Photoacoustic Tomography Combined with Ultrasound Mapping for Guiding Fine-Needle Aspiration of Thyroid Nodules: A Pilot Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Experimental System
2.3. PAT/US guided FNAB
2.4. Cytologic Analysis
2.5. Statistical Analysis
3. Results and Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mu, C.; Ming, X.; Tian, Y.; Liu, Y.; Yao, M.; Ni, Y.; Liu, Y.; Li, Z. Mapping global epidemiology of thyroid nodules among general population: A systematic review and meta-analysis. Front. Oncol. 2022, 12, 1029926. [Google Scholar] [CrossRef] [PubMed]
- Yassa, L.; Cibas, E.S.; Benson, C.B.; Frates, M.C.; Doubilet, P.D.; Gawande, A.A.; Moore, F.D.M., Jr.; Kim, B.W.; Nosé, V.; Marqusee, E.; et al. Long-term assessment of a multidisciplinary approach to thyroid nodule diagnostic evaluation. Cancer 2007, 111, 508–516. [Google Scholar] [CrossRef] [PubMed]
- Cronan, J.J. Thyroid nodules: Is it time to turn off the US machines? Radiology 2008, 247, 602–604. [Google Scholar] [CrossRef] [PubMed]
- Uppal, N.; Collins, R.; James, B. Thyroid nodules: Global, economic, and personal burdens. Front. Endocrinol. 2023, 14, 1113977. [Google Scholar] [CrossRef]
- Bongiovanni, M.; Spitale, A.; Faquin, W.C.; Mazzucchelli, L.; Baloch, Z.W. The Bethesda system for reporting thyroid cytopathology: A meta-analysis. Acta. Cytol. 2012, 56, 333–339. [Google Scholar] [CrossRef] [PubMed]
- NICE. Thyroid Cancer: Assessment and Management; National Institute for Health and Care Excellence (NICE): London, UK, 2022. [Google Scholar]
- Larsen, L.V.; Egset, A.V.; Holm, C.; Larsen, S.R.; Nielsen, S.H.; Bach, J.; Helweg-Larsen, J.P.; Wanscher, J.H.; Godballe, C. Thyroid fine-needle aspiration and The Bethesda Classification System. Dan. Med. J. 2018, 65, A5456. [Google Scholar]
- Cibas, E.S. Bethesda System for Reporting Thyroid Cytopathology. Thyroid 2009, 19, 1159–1165. [Google Scholar] [CrossRef]
- Sidiropoulos, N.; Dumont, L.J.; Golding, A.C.; Quinlisk, F.L.; Gonzalez, J.L.; Padmanabha, V. Quality improvement by standardization of procurement and processing of thyroid fine-needle aspirates in the absence of on-site cytological evaluation. Thyroid 2009, 19, 1049–1052. [Google Scholar] [CrossRef]
- Fu, Y.; Sun, Y.; Pei, Q.; Han, X.; Qin, W.; Mei, F.; Tan, S.; Cui, L. Factors Influencing the Sample Adequacy of Ultrasound-Guided Fine-Needle Aspiration from Solid Thyroid Nodules for Liquid-Based Cytology: A Demographic, Sonographic, and Technical Perspective. Medicina 2022, 58, 1639. [Google Scholar] [CrossRef]
- Choi, S.H.; Han, K.H.; Yoon, J.H.; Moon, H.J.; Son, E.J.; Youk, J.H.; Kim, E.K.; Kwak, J.Y. Factors affecting inadequate sampling of ultrasound-guided fine-needle aspiration biopsy of thyroid nodules. Clin. Endocrinol. 2011, 74, 776–782. [Google Scholar] [CrossRef]
