Solid Dispersant-Based Dispersive Liquid–Liquid Microextraction for Determining Triazine Herbicides in Environmental Water Samples
Abstract
1. Introduction
2. Materials and Methods
2.1. Reagents and Materials
2.2. Extraction Processes
2.3. Optimization of Extraction Variables
2.4. HPLC–UV Detection
2.5. Enrichment Factor (EF) and Extraction Recovery (ER) Calculation
3. Results and Discussion
3.1. Optimization of Extraction Variables
3.1.1. Monoterpenoid Type
3.1.2. Monoterpenoid Volume
3.1.3. Pop Rocks Candy Amount
3.1.4. Sample Temperature
3.1.5. Sample Volume
3.1.6. Sodium Chloride Amount
3.1.7. pH Value
3.2. Method Assessment
3.3. Analysis of Triazine Herbicides
3.4. Molecular Docking
3.5. Comparison of the SD–DLLME–HPLC–UV Method with Reported Approaches
3.6. Greenness Evaluation
4. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fan, S.; Ren, X.; Shi, G.; Zhao, L.; Ma, J.; Li, Q.; Wen, D.; Zhang, Y. Determination of 28 Food Safety Risk Factors in Novel Foods by Ultra-high-performance Liquid Chromatography-quadrupole/Orbitrap High-resolution Mass Spectrometry. Food Qual. Saf. 2024, 9, fyae049. [Google Scholar] [CrossRef]
- Ahmad, S.; Chandrasekaran, M.; Ahmad, H.W. Investigation of the Persistence, Toxicological Effects, and Ecological Issues of S-Triazine Herbicides and Their Biodegradation Using Emerging Technologies: A Review. Microorganisms 2023, 11, 2558. [Google Scholar] [CrossRef]
- Fan, C.; Zhang, R.; Jin, M. Materials Synthesized in Deep Eutectic Solvents for the Detection of Food Contaminants. Food Qual. Saf. 2025, 9, fyaf006. [Google Scholar] [CrossRef]
- Wang, Z.; Sun, X.; Ru, S.; Wang, J.; Xiong, J.; Yang, L.; Hao, L.; Zhang, J.; Zhang, X. Effects of Co-exposure of the Triazine Herbicides Atrazine, Prometryn and Terbutryn on Phaeodactylum Tricornutum Photosynthesis and Nutritional Value. Sci. Total Environ. 2022, 807, 150609. [Google Scholar] [CrossRef] [PubMed]
- Kokosa, J.M. Principles for Developing Greener Liquid-Phase Microextraction Methods. TrAC Trends Anal. Chem. 2023, 167, 117256. [Google Scholar] [CrossRef]
- Notardonato, I.; Avino, P. Dispersive Liquid–Liquid Micro Extraction: An Analytical Technique Undergoing Continuous Evolution and Development—A Review of the Last 5 Years. Separations 2024, 11, 203. [Google Scholar] [CrossRef]
- de Azevedo, E.d.M.; Maciel, P.K.; Luckow, A.C.B.; Malinowski, M.H.d.M.; Soares, B.M. Recent Developments in Reverse Phase-Dispersive Liquid–Liquid Microextraction: A Review. Anal. Methods 2025, 17, 6282–6296. [Google Scholar] [CrossRef]
- Mansour, F.R.; Danielson, N.D. Solvent-terminated Dispersive Liquid-Liquid Microextraction: A Tutorial. Anal. Chim. Acta 2018, 1016, 1–11. [Google Scholar] [CrossRef]
- Jing, X.; Xue, H.; Huang, X.; Li, H.; Wang, X.; Jia, L. An Effervescence-assisted Centrifuge-less Dispersive Liquid-Phase Microextraction Based on Solidification of Switchable Hydrophilicity Solvents for Detection of Alkylphenols in Drinks. Chin. J. Anal. Chem. 2021, 49, 21065–21071. [Google Scholar] [CrossRef]
