Enhanced Yb:YAG Active Mirrors for High Power Laser Amplifiers
Abstract
1. Introduction
2. Model and Methods
3. Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Goulielmakis, E.; Brabec, T. High harmonic generation in condensed matter. Nat. Photonics 2022, 16, 411–421. [Google Scholar] [CrossRef]
- Li, J.; Lu, J.; Chew, A.; Han, S.; Li, J.; Wu, Y.; Wang, H.; Ghimire, S.; Chang, Z. Attosecond science based on high harmonic generation from gases and solids. Nat. Commun. 2020, 11, 2748. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.T.; Pathak, V.B.; Hojbota, C.I.; Mirzaie, M.; Pae, K.H.; Kim, C.M.; Yoon, J.W.; Sung, J.H.; Lee, S.K. Multi-GeV Laser Wakefield Electron Acceleration with PW Lasers. Appl. Sci. 2021, 11, 5831. [Google Scholar] [CrossRef]
- Houard, A.; Walch, P.; Produit, T.; Moreno, V.; Mahieu, B.; Sunjerga, A.; Herkommer, C.; Mostajabi, A.; Andral, U.; André, Y.-B.; et al. Laser-guided lightning. Nat. Photonics 2023, 17, 231–235. [Google Scholar] [CrossRef] [PubMed]
- Higginson, A.; Wang, Y.; Chi, H.; Goffin, A.; Larkin, I.; Milchberg, H.M.; Rocca, J.J. Wake dynamics of air filaments generated by high-energy picosecond laser pulses at 1 kHz repetition rate. Opt. Lett. 2021, 46, 5449–5452. [Google Scholar] [CrossRef]
- Smith, D.; Ng, S.H.; Tang, A.; Katkus, T.; Moraru, D.; Juodkazis, S. Crystalline Flat Surface Recovered by High-Temperature Annealing after Laser Ablation. Photonics 2023, 10, 594. [Google Scholar] [CrossRef]
- Emelina, A.; Laryushin, I.; Romanov, A. Dynamics of Gas Ionization by Laser Pulses with Different Envelope Shapes. Photonics 2023, 10, 499. [Google Scholar] [CrossRef]
- Ma, T.; Mariscal, D.; Anirudh, R.; Bremer, T.; Djordjevic, B.Z.; Galvin, T.; Grace, E.; Herriot, S.; Jacobs, S.; Kailkhura, B.; et al. Accelerating the rate of discovery: Toward high-repetition-rate HED science. Plasma Phys. Control. Fusion 2021, 63, 104003. [Google Scholar] [CrossRef]
- Li, J.; Yu, H.; Li, D.; Wang, L.; Zhang, J.; Zhou, Q.; Lv, F.; Lu, X. Influence of Large-Aperture Output Wavefront Distribution on Focal Spot in High-Power Laser Facility. Photonics 2023, 10, 270. [Google Scholar] [CrossRef]
- Bagayev, S.N.; Trunov, V.I.; Pestryakov, E.V.; Leschenko, V.E.; Frolov, S.A.; Vasiliev, V.A. High-intensity femtosecond laser systems based on coherent combining of optical fields. Opt. Spectrosc. 2013, 115, 311–319. [Google Scholar] [CrossRef]
- Kuptsov, G.V.; Petrov, V.A.; Petrov, V.V.; Laptev, A.V.; Konovalova, A.O.; Kirpichnikov, A.V.; Pestryakov, E.V. Laser amplification in an Yb:YAG active mirror with a significant temperature gradient. Quantum Electron. 2021, 51, 679–682. [Google Scholar] [CrossRef]
- Zapata, L.E.; Pergament, M.; Schust, M.; Reuter, S.; Thesinga, J.; Zapata, C.; Kellert, M.; Demirbas, U.; Calendron, A.-L.; Liu, Y.; et al. One-joule 500-Hz cryogenic Yb:YAG laser driver of composite thin-disk design. Opt. Lett. 2022, 47, 6385–6388. [Google Scholar] [CrossRef]
- Al-Hosiny, N.M.; El-Maaref, A.A.; El-Agmy, R.M. Mitigation of Thermal Effects in End Pumping of Nd:YAG and Composite YAG/Nd:YAG Laser Crystals, Modelling and Experiments. Tech. Phys. 2021, 66, 1341–1347. [Google Scholar] [CrossRef]
