A.I. Pipeline for Accurate Retinal Layer Segmentation Using OCT 3D Images
Abstract
:1. Introduction
1.1. Issue requiring Post-Processing Manipulations
1.1.1. Oscillation Due to Mouse Eye Movement
1.1.2. Batch Processing and Common Dispersion Values
1.1.3. Shadows Underneath
1.2. Motivation
2. Materials and Methods
2.1. Animal Husbandry and Handling during the Imaging
2.2. Post-Processing Steps for Registration
- Gaussian Blurring was applied to reduce the noise;
- Features were enhanced by using the difference of Gaussians (DoG) technique;
- Local maxima and minima values were used to remove low-contrast points to detect keypoints;
- Magnitude and orientation were calculated at each pixel for generating descriptors for each keypoint (128-bit vectors).
- Applied FAST (Features from Accelerated Segment Test) to detect features from the images;
- Used rotated BRIEF to calculate the descriptors of these keypoints. The rotation of BRIEF was in accordance with the orientation of the keypoints;
- Select a pixel p in the image and let its intensity be ;
- Select a circle around it of the mask of x number of pixels;
- Select a threshold value t, and a hyperparameter n;
- A pixel p is said to be a feature if there are n contiguous pixels in the circle, which are either brighter than or darker than .
- A Gaussian kernel was used to smoothen the given image;
- n location pairs of (x, y) were selected and their intensities compared at x and y. It generated a binary string of whether p (x) > p (y) or p (y) >= p (x);
- This binary string (of 128 to 512-bit length) acted as the descriptor for a keypoint.
2.3. Shadow Detection
Method to Update the Pixel Value under Shadows
2.4. A.I. and Layer Thickness Estimation
3. Results
3.1. Registration: Classical, A.I., and Hybrid
Homography Transformation Approaches
3.2. A.I. and Optical Flow Hybrid
3.3. Suppression of Shadows
3.3.1. Classical Approaches for Shadow Detection
3.3.2. A.I. Models for Shadow Detection
3.3.3. Pixel Value Manipulation
3.4. A.I.-Based Retinal Layer Thickness Estimation
4. Conclusions
Supplementary Materials
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fercher, A.F. Optical Coherence Tomography—Development, Principles, Applications. Z. Med. Phys. 2010, 20, 251–276. [Google Scholar] [CrossRef] [PubMed]
- Augustin, A.J.; Atorf, J. The Value of Optical Coherence Tomography Angiography (OCT-A) in Neurological Diseases. Diagnostics 2022, 12, 468. [Google Scholar] [CrossRef] [PubMed]
- Welzel, J.; Lankenau, E.; Birngruber, R.; Engelhardt, R. Optical Coherence Tomography of the Human Skin. J. Am. Acad. Dermatol. 1997, 37, 958–963. [Google Scholar] [CrossRef] [PubMed]
- Spînu, M.; Onea, L.H.; Homorodean, C.; Olinic, M.; Ober, M.C.; Olinic, D.M. Optical Coherence Tomography—OCT for Characterization of Non-Atherosclerotic Coronary Lesions in Acute Coronary Syndromes. J. Clin. Med. 2022, 11, 265. [Google Scholar] [PubMed]
- Meleppat, R.K.; Ronning, K.E.; Karlen, S.J.; Burns, M.E.; Pugh, E.N.; Zawadzki, R.J. In Vivo Multimodal Retinal Imaging of Disease-Related Pigmentary Changes in Retinal Pigment Epithelium. Sci. Rep. 2021, 11, 16252. [Google Scholar] [CrossRef]
- Meleppat, R.K.; Ronning, K.E.; Karlen, S.J.; Kothandath, K.K.; Burns, M.E.; Pugh, E.N., Jr.; Zawadzki, R.J. In Situ Morphologic and Spectral Characterization of Retinal Pigment Epithelium Organelles in Mice Using Multicolor Confocal Fluorescence Imaging. Investig. Ophthalmol. Vis. Sci. 2020, 61, 1. [Google Scholar] [CrossRef]