- Ullah, M.A.; Iqbal, J.; Ahmed, M.S.; Darira, J.; Lutfi, I.; Hamid, K.; Ali, M. Factors Responsible for Non-Diagnostic Cytology on Ultrasound-Guided Fine-Needle Aspiration of Thyroid Nodules. Cureus 2021, 13, e14955. [Google Scholar]
- Li, Y.; Yu, J.; Du, P.; Xie, Y.; Das, S.K.; Li, B.; Zhang, C. High-Score US-Suspicious Subcentimeter Thyroid Nodules: What Factors Affect Adequate Sampling of US-Guided Fine-Needle Aspiration Biopsy? Int. J. Endocrinol. 2020, 2020, 8464623. [Google Scholar] [CrossRef] [PubMed]
- Baskin, H.J. Ultrasound-guided fine-needle aspiration biopsy of thyroid nodules and multinodular goiters. Endocr. Pract. 2004, 10, 242–245. [Google Scholar] [CrossRef]
- Zhu, Y.; Song, Y.; Xu, G. The Bethesda System for Reporting Thyroid Cytopathology (TBSRTC): A report of 2, 781 cases in a Chinese population. Chin. J. Cancer. Res. 2020, 32, 140–148. [Google Scholar] [CrossRef]
- National Guideline Centre (UK). Ultrasound Guidance for Fine Needle Aspiration: Thyroid Disease: Assessment and Management; National Institute for Health and Care Excellence (NICE): London, UK, 2019. [Google Scholar]
- Pitman, M.B.; Abele, J.; Ali, S.Z.; Duick, D.; Elsheikh, T.M.; Jeffrey, R.B.; Powers, C.N.; Randolph, G.; Renshaw, A.; Scoutt, L. Techniques for thyroid FNA: A synopsis of the National Cancer Institute Thyroid Fine-Needle Aspiration State of the Science Conference. Diagn. Cytopathol. 2008, 36, 407–424. [Google Scholar] [CrossRef] [PubMed]
- Degirmenci, B.; Haktanir, A.; Albayrak, R.; Sahin, D.A.; Sahin, O.; Yucel, A.; Caliskan, G. Sonographically guided fine-needle biopsy of thyroid nodules: The effects of nodule characteristics, sampling technique, and needle size on the adequacy of cytological material. Clin. Radiol. 2007, 62, 798–803. [Google Scholar] [CrossRef]
- Banaka, I.; Kaltsas, G.; Antoniou, S.; Kanakis, G.; Zilos, A.; Baltas, C.S.; Thomas, D. Prognostic value of vascularity index for the diagnosis of autoimmune thyroid disease. J. Belg. Soc. Radiol. 2011, 94, 185–190. [Google Scholar] [CrossRef] [PubMed]
- Yan, Y.; John, S.; Shaik, T.; Patel, B.; Lam, M.T.; Kabbani, L.; Mehrmohammadi, M. Photoacoustic-guided endovenous laser ablation: Characterization and in vivo canine study. Photoacoustics 2021, 24, 100298. [Google Scholar] [CrossRef]
- Wiacek, A.; Wang, K.C.; Wu, H.; Bell, M.A.L. Photoacoustic-Guided Laparoscopic and Open Hysterectomy Procedures Demonstrated with Human Cadavers. IEEE. Trans. Med. Imaging 2021, 40, 3279–3292. [Google Scholar] [CrossRef]
- Bell, M.A.L. Photoacoustic imaging for surgical guidance: Principles, applications, and outlook. J. Appl. Phys. 2020, 128, 060904. [Google Scholar] [CrossRef]
- Kim, C.; Erpelding, T.N.; Maslov, K.; Jankovic, L.; Akers, W.J.; Song, L.; Achilefu, S.; Margenthaler, J.A.; Pashley, M.D.; Wang, L.V. Handheld array-based photoacoustic probe for guiding needle biopsy of sentinel lymph nodes. J. Biomed. Opt. 2010, 15, 046010. [Google Scholar] [CrossRef]