- Wang, C.; Li, W.; Bai, D.; Zhao, J.; Li, J.; Ba, X.; Ge, L.; Pan, Y.; Zeng, H. Mode-Locked Composite YAG/Yb:YAG Ceramic Laser and High-Power Amplification. IEEE Photonics Technol. Lett. 2016, 28, 433–436. [Google Scholar] [CrossRef]
- Li, M.; Hu, H.; Gao, Q.; Wang, J.; Zhang, J.; Wu, Y.; Zhou, T.; Xu, L.; Tang, C.; Zhao, N.; et al. A 7.08-kW YAG/Nd:YAG/YAG Composite Ceramic Slab Laser with Dual Concentration Doping. IEEE Photonics J. 2017, 9, 1504010. [Google Scholar] [CrossRef]
- Toci, G.; Lapucci, A.; Ciofini, M.; Esposito, L.; Hostaša, J.; Gizzi, L.A.; Labate, L.; Ferrara, P.; Pirri, A.; Vannini, M. Laser and optical properties of Yb:YAG ceramics with layered doping distribution: Design, characterization and evaluation of different production processes. Proc. SPIE 2016, 9726, 97261P. [Google Scholar] [CrossRef]
- Kracht, D.; Wilhelm, R.; Frede, M.; Dupré, K.; Ackermann, L. 407 W End-pumped Multi-segmented Nd:YAG Laser. Opt. Express 2005, 13, 10140–10144. [Google Scholar] [CrossRef]
- Shen, Q.; Cui, X.-Y.; Yan, M.-C.; Eismann, U.; Yuan, T.; Zhang, W.-Z.; Peng, C.-Z.; Chen, Y.-A.; Pan, J.-W. 11-watt single-frequency 1342-nm laser based on multi-segmented Nd:YVO4 crystal. Opt. Express 2019, 27, 31913–31925. [Google Scholar] [CrossRef]
- Huang, Y.J.; Chen, Y.F. High-power diode-end-pumped laser with multi-segmented Nd-doped yttrium vanadate. Opt. Express 2013, 21, 16063–16068. [Google Scholar] [CrossRef]
- Evangelatos, C.; Tsaknakis, G.; Bakopoulos, P.; Papadopoulos, D.; Avdikos, G.; Papayannis, A.; Tzeremes, G. Actively Q-Switched Multisegmented Nd:YAG Laser Pumped at 885 nm for Remote Sensing. IEEE Photonics Technol. Lett. 2014, 26, 1890–1893. [Google Scholar] [CrossRef]
- Jiang, C.; Huang, W.; He, Q.; He, J.; Zhu, S.; Yin, H.; Li, Z.; Chen, Z.; Dai, S. High-power diode-end-pumped 1314 nm laser based on the multi-segmented Nd:YLF crystal. Opt. Lett. 2023, 48, 799–802. [Google Scholar] [CrossRef] [PubMed]
- Mason, P.D.; Fitton, M.; Lintern, A.; Banerjee, S.; Ertel, K.; Davenne, T.; Hill, J.; Blake, S.P.; Phillips, P.J.; Butcher, T.J.; et al. Scalable design for a high energy cryogenic gas cooled diode pumped laser amplifier. Appl. Opt. 2015, 54, 4227–4238. [Google Scholar] [CrossRef]
- Sekine, T.; Kurita, T.; Hatano, Y.; Muramatsu, Y.; Kurata, M.; Morita, T.; Watari, T.; Iguchi, T.; Yoshimura, R.; Tamaoki, Y.; et al. 253 J at 0.2 Hz, LD pumped cryogenic helium gas cooled Yb:YAG ceramics laser. Opt. Express 2022, 30, 44385–44394. [Google Scholar] [CrossRef] [PubMed]
- Wei, M.-E.; Cheng, T.-Q.; Dou, R.-Q.; Zhang, Q.-L.; Jiang, H.-H. High-peak-power electro-optically Q-switched laser with a gradient-doped Nd:YAG crystal. Opt. Lett. 2021, 46, 5016–5018. [Google Scholar] [CrossRef]
- Botha, R.C.; Koen, W.; Esser, M.J.D.; Bollig, C.; Combrinck, W.L.; von Bergmann, H.M.; Strauss, H.J. High average power Q-switched 1314 nm two-crystal Nd:YLF laser. Opt. Lett. 2015, 40, 495–497. [Google Scholar] [CrossRef]
- Wilhelm, R.; Freiburg, D.; Frede, M.; Kracht, D. End-pumped Nd:YAG laser with a longitudinal hyperbolic dopant concentration profile. Opt. Express 2008, 16, 20106–20116. [Google Scholar] [CrossRef]
