical Properties. Opt. Express 2008, 16, 13509. [Google Scholar] [CrossRef]
- Subramanian, A.Z.; Neutens, P.; Dhakal, A.; Jansen, R.; Claes, T.; Rottenberg, X.; Peyskens, F.; Selvaraja, S.; Helin, P.; Dubois, B.; et al. Low-Loss Singlemode PECVD Silicon Nitride Photonic Wire Waveguides for 532-900 Nm Wavelength Window Fabricated within a CMOS Pilot Line. IEEE Photonics J. 2013, 5, 2202809. [Google Scholar] [CrossRef]
- Lanzio, V.; Telian, G.; Koshelev, A.; Micheletti, P.; Presti, G.; D’Arpa, E.; De Martino, P.; Lorenzon, M.; Denes, P.; West, M.; et al. Small Footprint Optoelectrodes Using Ring Resonators for Passive Light Localization. Microsyst. Nanoeng. 2021, 7, 003. [Google Scholar] [CrossRef]
- Lu, T.-J.; Fanto, M.; Choi, H.; Thomas, P.; Steidle, J.; Mouradian, S.; Kong, W.; Zhu, D.; Moon, H.; Berggren, K.; et al. Aluminum Nitride Integrated Photonics Platform for the Ultraviolet to Visible Spectrum. Opt. Express 2018, 26, 11147–11160. [Google Scholar] [CrossRef]
- Xiong, C.; Pernice, W.H.P.; Tang, H.X. Low-Loss, Silicon Integrated, Aluminum Nitride Photonic Circuits and Their Use for Electro-Optic Signal Processing. Nano Lett. 2012, 12, 3562. [Google Scholar] [CrossRef] [PubMed]
- Gong, Y.; Vučković, J. Photonic Crystal Cavities in Silicon Dioxide. Appl. Phys. Lett. 2010, 96, 031107. [Google Scholar] [CrossRef]
- Lee, S.H.; Oh, D.Y.; Yang, Q.-F.; Shen, B.; Wang, H.; Yang, K.Y.; Lai, Y.-H.; Yi, X.; Li, X.; Vahala, K. Towards Visible Soliton Microcomb Generation. Nat. Commun. 2017, 8, 1295. [Google Scholar] [CrossRef] [PubMed]
- Arbabi, A.; Goddard, L.L. Measurements of the Refractive Indices and Thermo-Optic Coefficients of Si3N4 and SiOx Using Microring Resonances. Opt. Lett. 2013, 38, 3878–3881. [Google Scholar] [CrossRef]
- Yong, Z.; Chen, H.; Luo, X.; Govdeli, A.; Chua, H.; Azadeh, S.S.; Stalmashonak, A.; Lo, G.-Q.; Poon, J.K.S.; Sacher, W.D. Power-Efficient Silicon Nitride Thermo-Optic Phase Shifters for Visible Light. Opt. Express 2022, 30, 7225–7237. [Google Scholar] [CrossRef]
- Yan, S.; Zhu, X.; Frandsen, L.H.; Xiao, S.; Mortensen, N.A.; Dong, J.; Ding, Y. Slow-Light-Enhanced Energy Efficiency for Graphene Microheaters on Silicon Photonic Crystal Waveguides. Nat. Commun. 2017, 8, 14411. [Google Scholar] [CrossRef]
- Meng, Y.; Feng, J.; Han, S.; Xu, Z.; Mao, W.; Zhang, T.; Kim, J.S.; Roh, I.; Zhao, Y.; Kim, D.H.; et al. Photonic van Der Waals Integration from 2D Materials to 3D Nanomembranes. Nat. Rev. Mater. 2023, 8, 498–517. [Google Scholar] [CrossRef]