- Goswami, M.; Wang, X.; Zhang, P.; Xiao, W.; Karlen, S.J.; Li, Y.; Zawadzki, R.J.; Burns, M.E.; Lam, K.S.; Pugh, E.N. Novel Window for Cancer Nanotheranostics: Non-Invasive Ocular Assessments of Tumor Growth and Nanotherapeutic Treatment Efficacy in Vivo. Biomed. Opt. Express 2019, 10, 151–166. [Google Scholar] [CrossRef]
- Smith, C.A.; Hooper, M.L.; Chauhan, B.C. Optical Coherence Tomography Angiography in Mice: Quantitative Analysis After Experimental Models of Retinal Damage. Investig. Ophthalmol. Vis. Sci. 2019, 60, 1556–1565. [Google Scholar] [CrossRef] [Green Version]
- Hormel, T.T.; Jia, Y.; Jian, Y.; Hwang, T.S.; Bailey, S.T.; Pennesi, M.E.; Wilson, D.J.; Morrison, J.C.; Huang, D. Plexus-Specific Retinal Vascular Anatomy and Pathologies as Seen by Projection-Resolved Optical Coherence Tomographic Angiography. Prog. Retin. Eye Res. 2021, 80, 100878. [Google Scholar] [CrossRef]
- Hitzenberger, C.K.; Augustin, M.; Wartak, A.; Baumann, B.; Merkle, C.W.; Pircher, M.; Leitgeb, R.A. Signal Averaging Improves Signal-to-Noise in OCT Images: But Which Approach Works Best, and When? Biomed. Opt. Express 2019, 10, 5755–5775. [Google Scholar] [CrossRef]
- Jian, Y.; Wong, K.; Sarunic, M.V. Graphics Processing Unit Accelerated Optical Coherence Tomography Processing at Megahertz Axial Scan Rate and High Resolution Video Rate Volumetric Rendering. J. Biomed. Opt. 2013, 18, 026002. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luo, S.; Holland, G.; Mikula, E.; Bradford, S.; Khazaeinezhad, R.; Jester, J.V.; Juhasz, T. Dispersion Compensation for Spectral Domain Optical Coherence Tomography by Time-Frequency Analysis and Iterative Optimization. Opt. Continuum. 2022, 1, 1117–1136. [Google Scholar] [CrossRef]
- Ni, G.; Zhang, J.; Liu, L.; Wang, X.; Du, X.; Liu, J.; Liu, Y. Detection and Compensation of Dispersion Mismatch for Frequency-Domain Optical Coherence Tomography Based on A-Scan’s Spectrogram. Opt. Express 2020, 28, 19229–19241. [Google Scholar] [CrossRef] [PubMed]
- Borkovkina, S.; Camino, A.; Janpongsri, W.; Sarunic, M.V.; Jian, Y. Real-Time Retinal Layer Segmentation of OCT Volumes with GPU Accelerated Inferencing Using a Compressed, Low-Latency Neural Network. Biomed. Opt. Express 2020, 11, 3968–3984. [Google Scholar] [CrossRef]
- Camino, A.; Jia, Y.; Yu, J.; Wang, J.; Liu, L.; Huang, D. Automated Detection of Shadow Artifacts in Optical Coherence Tomography Angiography. Biomed. Opt. Express 2019, 10, 1514–1531. [Google Scholar] [CrossRef]
- Vladusich, T.; Lucassen, M.P.; Cornelissen, F.W. Brightness and Darkness as Perceptual Dimensions. PLoS Comput. Biol. 2007, 3, 1849–1858. [Google Scholar] [CrossRef] [Green Version]
- Blakeslee, B.; McCourt, M.E. A Unified Theory of Brightness Contrast and Assimilation Incorporating Oriented Multiscale Spatial Filtering and Contrast Normalization. Vis. Res. 2004, 44, 2483–2503. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Hormel, T.T.; You, Q.; Guo, Y.; Wang, X.; Chen, L.; Hwang, T.S.; Jia, Y. Robust non-perfusion area detection in three retinal plexuses using convolutional neural network in OCT angiography. Biomed. Opt. Express 2020, 11, 330–345. [Google Scholar] [CrossRef]
- Wang, R.K.; Jacques, S.L.; Ma, Z.; Hurst, S.; Hanson, S.R.; Gruber, A.; Makita, S.; Jaillon, F.; Yamanari, M.; Miura, M.; et al. Projection-Resolved Optical Coherence Tomographic Angiography. Biomed. Opt. Express 2016, 7, 816–828. [Google Scholar] [CrossRef] [Green Version]
- US20180182082 Systems and Methods for Reflectance-Based Projection-Resolved Optical Coherence Tomography Angiography. Available online: https://patentscope.wipo.int/search/en/detail.jsf?docId=US223549933&recNum=13&docAn=15852521&queryString=(FP/%22Optical%20Coherence%20Tomography%22)%20&maxRec=3853 (accessed on 6 February 2023).
