Solid Phase Extraction of (+)-Catechin from Cocoa Shell Waste Using Dual Ionic Liquid@ZIF8 Covered Silica
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Apparatus
2.3. Preparation of Dual Ionic Liquids-ZIF8-Covered Silica
2.4. Adsorption Isothermal and Kinetics Studies
2.5. Stability and Reusability Test
2.6. Isolation of (+)-Catechin from Cocoa Shell Waste Using SPE
3. Results and Discussion
3.1. Characterization
3.2. Comparison of the Maximum Adsorption Ability
3.3. Adsorption Isothermal and Kinetics Studies
3.4. Other Effectives on Adsorption Amounts of the Four Sil@ZIF8@EIM-IL Sorbents
3.5. Solid Phase Extraction of (+)-Catechin from Cocoa Shell Waste
3.6. Stability and Reusability of Sil@ZIF8@EIM-EIM, and Validation of SPE
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Quiroz-Reyes, C.N.; Aguilar-Méndez, M.Á. Continuous ultrasound and pulsed ultrasound: Selective extraction tools to obtain enriched antioxidants extracts from cocoa beans (Theobroma cacao L.). Innovative Food Sci. Emerg. Technol. 2022, 80, 103095. [Google Scholar] [CrossRef]
- Wu, W.; Tan, Z.; Wu, G.; Yuan, L.; Zhu, W.; Bao, Y.; Pan, L.; Yang, Y.; Zheng, J. Deacidification of crude low-calorie cocoa butter with liquid-liquid extraction and strong-base anion exchange resin. Sep. Purif. Technol. 2013, 102, 163–172. [Google Scholar] [CrossRef]
- Gadkari, P.V.; Balaraman, M. Catechins: Sources, extraction and encapsulation: A review. Food Bioprod. Process. 2015, 93, 122–138. [Google Scholar] [CrossRef]
- Soares, I.D.; Okiyama, D.C.G.; Rodrigues, C.E.C. Simultaneous green extraction of fat and bioactive compounds of cocoa shell and protein fraction functionalities evaluation. Food Res. Int. 2020, 137, 109622. [Google Scholar] [CrossRef]
- Rebollo-Hernanz, M.; Cañas, S.; Taladrid, D.; Segovia, Á.; Bartolomé, B.; Aguilera, Y.; Martín-Cabrejas, M.A. Extraction of phenolic compounds from cocoa shell: Modeling using response surface methodology and artificial neural networks. Sep. Purif. Technol. 2021, 270, 118779. [Google Scholar] [CrossRef]
- Okiyama, D.C.G.; Soares, I.D.; Cuevas, M.S.; Crevelin, E.J.; Moraes, L.A.B.; Melo, M.P.; Oliveira, A.L.; Rodrigues, C.E.C. Pressurized liquid extraction of flavanols and alkaloids from cocoa bean shell using ethanol as solvent. Food Res. Int. 2018, 114, 20–29. [Google Scholar] [CrossRef]
- Xu, Y.; Zhang, Y.; Chen, J.; Wang, F.; Du, Q.; Yin, J. Quantitative analyses of the bitterness and astringency of catechins from green tea. Food Chem. 2018, 258, 16–24. [Google Scholar] [CrossRef]
- Fang, L.; Tian, M.; Row, K.H.; Yan, X.; Xiao, W. Isolation of aristolochic acid I from herbal plant using molecular imprinted polymer composited ionic liquid-based zeolitic imidazolate framework-67. J. Sep. Sci. 2019, 42, 3047–3053. [Google Scholar] [CrossRef]
- Chu, K.O.; Wang, C.C.; Rogers, M.S.; Choy, K.W.; Pang, C.P. Determination of catechins and catechin gallates in biological fluids by HPLC with coulometric array detection and solid phase extraction. Anal. Chim. Acta 2004, 510, 69–76. [Google Scholar] [CrossRef]
- Song, R.; Cheng, Y.; Tian, Y.; Zhang, Z. A validated solid-phase extraction HPLC method for the simultaneous determination of gallic acid, catechin and epicatechin in rhubarb decoction. Chin. J. Nat. Med. 2012, 10, 275–278. [Google Scholar] [CrossRef]