- Jia, X.; Fan, K.; Zhang, R.; Zhang, D.; Zhang, J.; Gao, Y.; Zhang, T.; Li, W.; Li, J.; Yan, X.; et al. Precise visual distinction of brain glioma from normal tissues via targeted photoacoustic and fluorescence navigation. Nanomedicine 2020, 27, 102204. [Google Scholar] [CrossRef]
- Shubert, J.; Bell, M.A.L. A novel drill design for photoacoustic guided surgeries. In Photons Plus Ultrasound: Imaging and Sensing 2018; SPIE: Bellingham, WA, USA, 2018. [Google Scholar] [CrossRef]
- Shubert, J.; Bell, M.A.L. Photoacoustic imaging of a human vertebra: Implications for guiding spinal fusion surgeries. Phys. Med. Biol. 2018, 63, 144001. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.Y.; Fujino, K.; Motooka, Y.; Gregor, A.; Bernards, N.; Ujiie, H.; Kinoshita, T.; Chung, K.Y.; Han, S.H.; Yasufuku, K. Photoacoustic imaging to localize indeterminate pulmonary nodules: A preclinical study. PLoS ONE 2020, 15, e0231488. [Google Scholar] [CrossRef] [PubMed]
- Yu, Q.; Huang, S.; Wu, Z.; Zheng, J.; Chen, X.; Nie, L. Label-Free Visualization of Early Cancer Hepatic Micrometastasis and Intraoperative Image-Guided Surgery by Photoacoustic Imaging. J. Nucl. Med. 2020, 61, 1079–1085. [Google Scholar] [CrossRef]
- Kempski, K.M.; Wiacek, A.; Palmer, J.; Graham, M.; González, E.; Goodson, B.; Allman, D.; Hou, H.; Beck, S.; He, J.; et al. In vivo demonstration of photoacoustic-guided liver surgery. In Photons Plus Ultrasound: Imaging and Sensing; International Society for Optics and Photonics: Bellingham, WA, USA, 2019; Volume 10878, p. 108782T. [Google Scholar]
- Miyata, A.; Ishizawa, T.; Kamiya, M.; Shimizu, A.; Kaneko, J.; Shimizu, A.; Kaneko, J.; Ijichi, H.; Shibahara, J.; Fukayama, M.; et al. Photoacoustic Tomography of Human Hepatic Malignancies Using Intraoperative Indocyanine Green Fluorescence Imaging. PLoS ONE 2014, 9, e112667. [Google Scholar] [CrossRef]
- Bungart, B.L.; Lan, L.; Wang, P.; Li, R.; Koch, M.O.; Cheng, L.; Masterson, T.A.; Dundar, M.; Cheng, J.-X. Photoacoustic tomography of intact human prostates and vascular texture analysis identify prostate cancer biopsy targets. Photoacoustics 2018, 11, 46–55. [Google Scholar] [CrossRef] [PubMed]
- Moradi, H.; Tang, S.; Salcudean, S.E. Toward intra-operative prostate photoacoustic imaging: Configuration evaluation and implementation using the da Vinci research kit. IEEE Trans. Med. Imaging 2019, 38, 57–68. [Google Scholar] [CrossRef]
- Xi, L.; Zhou, G.; Gao, N.; Yang, L.; Gonzalo, D.A.; Hughes, S.J.; Jiang, H. Photoacoustic and fluorescence image-guided surgery using a multifunctional targeted nanoprobe. Ann. Surg. Oncol. 2014, 21, 1602–1609. [Google Scholar] [CrossRef]