- Sun, Y.; Tao, R.; Ju, Y.; Duan, J.; Xie, Q.; Fan, B.; Wang, F. Natural active products in fruit postharvest preservation: A review. Food Front. 2024, 5, 2043–2083. [Google Scholar] [CrossRef]
- Martins, M.A.R.; Crespo, E.A.; Pontes, P.V.A.; Silva, L.P.; Bülow, M.; Maximo, G.J.; Batista, E.A.C.; Held, C.; Pinho, S.P.; Coutinho, J.A.P. Tunable Hydrophobic Eutectic Solvents Based on Terpenes and Monocarboxylic Acids. ACS Sustain. Chem. Eng. 2018, 6, 8836–8846. [Google Scholar] [CrossRef]
- Omar, K.A.; Sadeghi, R. Database of Deep Eutectic Solvents and Their Physical Properties: A Review. J. Mol. Liq. 2023, 384, 121899. [Google Scholar] [CrossRef]
- Hanafi, M.A.; Anwar, F.; Saari, N. Valorization of Biomass for Food Protein via Deep Eutectic Solvent Extraction: Understanding the Extraction Mechanism and Impact on Protein Structure and Properties. Food Front. 2024, 5, 1265–1301. [Google Scholar] [CrossRef]
- Musarurwa, H.; Tavengwa, N.T. Deep Eutectic Solvent-based Dispersive Liquid-Liquid Micro-extraction of Pesticides in Food Samples. Food Chem. 2021, 342, 127943. [Google Scholar] [CrossRef]
- Jing, X.; Huang, X.; Wang, H.; Xue, H.; Wu, B.; Wang, X.; Jia, L. Popping Candy-assisted Dispersive Liquid–Liquid Microextraction for Enantioselective Determination of Prothioconazole and its Chiral Metabolite in Water, Beer, Baijiu, and Vinegar Samples by HPLC. Food Chem. 2021, 348, 129147. [Google Scholar] [CrossRef] [PubMed]
- Jaroensan, J.; Khiaophong, W.; Kachangoon, R.; Vichapong, J. Efficient Analyses of Triazole Fungicides in Water, Honey and Soy Milk Samples by Popping Candy-generated CO2 and Sugaring-out-assisted Supramolecular Solvent-based Microextraction Prior to HPLC Determinations. RSC Adv. 2023, 13, 4195–4201. [Google Scholar] [CrossRef]
- El-Deen, A.K.; Elmansi, H.; Belal, F.; Magdy, G. Recent Advances in Dispersion Strategies for Dispersive Liquid–Liquid Microextraction from Green Chemistry Perspectives. Microchem. J. 2023, 191, 108807. [Google Scholar] [CrossRef]
- Sadeghi, R.; Coutinho, J.A.P. Green Aqueous Two-Phase Systems Formed by Sugaring-Out Effect in Aqueous Polymer/Ionic Liquid Solutions: A Review. ACS Sustain. Chem. Eng. 2024, 12, 15838–15874. [Google Scholar] [CrossRef]
- Liu, H.; Li, Y.; Xiang, Y.; Cao, H.; Li, Y. Simultaneous Determination of Trace Matrine and Oxymatrine Pesticide Residues in Tea by Magnetic Solid-Phase Extraction Coupled with Liquid Chromatography-Tandem Mass Spectrometry. J. Anal. Test. 2024, 8, 245–250. [Google Scholar] [CrossRef]
- Hammood, N.H.; Kadhim, F.A.; Al-Gufaili, M.K.; Azooz, E.A.; Snigur, D. A Comparative Review of Solidified Floating Organic Drop Microextraction Methods for Metal Separation: Recent Developments, Enhanced Co-factors, Challenges, and Environmental Assessment. Crit. Rev. Anal. Chem. 2025, 55, 1509–1522. [Google Scholar] [CrossRef]
- Jia, L.; Huang, X.; Zhao, W.; Wang, H.; Jing, X. An Effervescence Tablet-Assisted Microextraction based on the Solidification of Deep Eutectic Solvents for the Determination of Strobilurin Fungicides in Water, Juice, Wine, and Vinegar Samples by HPLC. Food Chem. 2020, 317, 126424. [Google Scholar] [CrossRef]
