The Creation of a Domain Structure Using Ultrashort Pulse NIR Laser Irradiation in the Bulk of MgO-Doped Lithium Tantalate
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Local Irradiation
3.2. Linear Scanning
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fejer, M.M.; Magel, G.A.; Jundt, D.H.; Byer, R.L. Quasi-phase-matched second harmonic generation: Tuning and tolerances. IEEE J. Quantum Electron. 1992, 28, 2631–2654. [Google Scholar] [CrossRef]
- Armstrong, J.A.; Bloembergen, N.; Ducing, J.; Pershan, P.S. Interactions between light waves in a nonlinear dielectric. Phys. Rev. 1962, 127, 1918–1939. [Google Scholar] [CrossRef]
- Shur, V.Y.; Akhmatkhanov, A.R.; Baturin, I.S. Micro- and nanodomain engineering in lithium niobate. Appl. Phys. Rev. 2015, 2, 040604. [Google Scholar] [CrossRef]
- Myers, L.E.; Miller, G.D.; Eckardt, R.C.; Fejer, M.M.; Byer, R.L.; Rosenberg, W.R. Quasi-phase-matched 1.064-mm-pumped optical parametric oscillator in bulk periodically poled LiNbO3. Opt. Lett. 1995, 20, 52–54. [Google Scholar] [CrossRef] [PubMed]
- Ishizuki, H.; Taira, T. Large-aperture, axis-slant quasi-phase matching device using Mg-doped congruent LiNbO3. Opt. Mater. Express 2011, 1, 1376–1382. [Google Scholar] [CrossRef]
- Lim, E.J.; Fejer, M.M.; Byer, R.L.; Kozlovsky, W.J. Blue light generation by frequency doubling in periodically poled lithium niobate channel waveguide. Electron. Lett. 1989, 25, 731–732. [Google Scholar] [CrossRef]
- Matsumo, S.; Lim, E.J.; Hertz, H.M.; Fejer, M.M. Quasiphase-matched second harmonic generation of blue light lithium tantalate waveguides in electrically periodically-poled. Electron. Lett. 1991, 27, 2040–2041. [Google Scholar] [CrossRef]
- Sheng, Y.; Chen, X.; Xu, T.; Liu, S.; Zhao, R.; Krolikowski, W. Research progress on femtosecond laser poling of ferroelectrics. Photonics 2024, 11, 447. [Google Scholar] [CrossRef]
- Zhang, B.; Wang, L.; Chen, F. Recent advances in femtosecond laser processing of LiNbO3 crystals for photonic applications. Laser Photonics Rev. 2020, 14, 1900407. [Google Scholar] [CrossRef]
- Guo, J.; Chen, W.; Chen, H.; Zhao, Y.; Dong, F.; Liu, W.; Zhang, Y. Recent progress in optical control of ferroelectric polarization. Adv. Opt. Mater. 2021, 9, 2002146. [Google Scholar] [CrossRef]
- Sones, C.L.; Valdivia, C.E.; Scott, J.G.; Mailis, S.; Eason, R.W.; Scrymgeour, D.A.; Gopalan, V.; Jungk, T.; Soergel, E. Ultraviolet laser-induced sub-micron periodic domain formation in congruent undoped lithium niobate crystals. Appl. Phys. B 2005, 80, 341–344. [Google Scholar] [CrossRef]
- Shur, V.Y.; Kosobokov, M.S.; Makaev, A.V.; Kuznetsov, D.K.; Nebogatikov, M.S.; Chezganov, D.S.; Mingaliev, E.A. Dimensionality increase of ferroelectric domain shape by pulse laser irradiation. Acta Mater. 2021, 219, 117270. [Google Scholar] [CrossRef]
- Shur, V.Y.; Kosobokov, M.S.; Makaev, A.V.; Kuznetsov, D.K. Light-induced ordering of nanodomains in lithium tantalate as a result of multiple scanning by IR laser irradiation. J. Appl. Phys. 2023, 133, 014105. [Google Scholar] [CrossRef]
- Chen, X.; Karpinski, P.; Shvedov, V.; Koynov, K.; Wang, B.; Trull, J.; Cojocaru, C.; Krolikowski, W.; Sheng, Y. Ferroelectric domain engineering by focused infrared femtosecond pulses. Appl. Phys. Lett. 2015, 107, 141102. [Google Scholar] [CrossRef]
- Tan, D.; Sharafudeen, K.N.; Yue, Y.; Qiu, J. Femtosecond laser induced phenomena in transparent solid materials: Fundamentals and applications. Prog. Mater. Sci. 2016, 76, 154–228. [Google Scholar] [CrossRef]