- Zawadzki, R.J.; Fuller, A.R.; Wiley, D.F.; Hamann, B.; Choi, S.S.; Werner, J.S. Adaptation of a Support Vector Machine Algorithm for Segmentation and Visualization of Retinal Structures in Volumetric Optical Coherence Tomography Data Sets. J. Biomed. Opt. 2007, 12, 41206. [Google Scholar] [CrossRef]
- Sonobe, T.; Tabuchi, H.; Ohsugi, H.; Masumoto, H.; Ishitobi, N.; Morita, S.; Enno, H.; Nagasato, D. Comparison between Support Vector Machine and Deep Learning, Machine-Learning Technologies for Detecting Epiretinal Membrane Using 3D-OCT. Int. Ophthalmol. 2019, 39, 1871–1877. [Google Scholar] [CrossRef]
- Zhang, L.; Dong, R.; Zawadzki, R.J.; Zhang, P. Volumetric Data Analysis Enabled Spatially Resolved Optoretinogram to Measure the Functional Signals in the Living Retina. J. Biophotonics 2022, 15, e202100252. [Google Scholar] [CrossRef]
- Goswami, M. Deep Learning Models for Benign and Malign Ocular Tumor Growth Estimation. Comput. Med. Imaging Graph. 2021, 93, 101986. [Google Scholar] [CrossRef]
- He, Y.; Carass, A.; Liu, Y.; Jedynak, B.M.; Solomon, S.D.; Saidha, S.; Calabresi, P.A.; Prince, J.L. Structured Layer Surface Segmentation for Retina OCT Using Fully Convolutional Regression Networks. Med. Image Anal. 2021, 68, 101856. [Google Scholar] [CrossRef]
- Tao, Y.; Ling, Z. Deep Features Homography Transformation Fusion Network—A Universal Foreground Segmentation Algorithm for PTZ Cameras and a Comparative Study. Sensors 2020, 20, 3420. [Google Scholar] [CrossRef] [PubMed]
- Wei, S.; Kang, J.U. Optical Flow Optical Coherence Tomography for Determining Accurate Velocity Fields. Opt. Express 2020, 28, 25502–25527. [Google Scholar] [CrossRef] [PubMed]
- SIFT—Scale-Invariant Feature Transform. Available online: http://weitz.de/sift/ (accessed on 24 December 2022).
- Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You Only Look Once: Unified, Real-Time Object Detection. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 779–788. [Google Scholar] [CrossRef] [Green Version]
- Shakya, S.; Kumar, S.; Goswami, M. Deep Learning Algorithm for Satellite Imaging Based Cyclone Detection. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 827–839. [Google Scholar] [CrossRef]
- He, K.; Gkioxari, G.; Dollár, P.; Girshick, R. Mask R-CNN. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 42, 386–397. [Google Scholar] [CrossRef] [PubMed]
- Viedma, I.A.; Alonso-Caneiro, D.; Read, S.A.; Collins, M.J. OCT Retinal and Choroidal Layer Instance Segmentation Using Mask R-CNN. Sensors 2022, 22, 2016. [Google Scholar] [CrossRef]
- Dysli, C.; Enzmann, V.; Sznitman, R.; Zinkernagel, M.S. Quantitative Analysis of Mouse Retinal Layers Using Automated Segmentation of Spectral Domain Optical Coherence Tomography Images. Transl. Vis. Sci. Technol. 2015, 4, 9. [Google Scholar] [CrossRef] [Green Version]
Layer | Pixels | Thickness Estimated Using AI | Reported Thickness [33] |
---|---|---|---|
RNFL | 20 | 16.72 | 19.32 |
GCL + IPL | 53 | 44.31 | 45.09 |
INL + OPL | 25 + 21 | 20.9 + 17.5 = 38.4 | 41.92 |
ONL | 52 | 43.47 | 46.09 |
ELM | 12 | 10.03 | |
PR | 81 | 67.72 | 59.86 |
ILM to PR | 251 | 209.20 | 209.20 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Goswami, M. A.I. Pipeline for Accurate Retinal Layer Segmentation Using OCT 3D Images. Photonics 2023, 10, 275. https://doi.org/10.3390/photonics10030275
Goswami M. A.I. Pipeline for Accurate Retinal Layer Segmentation Using OCT 3D Images. Photonics. 2023; 10(3):275. https://doi.org/10.3390/photonics10030275
Chicago/Turabian StyleGoswami, Mayank. 2023. "A.I. Pipeline for Accurate Retinal Layer Segmentation Using OCT 3D Images" Photonics 10, no. 3: 275. https://doi.org/10.3390/photonics10030275
APA StyleGoswami, M. (2023). A.I. Pipeline for Accurate Retinal Layer Segmentation Using OCT 3D Images. Photonics, 10(3), 275. https://doi.org/10.3390/photonics10030275