The Neglected Dimension in Pesticide Residues: Emerging Green and Enantioselective Strategies for the Analysis and Removal of Chiral Pesticides
Abstract
1. Introduction
1.1. Pesticide Residues in Food and Environmental Matrices: Current Status and Regulatory Perspectives
1.2. Multi-Residue Methods and the Pivotal Role of Sample Preparation
1.3. Green Analytical Chemistry and Microextraction
1.4. Scope and Structure of This Review
2. Green Sample Preparation for Enantioselective Analysis of Chiral Pesticides
2.1. Limitations of Conventional Sample Preparation for Chiral Analysis
2.2. Microextraction Techniques Compatible with Enantioselective Analysis
2.3. Green Solvents and Sorbent Materials for Chiral Pesticide Extraction
2.4. Case Studies: From Food to Environmental Samples
3. Advanced Enantioselective Separation and Detection Platforms
3.1. HPLC with New-Generation Chiral Stationary Phases (CSPs)
3.2. Chiral Gas Chromatography (GC): Indispensable for Volatile and Semi-Volatile Chiral Pesticides
3.3. Supercritical Fluid Chromatography (SFC): A Greener Alternative
3.4. Capillary Electrophoresis (CE) and Related Techniques
3.5. Coupling with Tandem MS and High-Resolution MS
4. Emerging Enantioselective Materials for Extraction and Preconcentration
4.1. Chiral Molecularly Imprinted Polymers (MIPs)
4.2. Chiral Metal–Organic Frameworks (MOFs) and Covalent Organic Frameworks (COFs)
4.3. Other Emerging Chiral Sorbent Materials
4.4. Green Aspects and Practical Limitations
5. Enantioselective Removal and Degradation of Chiral Pesticides
5.1. Concept of “Chiral Removal”: Beyond Total Concentration Reduction
5.2. Stereoselective Adsorption and Separation
5.3. Biodegradation and Bioremediation with Enantioselectivity
5.4. Enantioselective Catalytic Degradation (Photocatalysis, Advanced Oxidation, Etc.)
5.5. Critical Assessment: How Far Are We from Practical Application?
6. Integrating Enantioselective Analysis with Risk Assessment and Green Remediation
6.1. Linking Enantiomeric Fraction (EF) Data to Environmental Risk
6.2. Designing Remediation Strategies with Chiral Information
7. Challenges, Knowledge Gaps, and Future Outlook
7.1. From Method Development to Routine Monitoring
7.2. Toward Greener and Higher-Throughput Enantioselective Workflows
7.3. Future Trends
8. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
| MRL | Maximum residue limit |
| EF | Enantiomeric fraction |
| GAC | Green Analytical Chemistry |
| SPME | Solid-phase microextraction |
| SBSE | Stir bar sorptive extraction |
| DLLME | Dispersive liquid–liquid microextraction |
| FPSE | Fabric-phase sorptive extraction |
| GPC | Gel permeation cleanup |
| CSPs | Chiral stationary phases |
| CD | Cyclodextrin |
| LPME | Liquid-phase microextraction |
| EME | Electromembrane extraction |
| DES | Deep eutectic solvent |
| NADES | natural DES |
| SFE | Supercritical CO2 |
| SFC | Supercritical fluid chromatography |
| NTS | Nontargeted Screening |
| CE | Capillary electrophoresis |
| CEC | Chiral capillary electrochromatography |
| IMS | Ion mobility spectrometry |
| MIPs | Molecularly imprinted polymers |
| MOFs | Chiral metal–organic framework |
| COFs | covalent organic frameworks |
| PSM | post-synthetic modification |
| CILs | Chiral ionic liquids |
| NOM | Natural organic matter |
| TPs | Transformation products |