- Jing, X.; Yang, L.; Zhao, W.; Wang, F.; Chen, Z.; Ma, L.; Jia, L.; Wang, X. Evaporation-Assisted Dispersive Liquid–Liquid Microextraction based on the Solidification of Floating Organic Droplets for the Determination of Triazole Fungicides in Water Samples by High-Performance Liquid Chromatography. J. Chromatogr. A 2019, 1597, 46–53. [Google Scholar] [CrossRef]
- Yang, S.; Zhang, M.; Wang, S.; He, Y.; Ren, S.; Zhang, Y.; Gao, P. Research Progress on Single-Droplet Microextraction Technology. Anal. Chem. 2025, 97, 21763–21778. [Google Scholar] [CrossRef] [PubMed]
- Cherniakova, M.; Varchenko, V.; Belikov, K. Menthol-Based (Deep) Eutectic Solvents: A Review on Properties and Application in Extraction. Chem. Rec. 2024, 24, e202300267. [Google Scholar] [CrossRef]
- Fazaieli, F.; Mogaddam, M.R.A.; Farajzadeh, M.A.; Feriduni, B.; Mohebbi, A. Development of Organic Solvents-free Mode of Solidification of Floating Organic Droplet–based Dispersive Liquid–Liquid Microextraction for the Extraction of Polycyclic Aromatic Hydrocarbons from Honey Samples before Their Determination by Gas Chromatography–Mass Spectrometry. J. Sep. Sci. 2020, 43, 2393–2400. [Google Scholar] [CrossRef]
- Amaral, L.R.; Gama, M.R.; Pizzolato, T.M. Ionic Liquids in Dispersive Liquid–Liquid Microextraction for Environmental Aqueous Samples. Microchem. J. 2025, 208, 112254. [Google Scholar] [CrossRef]
- Petrarca, M.H.; Cunha, S.C.; Fernandes, J.O. Determination of Pesticide Residues in Soybeans Using QuEChERS Followed by Deep Eutectic Solvent-based DLLME Preconcentration Prior to Gas Chromatography-Mass Spectrometry Analysis. J. Chromatogr. A 2024, 1727, 464999. [Google Scholar] [CrossRef] [PubMed]
- Manousi, N.; Kabir, A.; Zachariadis, G.A. Recent Advances in the Extraction of Triazine Herbicides from Water Samples. J. Sep. Sci. 2022, 45, 113–133. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.; Zheng, X.; Guo, X.; Wu, J.; Jing, X. Determination of chiral prothioconazole and its chiral metabolite in water, juice, tea, and vinegar using emulsive liquid–liquid microextraction combined with ultra-high performance liquid chromatography. Food Chem. 2024, 440, 138314. [Google Scholar] [CrossRef]
- Zheng, X.; Guo, X.; Zhang, Y.; Han, J.; Jing, X.; Wu, J. Determination of Triazine Herbicides from Water, Tea, and Juice Samples using Magnetic Dispersive Micro-solid Phase Extraction and Magnetic Dispersive Liquid-Liquid Microextraction with HPLC. Food Chem. 2025, 468, 142430. [Google Scholar] [CrossRef]
- Wu, B.; Niu, Y.; Bi, X.; Wang, X.; Jia, L.; Jing, X. Rapid Analysis of Triazine Herbicides in Fruit Juices Using Evaporation-Assisted Dispersive Liquid–Liquid Microextraction with Solidification of Floating Organic Droplets and HPLC-DAD. Anal. Methods 2022, 14, 1329–1334. [Google Scholar] [CrossRef] [PubMed]