- Xi, L.; Grobmyer, S.R.; Wu, L.; Chen, R.; Zhou, G.; Gutwein, L.G.; Sun, J.; Liao, W.; Zhou, Q.; Xie, H.; et al. Evaluation of breast tumor margins in vivo with intraoperative photoacoustic imaging. Opt. Express 2012, 20, 8726–8731. [Google Scholar] [CrossRef]
- Iskander-Rizk, S.; van der Steen, A.F.W.; van Soes, G. Photoacoustic imaging for guidance of interventions in cardiovascular medicine. Phys. Med. Biol. 2019, 64, 16TR01. [Google Scholar] [CrossRef] [PubMed]
- Graham, M.; Assis, F.; Allman, D.; Wiacek, A.; Gonzalez, E.; Gubbi, M.; Dong, J.; Hou, H.; Beck, S.; Chrispin, J.; et al. In vivo demonstration of photoacoustic image guidance and robotic visual servoing for cardiac catheter-based interventions. IEEE Trans. Med. Imaging 2020, 39, 1015–1029. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Lan, B.; Sankin, G.; Zhou, Y.; Liu, W.; Xia, J.; Wang, D.; Trahey, G.; Zhong, P.; Yao, J.; et al. Simultaneous photoacoustic imaging and cavitation mapping in shockwave lithotripsy. IEEE Trans. Med. Imaging 2020, 39, 468–477. [Google Scholar] [CrossRef] [PubMed]
- Kempski, K.M.; Wiacek, A.; Graham, M.; González, E.; Goodson, B.; Allman, D.; Palmer, J.; Hou, H.; Beck, S.; He, J.; et al. In vivo photoacoustic imaging of major blood vessels in the pancreas and liver during surgery. J. Biomed. Opt. 2019, 24, 1. [Google Scholar] [CrossRef] [PubMed]
- Yang, M.; Zhao, L.; He, X.; Su, N.; Zhao, C.Y.; Tang, H.; Hong, T.; Li, W.; Yang, F.; Lin, L.; et al. Photoacoustic/ultrasound dual imaging of human thyroid cancers: An initial clinical study. Biomed. Opt. Express 2017, 8, 3449–3457. [Google Scholar] [CrossRef]
- Dima, A.; Ntziachristos, V. In-vivo handheld optoacoustic tomography of the human thyroid. Photoacoustics 2016, 4, 65–69. [Google Scholar] [CrossRef]
- Kim, J.; Park, B.; Ha, J.; Steinberg, I.; Hooper, S.M.; Jeong, C.; Park, E.Y.; Choi, W.; Liang, T.; Bae, J.S.; et al. Multiparametric photoacoustic analysis of human thyroid cancers in vivo. Cancer. Res. 2021, 81, 4849–4860. [Google Scholar] [CrossRef]
- Roll, W.; Markwardt, N.A.; Masthoff, M.; Helfen, A.; Claussen, J.; Eisenblätter, M.; Hasenbach, A.; Hermann, S.; Karlas, A.; Wildgruber, M.; et al. Multispectral Optoacoustic Tomography of Benign and Malignant Thyroid Disorders: A Pilot Study. J. Nucl. Med. 2019, 60, 1461–1466. [Google Scholar] [CrossRef]
- Kim, J.; Park, E.; Park, B.; Choi, W.; Lee, K.J.; Kim, C. Towards clinical photoacoustic and ultrasound imaging: Probe improvement and real-time graphical user interface. Exp. Biol. Med. 2020, 245, 321–329. [Google Scholar] [CrossRef]
- Dogra, V.S.; Chinni, B.K.; Valluru, K.S.; Moalem, J.; Giampoli, E.J.; Evans, K.; Rao, N.A. Preliminary Results of Ex Vivo Multispectral Photoacoustic Imaging in the Management of Thyroid Cancer. Am. J. Roentgenol. 2014, 202, W552–W558. [Google Scholar] [CrossRef]