- Azrakantsyan, M.; Albach, D.; Ananyan, N.; Gevorgyan, V.; Chanteloup, J.-C. Yb3+:YAG crystal growth with controlled doping distribution. Opt. Mater. Express 2012, 2, 20–30. [Google Scholar] [CrossRef]
- Wei, M.; Cheng, T.; Dou, R.; Zhang, Q.; Jiang, H. Superior performance of a 2 kHz pulse Nd:YAG laser based on a gradient-doped crystal. Photonics Res. 2021, 9, 1191–1196. [Google Scholar] [CrossRef]
- Wang, Y.; Chi, H.; Baumgarten, C.; Dehne, K.; Meadows, A.R.; Davenport, A.; Murray, G.; Reagan, B.A.; Menoni, C.S.; Rocca, J.J. 1.1 J Yb:YAG picosecond laser at 1 kHz repetition rate. Opt. Lett. 2020, 45, 6615–6618. [Google Scholar] [CrossRef]
- Herkommer, C.; Krötz, P.; Jung, R.; Klingebiel, S.; Wandt, C.; Bessing, R.; Walch, P.; Produit, T.; Michel, K.; Bauer, D.; et al. Ultrafast thin-disk multipass amplifier with 720 mJ operating at kilohertz repetition rate for applications in atmospheric research. Opt. Express 2020, 28, 30164–30173. [Google Scholar] [CrossRef]
- Nubbemeyer, T.; Kaumanns, M.; Ueffing, M.; Gorjan, M.; Alismail, A.; Fattahi, H.; Brons, J.; Pronin, O.; Barros, H.G.; Major, Z.; et al. 1 kW, 200 mJ picosecond thin-disk laser system. Opt. Lett. 2017, 42, 1381–1384. [Google Scholar] [CrossRef]
- Ogino, J.; Tokita, S.; Kitajima, S.; Yoshida, H.; Li, Z.; Motokoshi, S.; Morio, N.; Tsubakimoto, K.; Fujioka, K.; Kodama, R.; et al. 10-J, 100-Hz conduction-cooled active-mirror laser. Opt. Contin. 2022, 1, 1270–1277. [Google Scholar] [CrossRef]
- Atuchin, V.V.; Beisel, N.F.; Galashov, E.N.; Mandrik, E.M.; Molokeev, M.S.; Yelisseyev, A.P.; Yusuf, A.A.; Xia, Z. Pressure-stimulated synthesis and luminescence properties of microcrystalline (Lu,Y)3Al5O12:Ce3+ garnet phosphors. ACS Appl. Mater. Interfaces 2015, 7, 26235–26243. [Google Scholar] [CrossRef]
- Ji, H.; Wang, L.; Molokeev, M.S.; Hirosaki, N.; Xie, R.; Huang, Z.; Xia, Z.; ten Kate, O.M.; Liu, L.; Atuchin, V.V. Structure evolution and photoluminescence of Lu3(Al,Mg)2(Al,Si)3O12:Ce3+ phosphors: New yellow-color converters for blue LED-driven solid state lighting. J. Mater. Chem. C 2016, 4, 6855–6863. [Google Scholar] [CrossRef]
- Galashov, E.N.; Atuchin, V.V.; Gavrilova, T.A.; Korolkov, I.V.; Mandrik, Y.M.; Yelisseyev, A.P.; Xia, Z. Synthesis of Y3Al5O12:Ce3+ phosphor in the Y2O3–Al metal–CeO2 ternary system. J. Mater. Sci. 2017, 52, 13033–13039. [Google Scholar] [CrossRef]
- Slimi, S.; Jambunathan, V.; Pan, M.; Wang, Y.; Chen, W.; Loiko, P.; Solé, R.M.; Aguiló, M.; Díaz, F.; Smrz, M.; et al. Cryogenic laser operation of a “mixed” Yb:LuYAG garnet crystal. Appl. Phys. B 2023, 129, 57. [Google Scholar] [CrossRef]
- Vistorskaja, D.; Laurikenas, A.; Montejo de Luna, A.; Zarkov, A.; Pazylbek, S.; Kareiva, A. Sol-Gel Synthesis and Characterization of Novel Y3−xMxAl5−yVyO12 (M—Na, K) Garnet-Type Compounds. Inorganics 2023, 11, 58. [Google Scholar] [CrossRef]
- Dubov, V.; Gogoleva, M.; Saifutyarov, R.; Kucherov, O.; Korzhik, M.; Kuznetsova, D.; Komendo, I.; Sokolov, P. Micro-Nonuniformity of the Luminescence Parameters in Compositionally Disordered GYAGG:Ce Ceramics. Photonics 2023, 10, 54. [Google Scholar] [CrossRef]
