Understanding Illumination Effect on Saturation Behavior of Thin Film Transistor
Abstract
:1. Introduction
2. Materials and Methods
2.1. Device Fabrication
2.2. Simulations
3. Results
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Meng, W.; Xu, F.; Yu, Z.; Tao, T.; Shao, L.; Liu, L.; Li, T.; Wen, K.; Wang, J.; He, L.; et al. Three-Dimensional Monolithic Micro-LED Display Driven by Atomically Thin Transistor Matrix. Nat. Nanotechnol. 2021, 16, 1231–1236. [Google Scholar] [CrossRef] [PubMed]
- Hwangbo, S.; Hu, L.; Hoang, A.T.; Choi, J.Y.; Ahn, J.H. Wafer-Scale Monolithic Integration of Full-Colour Micro-LED Display Using MoS2 Transistor. Nat. Nanotechnol. 2022, 17, 500–506. [Google Scholar] [CrossRef] [PubMed]
- Kwon, J.Y.; Son, K.S.; Jung, J.S.; Kim, T.S.; Ryu, M.K.; Park, K.B.; Yoo, B.W.; Kim, J.W.; Lee, Y.G.; Park, K.C.; et al. Bottom-Gate Gallium Indium Zinc Oxide Thin-Film Transistor Array for High-Resolution AMOLED Display. IEEE Electron Device Lett. 2008, 29, 1309–1311. [Google Scholar] [CrossRef]
- Xue, Y.; Wang, L.; Zhang, Y.; Liang, G.; Chu, J.; Han, B.; Cao, W.; Liao, C.; Zhang, S. 31-Inch 4K Flexible Display Employing Gate Driver with Metal Oxide Thin-Film Transistors. IEEE Electron Device Lett. 2021, 42, 188–191. [Google Scholar] [CrossRef]
- She, X.J.; Gustafsson, D.; Sirringhaus, H. A vertical organic transistor architecture for fast nonvolatile memory. Adv. Mater. 2017, 29, 1604769. [Google Scholar] [CrossRef] [Green Version]
- Wu, Z.; Liu, Y.; Guo, E.; Darbandy, G.; Wang, S.J.; Hubner, R.; Kloes, A.; Kleemann, H.; Leo, K. Efficient and low-voltage vertical organic permeable base light-emitting transistors. Nat. Mater. 2021, 20, 1007–1014. [Google Scholar] [CrossRef]
- Liu, J.; Zhou, K.; Liu, J.; Zhu, J.; Zhen, Y.; Dong, H.; Hu, W. Organic-single-crystal vertical field-effect transistors and phototransistors. Adv. Mater. 2018, 30, e1803655. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Z.; Zhang, M.; Deng, S.; Yang, Y.; Wong, M.; Kwok, H.-S. Evaluation of positive-bias-stress-induced degradation in InSnZnO thin-film transistors by low frequency noise measurement. IEEE Electron Device Lett. 2022, 43, 886–889. [Google Scholar] [CrossRef]
- Yabuta, H.; Sano, M.; Abe, K.; Aiba, T.; Den, T.; Kumomi, H.; Nomura, K.; Kamiya, T.; Hosono, H. High-mobility thin-film transistor with amorphous InGaZnO4 channel fabricated by room temperature rf-magnetron sputtering. Appl. Phys. Lett. 2006, 89, 112123. [Google Scholar] [CrossRef]
- Dai, X.; Zhang, Z.; Jin, Y.; Niu, Y.; Cao, H.; Liang, X.; Chen, L.; Wang, J.; Peng, X. Solution-Processed, High-Performance light-emitting diodes based on quantum dots. Nature 2014, 515, 96–99. [Google Scholar] [CrossRef]
- Shirasaki, Y.; Supran, G.J.; Bawendi, M.G.; Bulović, V. Emergence of colloidal quantum-dot light-emitting technologies. Nat. Photonics 2012, 7, 13–23. [Google Scholar] [CrossRef]
- Caruge, J.M.; Halpert, J.E.; Wood, V.; Bulović, V.; Bawendi, M.G. Colloidal quantum-dot light-emitting diodes with metal-oxide charge transport layers. Nat. Photonics 2008, 2, 247–250. [Google Scholar] [CrossRef]