- Liu, Y.; Ying, D.; Sanguansri, L.; Augustin, M.A. Comparison of the adsorption behaviour of catechin onto cellulose and pectin. Food Chem. 2019, 271, 733–738. [Google Scholar] [CrossRef] [PubMed]
- Fujie, K.; Kitagawa, H. Ionic liquid transported into metal-organic frameworks. Coord. Chem. Rev. 2016, 307, 382–390. [Google Scholar] [CrossRef]
- Gutiérrez-Serpa, A.; Pacheco-Fernández, I.; Pasán, J.; Pino, V. Metal-organic frameworks as key materials for solid-phase microextraction devices—A review. Separations 2019, 6, 47. [Google Scholar] [CrossRef] [Green Version]
- Ahmadijokani, F.; Ahmadipouya, S.; Molavi, H.; Rezakazemi, M.; Aminabhavi, T.M.; Arjmand, M. Impact of scale, activation solvents, and aged conditions on gas adsorption properties of UiO-66. J. Environ. Manag. 2020, 274, 111155. [Google Scholar] [CrossRef]
- Ahmadijokani, F.; Tajahmadi, S.; Bahi, A.; Molavi, H.; Rezakazemi, M.; Ko, F.; Aminabhavi, T.M.; Arjmand, M. Ethylenediamine-functionalized Zr-based MOF for efficient removal of heavy metal ions from water. Chemosphere 2021, 264, 128466. [Google Scholar] [CrossRef]
- Ahmadipouya, S.; Mousavi, S.A.; Shokrgozar, A.; Mousavi, D.V. Improving dye removal and antifouling performance of polysulfone nanofiltration membranes by incorporation of UiO-66 metal-organic framework. J. Environ. Chem. Eng. 2022, 10, 107535. [Google Scholar] [CrossRef]
- Jiang, L.; Wang, F.; Du, M.; Xie, C.; Xie, X.; Zhang, H.; Meng, X.; Li, A.; Deng, T. Encapsulation of catechin into nano-cyclodextrin-metal-organic frameworks: Preparation, characterization, and evaluation of storage stability and bioavailability. Food Chem. 2022, 394, 133553. [Google Scholar] [CrossRef]
- Jiang, L.; Liu, F.; Wang, F.; Zhang, H.; Kang, M. Development and characterization of zein-based active packaging films containing catechin loaded β-cyclodextrin metal-organic frameworks. Food Packag. Shelf Life 2022, 31, 100810. [Google Scholar] [CrossRef]
- Li, Y.; Zhou, K.; He, M.; Yao, J. Synthesis of ZIF-8 and ZIF-67 using mixed-base and their dye adsorption. Microporous Mesoporous Mater. 2016, 234, 287–292. [Google Scholar] [CrossRef]
- Han, Y.; Yang, C.; Zhou, Y.; Han, D.; Yan, H. Ionic liquid-hybrid molecularly imprinted material-filter solid-phase extraction coupled with HPLC for determination of 6-benzyladenine and 4-chlorophenoxyacetic acid in bean sprouts. J. Agric. Food Chem. 2017, 65, 1750–1757. [Google Scholar] [CrossRef]
- Yang, F.; Feng, P. Densities and viscosities of ionic liquid with organic solvents. Appl. Sci. 2020, 10, 8342. [Google Scholar] [CrossRef]
- Tian, M.; Fang, L.; Yan, X.; Xiao, W.; Row, K.H. Determination of heavy metal ions and organic pollutants in water samples using ionic liquids and ionic liquid-modified sorbents. J. Anal. Methods Chem. 2019, 2019, 1948965. [Google Scholar] [CrossRef] [PubMed]
- Chen, P.; Li, X.; Yan, X.; Tian, M. Solid-phase extraction of aristolochic acid I from natural plant using dual ionic liquid-immobilized ZIF-67 as sorbent. Separations 2021, 8, 22. [Google Scholar] [CrossRef]
- Hu, Y.; Wang, C.; Zhao, P.; Zhang, L.; Fei, J.; Xie, Y. A novel catechin electrochemical sensor based on a two-dimensional MOFs material derivative Zn doped carbon nanosheets and multi-walled carbon nanotubes composite film. Talanta 2022, 246, 123520. [Google Scholar] [CrossRef] [PubMed]