- Chen, X.; Karpinski, P.; Shvedov, V.; Boes, A.; Mitchell, A.; Krolikowski, W.; Sheng, Y. Quasi-phase matching via femtosecond laser-induced domain inversion in lithium niobate waveguides. Opt. Lett. 2016, 41, 2410. [Google Scholar] [CrossRef] [PubMed]
- Imbrock, J.; Hanafi, H.; Ayoub, M.; Denz, C. Local domain inversion in MgO-doped lithium niobate by pyroelectric field-assisted femtosecond laser lithography. Appl. Phys. Lett. 2018, 113, 252901. [Google Scholar] [CrossRef]
- Imbrock, J.; Szalek, D.; Laubrock, S.; Hanafi, H.; Denz, C. Thermally assisted fabrication of nonlinear photonic structures in lithium niobate with femtosecond laser pulses. Opt. Express 2022, 30, 39340. [Google Scholar] [CrossRef]
- Lisjikh, B.I.; Kosobokov, M.S.; Efimov, A.V.; Kuznetsov, D.K.; Shur, V.Y. Thermally assisted growth of bulk domains created by femtosecond laser in magnesium doped lithium niobate. Ferroelectrics 2023, 604, 47–52. [Google Scholar] [CrossRef]
- Wang, X.; Cao, Q.; Wang, R.; Cao, X.; Liu, S. Manipulation of ferroelectric domain inversion and growth by optically induced 3D thermoelectric field in lithium niobate. Appl. Phys. Lett. 2022, 121, 181111. [Google Scholar] [CrossRef]
- Li, F.; Cao, Q.; Wang, X.; Wang, R. Nonlocal erasing and writing of ferroelectric domains using a femtosecond laser in lithium niobate. Opt. Lett. 2024, 49, 1892–1895. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Wang, T.; Chen, P.; Zhou, C.; Ma, J.; Wei, D.; Wang, H.; Niu, B.; Fang, X.; Wu, D.; et al. Femtosecond laser writing of lithium niobate ferroelectric nanodomains. Nature 2022, 609, 496–501. [Google Scholar] [CrossRef] [PubMed]
- Guina, Y.; Zhu, J.; Gorevoy, A.; Kosobokov, M.; Turygin, A.; Lisjikh, B.; Akhmatkhanov, A.; Shur, V.; Kudryashov, S. Dimensional Analysis of Double-Track Microstructures in a Lithium Niobate Crystal Induced by Ultrashort Laser Pulses. Photonics 2023, 5, 582. [Google Scholar]
- Liu, S.; Switkowski, K.; Xu, C.; Tian, J.; Wang, B.; Lu, P.; Krolikowski, W.; Sheng, Y. Nonlinear wavefront shaping with optically induced three-dimensional nonlinear photonic crystals. Nat. Commun. 2019, 10, 3208. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Switkowski, K.; Chen, X.; Xu, T.; Krolikowski, W.; Sheng, Y. Broadband enhancement of Čerenkov second harmonic generation in a sunflower spiral nonlinear photonic crystal. Opt. Express 2018, 26, 8628. [Google Scholar] [CrossRef]
- Liu, S.; Mazur, L.M.; Krolikowski, W.; Sheng, Y. Nonlinear volume holography in 3D nonlinear photonic crystals. Laser Photonics Rev. 2020, 14, 2000224. [Google Scholar] [CrossRef]
- Liu, D.; Liu, S.; Mazur, L.M.; Wang, B.; Lu, P.; Krolikowski, W.; Sheng, Y. Smart optically induced nonlinear photonic crystals for frequency conversion and control. Appl. Phys. Lett. 2020, 116, 051104. [Google Scholar] [CrossRef]
- Liu, S.; Wang, L.; Mazur, L.; Switkowski, K.; Wang, B.; Chen, F.; Arie, A.; Krolikowski, W.; Sheng, Y. Highly efficient 3D nonlinear photonic crystals in ferroelectrics. Adv. Opt. Mater. 2023, 18, 2300021. [Google Scholar] [CrossRef]
- Chen, Y.; Yang, C.; Liu, S.; Wang, S.; Wang, N.; Liu, Y.; Sheng, Y.; Zhao, R.; Xu, T.; Krolikowski, W. Optically induced nonlinear cubic crystal system for 3D quasi-phase matching. Adv. Photonics Res. 2022, 3, 2100268. [Google Scholar] [CrossRef]