- Golmohammadpour, M.; Koltappeh, S.A.; Ayazi, Z.; Mohammad-Rezaei, R. Determination of Ametryn Residues in Fruit Juice Samples via Electro-enhanced Solid-Phase Microextraction using NiCo-LDH Coated Fiber and GC Analysis. J. Food Compos. Anal. 2025, 148, 108322. [Google Scholar] [CrossRef]
- Fucci, R.G.; da Silva, T.C.; Felipe, L.P.G.; Cestaro, B.I.; da Silva, B.J.G. Ultrasound-Assisted Solvent-Terminated Dispersive Liquid-Liquid Microextraction for Determination of Atrazine and Simazine in Bovine Milk via GC-MS. Food Anal. Methods 2025, 18, 113–120. [Google Scholar] [CrossRef]
- Shen, L.; Jin, X.; Zhang, Z.; Yi, Y.; Zhang, J.; Li, Z. Extraction of Eugenol from Essential Oils by In Situ Formation of Deep Eutectic Solvents: A Green Recyclable Process. J. Anal. Test. 2024, 8, 63–73. [Google Scholar] [CrossRef]










| Water | Triazine Herbicide | Calibration Curve (mg L−1) | R2 | LOD (mg L−1) | LOQ (mg L−1) | Intra-Day RSD (%) | Inter-Day RSD (%) |
|---|---|---|---|---|---|---|---|
| River water | Simazine | y = 1169.5x + 5.9 | 0.999 | 0.002 | 0.008 | 4.3 | 5.1 |
| Atrazine | y = 1261.5x + 4.2 | 0.999 | 0.002 | 0.008 | 2.3 | 4.2 | |
| Terbuthylazine | y = 934.2x + 6.2 | 0.998 | 0.002 | 0.008 | 2.8 | 6.1 | |
| Lake water | Simazine | y = 1183.1x + 4.7 | 0.998 | 0.002 | 0.008 | 4.4 | 4.5 |
| Atrazine | y = 1289.2x + 5.4 | 0.999 | 0.002 | 0.008 | 2.8 | 5.0 | |
| Terbuthylazine | y = 957.8x + 4.0 | 0.999 | 0.002 | 0.008 | 2.6 | 3.1 | |
| Well water | Simazine | y = 1196.9x + 0.4 | 0.999 | 0.002 | 0.008 | 4.9 | 6.8 |
| Atrazine | y = 1246.7x + 3.6 | 0.998 | 0.002 | 0.008 | 2.0 | 7.4 | |
| Terbuthylazine | y = 995.3x + 2.7 | 0.999 | 0.002 | 0.008 | 5.6 | 5.9 |
| Water | Spiked Concentration (mg L−1) | Simazine | Atrazine | Terbuthylazine | |||
|---|---|---|---|---|---|---|---|
| Recovery (%) | RSD (%) (n = 3) | Recovery (%) | RSD (%) (n = 3) | Recovery (%) | RSD (%) (n = 3) | ||
| River water | 0 | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
| 0.008 | 87.9 | 5.9 | 88.7 | 2.2 | 95.3 | 2.7 | |
| 0.08 | 93.1 | 5.1 | 95.0 | 4.2 | 87.4 | 0.9 | |
| 0.8 | 91.0 | 4.1 | 97.9 | 6.6 | 92.3 | 3.5 | |
| Lake water | 0 | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
| 0.008 | 92.7 | 2.4 | 91.2 | 5.4 | 96.3 | 2.9 | |
| 0.08 | 90.3 | 0.9 | 98.0 | 4.2 | 91.8 | 4.3 | |
| 0.8 | 94.8 | 3.1 | 95.7 | 5.6 | 93.3 | 3.4 | |
| Well water | 0 | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD |
| 0.008 | 89.0 | 2.8 | 90.9 | 3.4 | 86.4 | 3.3 | |
| 0.08 | 96.7 | 1.4 | 94.2 | 3.3 | 92.8 | 5.3 | |
| 0.8 | 96.4 | 3.0 | 95.2 | 4.0 | 90.9 | 4.7 | |
| Solvents (μL) | Reagents (mg) | Instrumentation | LOQs (µg L−1) | Recoveries (%) | Ref. |
|---|---|---|---|---|---|
| Methanol (800) DES (200) | Biochar (20) | HPLC–DAD | 1 | 80.1–90.6 | [30] |
| Dodecanol (250) Dichloromethane (150) Methanol (100) | Calcium oxide (1250) | HPLC–DAD | 7–11 | 78.5–96.4 | [31] |
| Dichloromethane (510) Phosphate-Buffered Saline | Coated graphite pencil fiber | GC–FID | 3.5–7 | 89.7–100.0 | [32] |
| Octanol (30) Acetonitrile (3550) | Sodium chloride (800) | GC–MS | 5–10 | 95.2–113.2 | [33] |