- Fang, L.; Tian, M.; Yan, X.; Xiao, W.; Row, K.H. Dual ionic liquid-immobilized silicas for multi-phase extraction of aristolochic acid from plants and herbal medicines. J. Chromatogr. A 2019, 1592, 31–37. [Google Scholar] [CrossRef] [PubMed]
- Schoenecker, P.M.; Carson, C.G.; Jasuja, H.; Flemming, C.J.J.; Walton, K.S. Effect of water adsorption on retention of structure and surface area of metal-organic frameworks. Ind. Eng. Chem. Res. 2012, 51, 6513–6519. [Google Scholar] [CrossRef]
- Ahmadijokani, F.; Molavi, H.; Rezakazemi, M.; Tajahmadi, S.; Bahi, A.; Ko, F.; Aminabhavi, T.M.; Li, J.; Arjmand, M. UiO-66 metal-organic frameworks in water treatment: A critical review. Prog. Mater. Sci. 2022, 125, 100904. [Google Scholar] [CrossRef]
- Ahmadijokani, F.; Mohammadkhani, R.; Ahmadipouya, S.; Shokrgozar, A.; Rezakazem, M.; Molavi, H.; Aminabhavi, T.M.; Arjmand, M. Superior chemical stability of UiO-66 metal-organic frameworks (MOFs) for selective dye adsorption. Chem. Eng. J. 2020, 399, 125346. [Google Scholar] [CrossRef]
- Molavi, H.; Hakimian, A.; Shojaei, A.; Raeiszadeh, M. Selective dye adsorption by highly water stable metal-organic framework: Long term stability analysis in aqueous media. Appl. Surf. Sci. 2018, 445, 424–436. [Google Scholar] [CrossRef]
- Yasuda, M.; Matsuda, C.; Ohshiro, A.; Inouye, K.; Tabata, M. Effects of metal ions (Cu2+, Fe2+ and Fe3+) on HPLC analysis of catechins. Food Chem. 2012, 133, 518–525. [Google Scholar] [CrossRef]
- Pei, D.; Wu, X.; Liu, Y.; Huo, T.; Di, D.; Guo, M.; Zhao, L.; Wang, B. Different ionic liquid modified hypercrosslinked polystyrene resin for purification of catechins from aqueous solution. Colloids Surf. A 2016, 509, 158–165. [Google Scholar] [CrossRef]
- El-Hady, D.A.; Albishri, H.M. Alkyl imidazolium ionic liquid based sweeping-micellar electrokinetic chromatography for simultaneous determination of seven tea catechins in human plasma. J. Chromatogr. B 2014, 969, 224–229. [Google Scholar] [CrossRef] [PubMed]
(+)-Catechin in Cocoa Shell Waste (mg/g) | Spiked (mg/g) | Found (mg/g) | Relative Recovery (%) | RSD (%) | LOD | LQD | |
---|---|---|---|---|---|---|---|
Intra-Day | Inter-Day | ||||||
0.46 | 0.35 | 0.79 | 97.5 | 1.3 | 2.6 | 0.006 mg/L | 0.01 mg/L |
0.45 | 0.91 | 100.2 | 1.5 | 3.2 | |||
0.55 | 1.00 | 99.3 | 1.7 | 2.9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, X.; Qiao, R.; Jiu, X.; Tian, M. Solid Phase Extraction of (+)-Catechin from Cocoa Shell Waste Using Dual Ionic Liquid@ZIF8 Covered Silica. Separations 2022, 9, 441. https://doi.org/10.3390/separations9120441
Li X, Qiao R, Jiu X, Tian M. Solid Phase Extraction of (+)-Catechin from Cocoa Shell Waste Using Dual Ionic Liquid@ZIF8 Covered Silica. Separations. 2022; 9(12):441. https://doi.org/10.3390/separations9120441
Chicago/Turabian StyleLi, Xiaoman, Ruobing Qiao, Xuyang Jiu, and Minglei Tian. 2022. "Solid Phase Extraction of (+)-Catechin from Cocoa Shell Waste Using Dual Ionic Liquid@ZIF8 Covered Silica" Separations 9, no. 12: 441. https://doi.org/10.3390/separations9120441
APA StyleLi, X., Qiao, R., Jiu, X., & Tian, M. (2022). Solid Phase Extraction of (+)-Catechin from Cocoa Shell Waste Using Dual Ionic Liquid@ZIF8 Covered Silica. Separations, 9(12), 441. https://doi.org/10.3390/separations9120441