- Chen, X.; Mazur, L.M.; Liu, D.; Liu, S.; Liu, X.; Xu, Z.; Wei, X.; Wang, J.; Sheng, Y.; Wei, Z.; et al. Quasi-phase matched second harmonic generation in PMN-38PT crystal. Opt. Lett. 2020, 47, 2056–2059. [Google Scholar] [CrossRef]
- Chen, X.; Liu, D.; Liu, S.; Mazur, L.M.; Liu, X.; Wei, X.; Xu, Z.; Wang, J.; Sheng, Y.; Wei, Z.; et al. Optical induction and erasure of ferroelectric domains in tetragonal PMN-38PT crystals. Adv. Opt. Mater. 2022, 10, 2102115. [Google Scholar] [CrossRef]
- Wei, D.; Wang, C.; Wang, H.; Hu, X.; Wei, D.; Fang, X.; Zhang, Y.; Wu, D.; Hu, Y.; Li, J.; et al. Experimental demonstration of a three-dimensional lithium niobate nonlinear photonic crystal. Nat. Photonics 2018, 12, 596–600. [Google Scholar] [CrossRef]
- Hum, D.S.; Fejer, M.M. Quasi-phasematching. C.R. Phys. 2007, 8, 180–198. [Google Scholar] [CrossRef]
- Akhamatkhanov, A.R.; Chuvakova, M.A.; Vaskina, E.M.; Shur, V.Y. Polarization reversal process in MgO doped congruent lithium tantalate single crystals. Ferroelectrics 2015, 476, 57–68. [Google Scholar] [CrossRef]
- Jia, B.S.; Zhao, Y.Q.; Zhang, X.F. Research on defects and domain characteristics of MgO-doped near-stoichiometric lithium tantalate in room-temperature polarization process. Chin. Sci. Bull. 2010, 55, 11–15. [Google Scholar] [CrossRef]
- Hu, P.; Zhang, L.; Xiong, J.; Yin, J.; Zhao, C.; He, X.; Hang, Y. Optical properties of MgO doped near-stoichiometric LiTaO3 single crystals. Opt. Mater. 2011, 33, 1677–1680. [Google Scholar] [CrossRef]
- Nakamura, M.; Higuchi, S.; Takekawa, S.; Terabe, K.; Furukawa, Y.; Kitamura, K. Optical damage resistance and refractive indices in near-stoichiometric MgO-doped LiNbO3. Jpn. J. Appl. Phys. 2002, 41, L49–L51. [Google Scholar] [CrossRef]
- Chen, S.; Liu, H.; Kong, Y.; Huang, Z. The resistance against optical damage of near-stoichiometric LiNbO3:Mg crystals prepared by vapor transport equilibration. Opt. Mater. 2007, 29, 885–888. [Google Scholar] [CrossRef]
- Yu, N.E.; Kurimura, S.; Nomura, Y.; Kitamura, K. Stable high-power green light generation with thermally conductive periodically poled stoichiometric lithium tantalate. Jpn. J. Appl. Phys. 2004, 43, L1265–L1267. [Google Scholar] [CrossRef]
- Schossig, M.; Norkus, V.; Gerlach, G. Dielectric and pyroelectric properties of ultrathin, monocrystalline lithium tantalate. Infrared Phys. Technol. 2020, 63, 35–41. [Google Scholar] [CrossRef]
- Weigel, T.; Ludt, C.; Leisegang, T.; Mehner, E.; Jachalke, S.; Stöcker, H.; Doert, T.; Meyer, D.C.; Zschornak, M. Spontaneous polarization and pyroelectric coefficient of lithium niobate and lithium tantalate determined from crystal structure data. Phys. Rev. B 2023, 108, 054105. [Google Scholar] [CrossRef]
- Greshnyakov, E.D.; Lisjikh, B.I.; Akhmatkhanov, A.R.; Shur, V.Y. Charged domain walls in lithium niobate and lithium tantalate crystals with composition gradients. Ferroelectrics 2023, 604, 32–39. [Google Scholar] [CrossRef]
- Franken, P.A.; Hill, A.E.; Peters, C.W.; Weinreich, G. Generation of optical harmonics. Phys. Rev. Lett. 1961, 7, 118–120. [Google Scholar] [CrossRef]
- Sheng, Y.; Best, A.; Butt, H.-J.; Krolikowski, W.; Arie, A.; Koynov, K. Three-dimensional ferroelectric domain visualization by Čerenkov-type second harmonic generation. Opt. Express 2010, 18, 16539–16545. [Google Scholar] [CrossRef] [PubMed]
- Lisjikh, B.; Kosobokov, M.; Turygin, A.; Efimov, A.; Shur, V. Creation of a periodic domain structure in MgOLN by femtosecond laser irradiation. Photonics 2023, 11, 1211. [Google Scholar] [CrossRef]