- Sui, Y.; Yuan, M.; Bai, Z.; Fan, Z. Recent Development of High-Energy Short-Pulse Lasers with Cryogenically Cooled Yb:YAG. Appl. Sci. 2022, 12, 3711. [Google Scholar] [CrossRef]
- Dong, J.; Bass, M.; Mao, Y.; Deng, P.; Gan, F. Dependence of the Yb3+ emission cross section and lifetime on temperature and concentration in yttrium aluminum garnet. J. Opt. Soc. Am. B 2003, 20, 1975–1979. [Google Scholar] [CrossRef]
- Aggarwal, R.L.; Ripin, D.J.; Ochoa, J.R.; Fan, T.Y. Measurement of thermo-optic properties of Y3Al5O12, Lu3Al5O12, YAIO3, LiYF4, LiLuF4, BaY2F8, KGd(WO4)2, and KY(WO4)2 laser crystals in the 80–300 K temperature range. J. Appl. Phys. 2005, 98, 103514. [Google Scholar] [CrossRef]
- Tamer, I.; Keppler, S.; Hornung, M.; Körner, J.; Hein, J.; Kaluza, M.C. Spatio-Temporal Characterization of Pump-Induced Wavefront Aberrations in Yb3 + -Doped Materials. Laser Photonics Rev. 2018, 12, 1700211. [Google Scholar] [CrossRef]
- Antipov, O.L.; Anashkina, E.A.; Fedorova, K.A. Electronic and thermal lensing in diode end-pumped Yb:YAG laser rods and discs. Quantum Electron. 2009, 39, 1131–1136. [Google Scholar] [CrossRef]
- Kuptsov, G.V.; Konovalova, A.O.; Petrov, V.A.; Laptev, A.V.; Atuchin, V.V.; Petrov, V.V. Laser Method for Studying Temperature Distribution within Yb:YAG Active Elements. Photonics 2022, 9, 805. [Google Scholar] [CrossRef]
- Petrov, V.V.; Kuptsov, G.V.; Petrov, V.A.; Laptev, A.V.; Kirpichnikov, A.V.; Pestryakov, E.V. Optimisation of a multidisc cryogenic amplifier for a high-intensity, high-repetition-rate laser system. Quantum Electron. 2018, 48, 358–362. [Google Scholar] [CrossRef]
- Petrov, V.A.; Kuptsov, G.V.; Petrov, V.V.; Laptev, A.V.; Stroganova, E.V. Development of laser elements with non-linear distribution of active ions. In Proceedings of the 2022 International Conference Laser Optics (ICLO), St. Petersburg, Russia, 20–24 June 2022. [Google Scholar] [CrossRef]
- Galutskiy, V.V.; Vatlina, M.I.; Stroganova, E.V. Growth of single crystal with a gradient of concentration of impurities by the Czochralski method using additional liquid charging. J. Cryst. Growth 2009, 311, 1190–1194. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Petrov, V.A.; Kuptsov, G.V.; Kuptsova, A.O.; Atuchin, V.V.; Stroganova, E.V.; Petrov, V.V. Enhanced Yb:YAG Active Mirrors for High Power Laser Amplifiers. Photonics 2023, 10, 849. https://doi.org/10.3390/photonics10070849
Petrov VA, Kuptsov GV, Kuptsova AO, Atuchin VV, Stroganova EV, Petrov VV. Enhanced Yb:YAG Active Mirrors for High Power Laser Amplifiers. Photonics. 2023; 10(7):849. https://doi.org/10.3390/photonics10070849
Chicago/Turabian StylePetrov, Vladimir A., Gleb V. Kuptsov, Alyona O. Kuptsova, Victor V. Atuchin, Elena V. Stroganova, and Victor V. Petrov. 2023. "Enhanced Yb:YAG Active Mirrors for High Power Laser Amplifiers" Photonics 10, no. 7: 849. https://doi.org/10.3390/photonics10070849
APA StylePetrov, V. A., Kuptsov, G. V., Kuptsova, A. O., Atuchin, V. V., Stroganova, E. V., & Petrov, V. V. (2023). Enhanced Yb:YAG Active Mirrors for High Power Laser Amplifiers. Photonics, 10(7), 849. https://doi.org/10.3390/photonics10070849