- Kirkwood, N.; Singh, B.; Mulvaney, P. Enhancing quantum dot led efficiency by tuning electron mobility in the zno electron transport layer. Adv. Mater. Interfaces 2016, 3, 1600868. [Google Scholar] [CrossRef]
- Hassan, Y.; Park, J.H.; Crawford, M.L.; Sadhanala, A.; Lee, J.; Sadighian, J.C.; Mosconi, E.; Shivanna, R.; Radicchi, E.; Jeong, M.; et al. Ligand-Engineered Bandgap Stability in Mixed-Halide Perovskite LEDs. Nature 2021, 591, 72–77. [Google Scholar] [CrossRef]
- Cheng, L.; Jiang, T.; Cao, Y.; Yi, C.; Wang, N.; Huang, W.; Wang, J. Multiple-Quantum-Well Perovskites for High-Performance Light-Emitting Diodes. Adv. Mater. 2020, 32, 1904163. [Google Scholar] [CrossRef]
- Cao, Y.; Wang, N.; Tian, H.; Guo, J.; Wei, Y.; Chen, H.; Miao, Y.; Zou, W.; Pan, K.; He, Y.; et al. Perovskite Light-Emitting Diodes Based on Spontaneously Formed Submicrometre-Scale Structures. Nature 2018, 562, 249–253. [Google Scholar] [CrossRef] [PubMed]
- Lin, K.; Xing, J.; Quan, L.N.; de Arquer, F.P.G.; Gong, X.; Lu, J.; Xie, L.; Zhao, W.; Zhang, D.; Yan, C.; et al. Perovskite Light-Emitting Diodes with External Quantum Efficiency Exceeding 20 per cent. Nature 2018, 562, 245–248. [Google Scholar] [CrossRef]
- Hong, G.; Gan, X.; Leonhardt, C.; Zhang, Z.; Seibert, J.; Busch, J.M.; Brase, S. A Brief History of OLEDs-Emitter Development and Industry Milestones. Adv. Mater. 2021, 33, 2005630. [Google Scholar] [CrossRef]
- Kang, C.-m.; Lee, H. Recent Progress of Organic Light-Emitting Diode Microdisplays for Augmented Reality/Virtual Reality Applications. J. Inf. Disp. 2021, 23, 19–32. [Google Scholar] [CrossRef]
- Luo, Y.; Li, S.; Zhao, Y.; Li, C.; Pang, Z.; Huang, Y.; Yang, M.; Zhou, L.; Zheng, X.; Pu, X.; et al. An Ultraviolet Thermally Activated Delayed Fluorescence OLED with Total External Quantum Efficiency over 9%. Adv. Mater. 2020, 32, 2001248. [Google Scholar] [CrossRef] [PubMed]
- Kondo, Y.; Yoshiura, K.; Kitera, S.; Nishi, H.; Oda, S.; Gotoh, H.; Sasada, Y.; Yanai, M.; Hatakeyama, T. Narrowband Deep-Blue Organic Light-Emitting Diode Featuring an Organoboron-based Emitter. Nat. Photonics 2019, 13, 678–682. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, W.; Jiang, Y.; Wang, Y.X.; Wu, Y.; Lai, J.C.; Niu, S.; Xu, C.; Shih, C.C.; Wang, C.; et al. High-Brightness All-Polymer Stretchable LED with Charge-Trapping Dilution. Nature 2022, 603, 624–630. [Google Scholar] [CrossRef]
- Wang, Q.; Ding, J.; Ma, D.; Cheng, Y.; Wang, L.; Jing, X.; Wang, F. Harvesting Excitons Via Two Parallel Channels for Efficient White Organic LEDs with Nearly 100% Internal Quantum Efficiency: Fabrication and Emission-Mechanism Analysis. Adv. Funct. Mater. 2009, 19, 84–95. [Google Scholar] [CrossRef]
- Diethelm, M.; Bauer, M.; Hu, W.H.; Vael, C.; Jenatsch, S.; Blom, P.W.M.; Nüesch, F.; Hany, R. Electron Trap Dynamics in Polymer Light-Emitting Diodes. Adv. Funct. Mater. 2022, 32, 2106185. [Google Scholar] [CrossRef]
- Kuik, M.; Wetzelaer, G.J.; Nicolai, H.T.; Craciun, N.I.; De Leeuw, D.M.; Blom, P.W. 25th Anniversary Article: Charge Transport and Recombination in Polymer Light-Emitting Diodes. Adv. Mater. 2014, 26, 512–531. [Google Scholar] [CrossRef] [PubMed]