- Wu, D.; Zhang, X.; Rong, J.; Jiang, H. Photoacoustic Molecular Imaging Using Combined Acupuncture and Gold Nanorods as a Composite Contrast Agent. J. Innov. Opt. Health. Sci. 2019, 12, 1941004. [Google Scholar] [CrossRef]
- Wang, L.V. Photoacoustic Imaging and Spectroscopy; CRC Press: Boca Raton, FL, USA, 2009. [Google Scholar]
- Adler, D.D.; Carson, P.L.; Rubin, J.M.; Quinn-Reidl, D. Doppler ultrasound color flow imaging in the study of breast cancer; preliminary findings. Ultrasound Med. Biol. 1990, 16, 553–559. [Google Scholar] [CrossRef] [PubMed]
- Wu, D.; Guo, X.; Cui, R.; Wu, M.; Jiang, H. In Vivo hemodynamic Visualization of Berberine-Induced Effect on the Cerebral Cortex of a Mouse by Photoacoustic Tomography. Appl. Opt. 2019, 58, 1–8. [Google Scholar] [CrossRef]
- Jiang, H. Photoacoustic Tomography. Med. Imaging IEEE. Trans. 2015, 34, 2645. [Google Scholar]
- Kim, D.W. How to do it: Ultrasound-guided fine-needle aspiration of thyroid nodules that commonly result in inappropriate cytology. Clin. Imaging 2013, 37, 1–7. [Google Scholar] [CrossRef]
- Kandil, E.; Khalek, M.A.; Alabbas, H.; Moroz, K.; Islam, T.; Friedlander, P.; Jaffe, B.M. Comparison of ultrasound-guided biopsy technique for thyroid nodules with respect to adequacy of cytological material. ORL J. Otorhinolaryngol. Relat. Spec. 2011, 73, 177–181. [Google Scholar] [CrossRef]
- Kim, D.E.; Choo, H.J.; Park, J.S.; Lee, E.J.; Kim, S.H.; Jung, S.J.; Ryu, J.H. Ultrasonography-GuidedFine-Needle Aspiration Cytology for Thyroid Nodules: An Emphasis on One-Sampling and Biopsy Techniques. Diagn. Cytopathol. 2012, 40, E48–E54. [Google Scholar] [CrossRef]
- Todsen, T.; Bennedbæk, F.N.; Kiss, K.; Hegedus, L. Ultrasound guided fine-needle aspiration biopsy of thyroid nodules. Head Neck 2021, 43, 1009–1013. [Google Scholar] [CrossRef]
- Lee, Y.J.; Kim, D.W.; Jung, S.J.; Baek, H.J. Factors that Influence Sample Adequacy in Liquid-Based Cytology after Ultrasonography-Guided Fine-Needle Aspiration of Thyroid Nodules: A Single-Center Study. Acta Cytol. 2018, 62, 253–258. [Google Scholar] [CrossRef]
- Ali, S.Z.; Cibas, E.S. The Bethesda System for Reporting Thyroid Cytopathology: Definitions, Criteria and Explanatory Notes, 2nd ed.; Springer: Cham, Switzerland, 2018. [Google Scholar]
- Kwong, N.; Medici, M.; Angell, T.E.; Liu, X.; Marqusee, E.; Cibas, E.S.; Krane, J.F.; Barletta, J.A.; Kim, M.I.; Larsen, P.R.; et al. The influence of patient age on thyroid nodule formation, multinodularity, and thyroid cancer risk. J. Clin. Endocrinol. Metab. 2005, 100, 4434–4440. [Google Scholar] [CrossRef]
- Guth, S.; Theune, U.; Aberle, J.; Galach, A.; Bamberger, C.M. Very high prevalence of thyroid nodules detected by high frequency (13 MHz) ultrasound examination. Eur. J. Clin. Investig. 2009, 39, 699–706. [Google Scholar] [CrossRef]
- Kini, S.R. Thyroid Cytopathology: An Atlas and Text, 1st ed.; Lippincott Williams & Wilkins, a Wolters Kluwer Business: Philadelphia, PA, USA, 2008; pp. 17–26. [Google Scholar]