| Menthol (200) | Pop rocks candy (300) | HPLC–UV | 8 | 86.4–98.0 | This study |
| Category | Evaluation | |
|---|---|---|
| Sample preparation | Collection (1) | Off-line |
| Preservation (2) | None | |
| Transport (3) | Required | |
| Storage (4) | Under normal condition | |
| Type of method: direct or indirect (5) | Simple procedures | |
| Scale of extraction (6) | Nano-extraction | |
| Solvents/reagents used (7) | Green solvents/reagents used | |
| Additional treatments (8) | Simple treatments (Preheated) | |
| Reagent and solvents | Amount (9) | <10 mL (<10 g) |
| Health hazard (10) | Slightly toxic, slightly irritant. | |
| Safety hazard (11) | No special hazards | |
| Instrumentation | Energy (12) | <=0.1 kWh per sample |
| Occupational hazard (13) | Hermetic sealing of the analytical process | |
| Waste (14) | 1–10 mL (<1–10 g) | |
| Waste treatment (15) | No treatment | |
| Criterion | Evaluation Information | Score | |
|---|---|---|---|
| 1 | Select the sampling procedure | Off-line analysis | 0.48 |
| 2 | The amount of the sample | 5 mL | 0.42 |
| 3 | The positioning of the analytical device | Off-line | 0.00 |
| 4 | The sample preparation steps | 3 or fewer | 1.00 |
| 5 | Automation and miniaturization | Automation: manual Miniaturization: none or miniaturized | 0.50 |
| 6 | Derivatization | No | 1.00 |
| 7 | The amount of waste | 5.5 mL | 0.47 |
| 8 | Number of analytes determined in a single run and sample throughput | Number of analytes determined in a single run: 1 Sample throughput: 6 h−1 | 0.38 |
| 9 | Estimate the total power consumption of a single analysis | HPLC, <0.1 kWh per sample | 1.00 |
| 10 | The type of reagents | All reagents are bio-based | 1.00 |
| 11 | Toxic reagents or solvents | No | 1.00 |
| 12 | The threats which are not avoided | - | 1.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Hao, B.; Zhang, N.; Chen, C.; Ji, Y.; Zhao, Z.; Wang, L.; Dong, H. Solid Dispersant-Based Dispersive Liquid–Liquid Microextraction for Determining Triazine Herbicides in Environmental Water Samples. Separations 2026, 13, 42. https://doi.org/10.3390/separations13020042
Hao B, Zhang N, Chen C, Ji Y, Zhao Z, Wang L, Dong H. Solid Dispersant-Based Dispersive Liquid–Liquid Microextraction for Determining Triazine Herbicides in Environmental Water Samples. Separations. 2026; 13(2):42. https://doi.org/10.3390/separations13020042
Chicago/Turabian StyleHao, Bin, Nannan Zhang, Chunli Chen, Yuxi Ji, Zhihui Zhao, Li Wang, and Hongqiang Dong. 2026. "Solid Dispersant-Based Dispersive Liquid–Liquid Microextraction for Determining Triazine Herbicides in Environmental Water Samples" Separations 13, no. 2: 42. https://doi.org/10.3390/separations13020042
APA StyleHao, B., Zhang, N., Chen, C., Ji, Y., Zhao, Z., Wang, L., & Dong, H. (2026). Solid Dispersant-Based Dispersive Liquid–Liquid Microextraction for Determining Triazine Herbicides in Environmental Water Samples. Separations, 13(2), 42. https://doi.org/10.3390/separations13020042