- Alikin, D.O.; Ievlev, A.V.; Turygin, A.P.; Lobov, A.I.; Kalinin, S.V.; Shur, V.Y. Tip-induced domain growth on the non-polar cuts of lithium niobate single-crystals. Appl. Phys. Lett. 2015, 106, 182902. [Google Scholar] [CrossRef]
- Kudryashov, S.; Rupasov, A.; Kosobokov, M.; Akhmatkhanov, A.; Krasin, G.; Danilov, D.; Lisjikh, B.; Turygin, A.; Greshnyakov, E.; Kovalev, M.; et al. Ferroelectric nanodomain engineering in bulk lithium niobate crystals in ultrashort-pulse laser nanopatterning regime. Nanomaterials 2022, 12, 4147. [Google Scholar] [CrossRef]
- Fujimoto, K.; Cho, E. High-speed switching of nanoscale ferroelectric domains in congruent single-crystal LiTaO3. Appl. Phys. Lett. 2003, 83, 5265–5267. [Google Scholar] [CrossRef]
- Kan, Y.; Lu, X.; Bo, H.; Huang, F.; Wu, X.; Zhu, J. Critical radii of ferroelectric domains for different decay processes in LiNbO3 crystals. Appl. Phys. Lett. 2007, 91, 132902. [Google Scholar] [CrossRef]
- Agronin, A.; Molotski, M.; Rosenwaks, Y.; Rosenmann, G.; Rodriguez, B.J.; Kingon, A.I.; Gruverman, A. Dynamics of ferroelectric domain growth in the field of atomic force microscopy. J. Appl. Phys. 2006, 99, 104102. [Google Scholar] [CrossRef]
- Lilienblum, M.; Soergel, E. Determination of the effective coercive field of ferroelectrics by piezoresponse force microscopy. J. Appl. Phys. 2011, 110, 052012. [Google Scholar] [CrossRef]
- Shur, V.Y.; Pelegova, E.V.; Kosobokov, M.S. Domain shapes in bulk uniaxial ferroelectrics. Ferroelectrics 2020, 569, 251–265. [Google Scholar] [CrossRef]
- Esin, A.A.; Akhmatkhanov, A.R.; Shur, V.Y. Tilt control of the charged domain walls in lithium niobate. Appl. Phys. Lett. 2019, 114, 092901. [Google Scholar] [CrossRef]
- Slautin, B.; Turygin, A.; Pashnina, E.; Slautina, A.; Chezganov, D.; Shur, V. Evolution of nanodomains and formation of self-organized structures during local switching in X-cut LNOI. Crystals 2022, 12, 659. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, B.; Wang, Z.; Zhang, J.; Kazansky, P.G.; Tan, D.; Qiu, J. 3D imprinting of voxel-level structural colors in lithium niobate crystal. Adv. Mater. 2023, 35, 2303256. [Google Scholar] [CrossRef]
- Shur, V.Y.; Mingaliev, E.A.; Kosobokov, M.S.; Nebogatikov, M.S.; Lovov, A.I.; Makaev, A.V. Self-assembled shape evolution of the domain wall and formation of nanodomain wall traces induced by multiple IR laser pulse irradiation in lithium niobate. J. Appl. Phys. 2020, 127, 094103. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lisjikh, B.; Kosobokov, M.; Shur, V. The Creation of a Domain Structure Using Ultrashort Pulse NIR Laser Irradiation in the Bulk of MgO-Doped Lithium Tantalate. Photonics 2024, 11, 928. https://doi.org/10.3390/photonics11100928
Lisjikh B, Kosobokov M, Shur V. The Creation of a Domain Structure Using Ultrashort Pulse NIR Laser Irradiation in the Bulk of MgO-Doped Lithium Tantalate. Photonics. 2024; 11(10):928. https://doi.org/10.3390/photonics11100928
Chicago/Turabian StyleLisjikh, Boris, Mikhail Kosobokov, and Vladimir Shur. 2024. "The Creation of a Domain Structure Using Ultrashort Pulse NIR Laser Irradiation in the Bulk of MgO-Doped Lithium Tantalate" Photonics 11, no. 10: 928. https://doi.org/10.3390/photonics11100928
APA StyleLisjikh, B., Kosobokov, M., & Shur, V. (2024). The Creation of a Domain Structure Using Ultrashort Pulse NIR Laser Irradiation in the Bulk of MgO-Doped Lithium Tantalate. Photonics, 11(10), 928. https://doi.org/10.3390/photonics11100928