- Ozcan, U.A.; Atahan, S. Ultrasound-guided fine needle aspiration (USFNA) of thyroid nodules; does aspiration site matter? Iran. J. Radiol. 2015, 12, e8307. [Google Scholar] [CrossRef] [PubMed]
- Dong, Y.; Mao, M.; Zhan, W.; Zhou, J.; Zhou, W.; Yao, J.; Hu, Y.; Wang, Y.; Ye, T. Size and ultrasound features affecting results of ultrasound-guided fine-needle aspiration of thyroid nodules. J. Ultrasound. Med. 2018, 37, 1367–1377. [Google Scholar] [CrossRef]
- Moon, W.J.; Baek, J.H.; Choi, J.W.; Kim, Y.J.; Ha, E.J.; Lim, H.K.; Song, D.E.; Lee, J.H.; Shonget, Y.K. The value of gross visual assessment of specimen adequacy for liquid-based cytology during ultrasound guided, fine-needle aspiration of thyroid nodules. Endocr. Pract. 2015, 21, 1219–1226. [Google Scholar] [CrossRef] [PubMed]
- Moon, H.J.; Kwak, J.Y.; Kim, M.J.; Son, E.J.; Kim, E.-K. Can Vascularity at Power Doppler US Help Predict Thyroid Malignancy? Radiology 2010, 255, 260–269. [Google Scholar] [CrossRef]
- Ferreira, L.B.; Gimba, E.; Vinagre, J.; Sobrinho-Simões, M.; Soares, P. Molecular Aspects of Thyroid Calcification. Int. J. Mol. Sci. 2020, 21, 7718. [Google Scholar] [CrossRef]
- Lu, Z.; Mu, Y.; Zhu, H.; Luo, Y.; Kong, Q.; Dou, J.; Lu, J. Clinical Value of Using Ultrasound to Assess Calcification Patterns in Thyroid Nodules. World. J. Surg. 2010, 35, 122–127. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.; Zhu, X.; Zou, X.; Yao, J.; Liang, J.; Huang, H.; Li, L.; Lin, L. Retrospective Analysis of Thyroid Nodules by Clinical and Pathological Characteristics, and Ultrasonographically Detected Calcification Correlated to Thyroid Carcinoma in South China. Eur. Surg. Res. 2009, 42, 137–142. [Google Scholar] [CrossRef]
- Kim, D.; Choi, Y.S.; Kwon, H.J.; Lee, J.S.; Heo, J.J.; Han, Y.J.; Park, Y.H.; Kim, J.H. Relationship between patterns of calcification in thyroid nodules and histopathologic findings. Endocr. J. 2012, 60, 155–160. [Google Scholar] [CrossRef]
- Yin, L.; Zhang, W.; Bai, W.; He, W. Relationship Between Morphologic Characteristics of Ultrasonic Calcification in Thyroid Nodules and Thyroid Carcinoma. Ultrasound. Med. Biol. 2020, 46, 20–25. [Google Scholar] [CrossRef]
- Hsiao, T.C.; Cheng, Y.Y.; Tein, W.T.; Luo, S.B.; Chiou, D.Y.; Chung, R.J.; Li, M.L. Deep-penetration photoacoustic array imaging of calcifications. J. Biomed. Opt. 2013, 18, 066002. [Google Scholar] [CrossRef] [PubMed]
- Kang, J.; Chung, W.Y.; Kang, S.W.; Kwon, H.J.; Yoo, J.; Kim, E.K.; Chang, J.H.; Song, T.K.; Lee, S.; Kwak, J.Y. Ex vivo estimation of photoacoustic imaging for detecting thyroid microcalcifications. PLoS ONE 2014, 9, e113358. [Google Scholar] [CrossRef] [PubMed]