- Jing, B.; Peng, C.; Xu, M.; Huang, H.; Li, X.; Zhang, J. Investigation on Stability in Solution-Processed In-Zn-Sn-O TFT Array Under Various Intensity of Illumination. IEEE Trans. Electron Devices 2022, 69, 4283–4287. [Google Scholar] [CrossRef]
- Billah, M.; Chowdhury, M.; Mativenga, M.; Um, J.; Mruthyunjaya, R.; Heiler, G.; Tredwell, T.; Jang, J. Analysis of Improved Performance Under Negative Bias Illumination Stress of Dual Gate Driving a- IGZO TFT by TCAD Simulation. IEEE Electron Device Lett. 2016, 37, 735–738. [Google Scholar] [CrossRef]
- Lin, Y.-J.; Huang, B.-C. Influence of Illumination on the Output Characteristics in Pentacene Thin Film Transistors. Mater. Chem. Phys. 2013, 142, 428–431. [Google Scholar] [CrossRef]
- Xiong, N.; Xiao, P.; Li, M.; Xu, H.; Yao, R.; Wen, S.; Peng, J. Enhancement of Bias and Illumination Stability in Thin-Film Transistors by Doping In ZnO with Wide-Band-Gap Ta2O5. Appl. Phys. Lett. 2013, 102, 242102. [Google Scholar] [CrossRef]
- Kim, S.G.; Kim, S.H.; Park, J.; Kim, G.S.; Park, J.H.; Saraswat, K.C.; Kim, J.; Yu, H.Y. Infrared Detectable MoS2 Phototransistor and Its Application to Artificial Multilevel Optic-Neural Synapse. ACS Nano 2019, 13, 10294–10300. [Google Scholar] [CrossRef]
- Li, P.; Zhang, X.; Chong, W.C.; Lau, K.M. Monolithic Thin Film Red LED Active-Matrix Micro-Display by Flip-Chip Technology. IEEE Photonics Technol. Lett. 2021, 33, 603–606. [Google Scholar] [CrossRef]
- Zhang, Q.; Jin, T.; Ye, X.; Geng, D.; Chen, W.; Hu, W. Organic Field Effect Transistor-Based Photonic Synapses: Materials, Devices, and Applications. Adv. Funct. Mater. 2021, 31, 2106151. [Google Scholar] [CrossRef]
- Baeg, K.J.; Binda, M.; Natali, D.; Caironi, M.; Noh, Y.Y. Organic Light Detectors: Photodiodes and Phototransistors. Adv. Mater. 2013, 25, 4267–4295. [Google Scholar] [CrossRef] [PubMed]
- Han, T.; Sun, L.; Feng, Q.; Cao, K.; Ding, S.; Jin, G.; Jiang, C.; Huang, X. The Mechanism of Photogenerated Minority Carrier Movement in Organic Phototransistors. J. Mater. Chem. C 2020, 8, 12284–12290. [Google Scholar] [CrossRef]
- Wang, S.D.; Yan, Y.; Tsukagoshi, K. Understanding contact behavior in organic thin film transistors. Appl. Phys. Lett. 2010, 97, 063307. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, S.; Yang, L.; Huang, C.; Chen, Q.; Zeng, W.; She, X. Understanding Illumination Effect on Saturation Behavior of Thin Film Transistor. Photonics 2023, 10, 309. https://doi.org/10.3390/photonics10030309
Jiang S, Yang L, Huang C, Chen Q, Zeng W, She X. Understanding Illumination Effect on Saturation Behavior of Thin Film Transistor. Photonics. 2023; 10(3):309. https://doi.org/10.3390/photonics10030309
Chicago/Turabian StyleJiang, Shijie, Lurong Yang, Chenbo Huang, Qianqian Chen, Wei Zeng, and Xiaojian She. 2023. "Understanding Illumination Effect on Saturation Behavior of Thin Film Transistor" Photonics 10, no. 3: 309. https://doi.org/10.3390/photonics10030309
APA StyleJiang, S., Yang, L., Huang, C., Chen, Q., Zeng, W., & She, X. (2023). Understanding Illumination Effect on Saturation Behavior of Thin Film Transistor. Photonics, 10(3), 309. https://doi.org/10.3390/photonics10030309