- Wang, C.; Zhang, M.; Chen, X.; Bertrand, M.; Shams-Ansari, A.; Chandrasekhar, S.; Winzer, P.; Lončar, M. Integrated Lithium Niobate Electro-Optic Modulators Operating at CMOS-Compatible Voltages. Nature 2018, 562, 101–104. [Google Scholar] [CrossRef]
- Wu, Z.; Zhang, Y.; Zeng, S.; Lin, S.; Yu, S. Laser Beam Steering of 532 nm Using a Power-Efficient Focal Plane Array. Opt. Lett. 2023, 48, 6400–6403. [Google Scholar] [CrossRef]
- Sakaguchi, S.; Sawaki, Y.; Abe, Y.; Kawasaki, T. Delayed Failure in Silica Glass. J. Mater. Sci. 1982, 17, 102878. [Google Scholar] [CrossRef]
- Shao, Z.; Chen, Y.; Chen, H.; Zhang, Y.; Zhang, F.; Jian, J.; Fan, Z.; Liu, L.; Yang, C.; Zhou, L.; et al. Ultra-Low Temperature Silicon Nitride Photonic Integration Platform. Opt. Express 2016, 24, 1865. [Google Scholar] [CrossRef] [PubMed]
- Xie, Y.; Li, J.; Zhang, Y.; Wu, Z.; Zeng, S.; Lin, S.; Wu, Z.; Zhou, W.; Chen, Y.; Yu, S. Soliton Frequency Comb Generation in CMOS-Compatible Silicon Nitride Microresonators. Photonics Res. 2022, 10, 1290. [Google Scholar] [CrossRef]
λ (nm) | Structure | Pπ (mW) | IL (dB) |
---|---|---|---|
488 | Conventional [2] | 30 | / |
473 | Conventional [10] | 30 | / |
488 | Micro-ring [11] | 1.8 | 0.61 |
532 | 0.85 | 0.87 | |
445 | Suspended + multipass [26] | 0.78 | 6.1 (MZI) |
488 | 0.93 | 3.6 (MZI) | |
532 | 1.09 | 2.5 (MZI) | |
561 | 1.2 | 4.8 (MZI) | |
532 | Suspended + singlepass [30] | 3.1 | 1 |
532 | Suspended + singlepass [this work] | 0.61 | 0.8 |
Device | Parameters (μm) | Pπ (mW) | σ (108 N/m2) | Δ (nm) |
---|---|---|---|---|
1 | w = 12, d = 8, p = 50 | 3.0 | 1.46 | 2.1 |
2 | w = 12, d = 2, p = 50 | 1.4 | 1.47 | 3.18 |
3 | w = 8, d = 2, p = 50 | 1.3 | 1.48 | 3.4 |
4 | w = 8, d = 2, p = 80 | 1.2 | 1.46 | 3.47 |
5 | w = 8, d = 2, p = 100 | 0.76 | 1.46 | 5.2 |
6 | w = 8, d = 2, p = 150 | 0.54 | 1.54 | 10.6 |
7 | w = 8, p = 300 | 0.27 | 1.60 | 63 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, Z.; Lin, S.; Yu, S.; Zhang, Y. Submilliwatt Silicon Nitride Thermo-Optic Modulator Operating at 532 nm. Photonics 2024, 11, 213. https://doi.org/10.3390/photonics11030213
Wu Z, Lin S, Yu S, Zhang Y. Submilliwatt Silicon Nitride Thermo-Optic Modulator Operating at 532 nm. Photonics. 2024; 11(3):213. https://doi.org/10.3390/photonics11030213
Chicago/Turabian StyleWu, Zhaoyang, Shuqing Lin, Siyuan Yu, and Yanfeng Zhang. 2024. "Submilliwatt Silicon Nitride Thermo-Optic Modulator Operating at 532 nm" Photonics 11, no. 3: 213. https://doi.org/10.3390/photonics11030213
APA StyleWu, Z., Lin, S., Yu, S., & Zhang, Y. (2024). Submilliwatt Silicon Nitride Thermo-Optic Modulator Operating at 532 nm. Photonics, 11(3), 213. https://doi.org/10.3390/photonics11030213