- Bartolotta, T.V.; Midiri, M.; Galia, M.; Runza, G.; Attard, M.; Savoia, G.; Lagalla, R.; Cardinale, A.E. Qualitative and quantitative evaluation of solitary thyroid nodules with contrast-enhanced ultrasound: Initial results. Eur. Radiol. 2006, 16, 2234–2241. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Q.; Jiang, J.; Du, X. Value of Contrast-enhanced Ultrasound in Diagnosis of Thyroid Papillary Carcinoma. Chin. J. Ultrasound Med. 2011, 27, 595–597. [Google Scholar]
Nodule | Age | Gender | BMI(Kg/m2) | Nodule Size (mm) | Nodule Depth (mm) | TIRADS | Cytology * |
---|---|---|---|---|---|---|---|
#1 | 66 | F | 20.8 | 7.1 | 10.2 | 4a | III |
#2 | 33 | F | 25.2 | 5.4 | 8.1 | 4b | V |
#3 | 24 | M | 23.7 | 14.3 | 8.8 | 4a | V |
#4 | 61 | F | 23.9 | 6.8 | 9.5 | 3 | VI |
#5 | 43 | F | 22.2 | 6.9 | 7.3 | 4b | VI |
#6 | 49 | M | 22.5 | 5.1 | 10.5 | 4a | II |
#7 | 50 | F | 23.4 | 9.2 | 12.4 | 4c | V |
#8 | 40 | M | 22.6 | 5.3 | 10.0 | 4b | VI |
#9 | 34 | F | 22.7 | 5.3 | 9.0 | 4b | V |
#10 | 49 | F | 20.8 | 4.4 | 18.2 | 4a | II |
#11 | 33 | F | 19.5 | 4.3 | 7.4 | 4a | II |
#12 | 58 | F | 20.8 | 6.0 | 8.2 | 4b | III |
#13 | 43 | F | 20.0 | 6.6 | 8.5 | 4b | III |
#14 | 33 | F | 23.8 | 4.9 | 6.3 | 4b | III |
#15 | 41 | F | 22.3 | 9.9 | 13.5 | 4b | III |
#16 | 48 | F | 22.2 | 4.9 | 7.9 | 4c | IV |
#17 | 47 | F | 27.1 | 5.9 | 12.6 | 4b | V |
#18 | 52 | F | 19.9 | 15.2 | 6.3 | 4b | IV |
#19 | 40 | M | 21.1 | 4.3 | 13.5 | 4a | VI |
#20 | 48 | M | 19.4 | 27.8 | 6.2 | 3 | VI |
#21 | 49 | F | 20.8 | 8.8 | 12.6 | 4b | VI |
#22 | 69 | F | 20.3 | 7.4 | 8.8 | 4b | I |
#23 | 30 | F | 22.3 | 7.6 | 5.8 | 4c | V |
#24 | 56 | F | 21.5 | 8.8 | 9.3 | 4c | V |
#25 | 73 | F | 26.6 | 6.4 | 12.4 | 4b | V |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wen, Y.; Wu, D.; Liu, X.; Xie, Y.; Zhang, J.; Yang, Y.; Wu, Y.; Jiang, S.; Jiang, H. Photoacoustic Tomography Combined with Ultrasound Mapping for Guiding Fine-Needle Aspiration of Thyroid Nodules: A Pilot Study. Photonics 2023, 10, 1190. https://doi.org/10.3390/photonics10111190
Wen Y, Wu D, Liu X, Xie Y, Zhang J, Yang Y, Wu Y, Jiang S, Jiang H. Photoacoustic Tomography Combined with Ultrasound Mapping for Guiding Fine-Needle Aspiration of Thyroid Nodules: A Pilot Study. Photonics. 2023; 10(11):1190. https://doi.org/10.3390/photonics10111190
Chicago/Turabian StyleWen, Yanting, Dan Wu, Xiaotian Liu, Yonghua Xie, Jing Zhang, Ying Yang, Yun Wu, Shixie Jiang, and Huabei Jiang. 2023. "Photoacoustic Tomography Combined with Ultrasound Mapping for Guiding Fine-Needle Aspiration of Thyroid Nodules: A Pilot Study" Photonics 10, no. 11: 1190. https://doi.org/10.3390/photonics10111190
APA StyleWen, Y., Wu, D., Liu, X., Xie, Y., Zhang, J., Yang, Y., Wu, Y., Jiang, S., & Jiang, H. (2023). Photoacoustic Tomography Combined with Ultrasound Mapping for Guiding Fine-Needle Aspiration of Thyroid Nodules: A Pilot Study. Photonics, 10(11), 1190. https://doi.org/10.3390/photonics10111190