| CSTs | Conjugation systems |
| ROS | Reactive Oxygen Species |
| CISS | Chiral-induced spin selectivity |
| LCA | Life cycle assessment |
| CCS | collision cross-section |
| GC | Gas chromatography |
| LDH | Layered double hydroxide |
| MEPS | Microextraction by packed sorbent |
| MSPE | Magnetic solid-phase extraction |
| PF | Processing factor |
| TF-SPME | Thin-film solid-phase microextraction |
References
- Wahab, S.; Muzammil, K.; Nasir, N.; Khan, M.S.; Ahmad, M.F.; Khalid, M.; Ahmad, W.; Dawria, A.; Reddy, L.K.V.; Busayli, A.M. Advancement and New Trends in Analysis of Pesticide Residues in Food: A Comprehensive Review. Plants 2022, 11, 1106. [Google Scholar] [CrossRef] [PubMed]
- Weisner, O.; Frische, T.; Liebmann, L.; Reemtsma, T.; Ross-Nickoll, M.; Schäfer, R.B.; Schäffer, A.; Scholz-Starke, B.; Vormeier, P.; Knillmann, S.; et al. Risk from pesticide mixtures—The gap between risk assessment and reality. Sci. Total Environ. 2021, 796, 149017. [Google Scholar] [CrossRef]
- Wang, F.; Li, X.Y.; Jiang, S.X.; Han, J.J.; Wu, J.X.; Yan, M.L.; Yao, Z.L. Enantioselective Behaviors of Chiral Pesticides and Enantiomeric Signatures in Foods and the Environment. J. Agric. Food Chem. 2023, 71, 12372–12389. [Google Scholar] [CrossRef]
- Chen, Z.L.; Zhao, L.L.; Kang, S.S.; Liew, R.K.; Lichtfouse, E. Toxicity and environmental fate of the less toxic chiral neonicotinoid pesticides: A review. Environ. Chem. Lett. 2025, 23, 733–750. [Google Scholar] [CrossRef]
- Vashistha, V.K.; Sethi, S.; Mittal, A.; Das, D.K.; Pullabhotla, R.V.S.R.; Bala, R.; Yadav, S. Stereoselective analysis of chiral pesticides: A review. Environ. Monit. Assess. 2024, 196, 153. [Google Scholar] [CrossRef] [PubMed]
- Li, L.S.; Sun, X.F.; Lv, B.; Xu, J.Y.; Zhang, J.; Gao, Y.Y.; Gao, B.B.; Shi, H.Y.; Wang, M.H. Stereoselective environmental fate of fosthiazate in soil and water-sediment microcosms. Environ. Res. 2021, 194, 110696. [Google Scholar] [CrossRef]
- Wang, S.M.; Yang, Y.; Li, D.Z.; Xie, L.F.; Wu, Y.B.; Li, G.L. Current Research Status, Opportunities, and Future Challenges of Nine Representative Persistent Herbicides. J. Agric. Food Chem. 2024, 72, 21959–21972. [Google Scholar] [CrossRef]
- Hernández-Mesa, M.; Moreno-González, D. Current Role of Mass Spectrometry in the Determination of Pesticide Residues in Food. Separations 2022, 9, 148. [Google Scholar] [CrossRef]
- Williams, M.L.; Olomukoro, A.A.; Emmons, R.V.; Goodage, N.H.; Gionfriddo, E. Matrix effects demystified: Strategies for resolving challenges in analytical separations of complex samples. J. Sep. Sci. 2023, 46, e2300571. [Google Scholar] [CrossRef] [PubMed]
- López-Cabeza, R.; Francioso, A. Chiral Pesticides with Asymmetric Sulfur: Extraction, Separation, and Determination in Different Environmental Matrices. Separations 2022, 9, 29. [Google Scholar] [CrossRef]
- Li, L.; Zhou, R.D.; Xie, H.Y.; Li, G.; Xu, Z.G.; Liu, M.J.; Gao, W.T. Chiral Separation and Determination of Multiple Organophosphorus Pesticide Enantiomers in Soil Based on Cellulose-Based Chiral Column by LC-MS/MS. J. Sep. Sci. 2025, 48, e70100. [Google Scholar] [CrossRef]
- Martínez-Pérez-Cejuela, H.; Gionfriddo, E. Evolution of Green Sample Preparation: Fostering a Sustainable Tomorrow in Analytical Sciences. Anal. Chem. 2024, 96, 7840–7863. [Google Scholar] [CrossRef]
- Sousa, J.D.; do Nascimento, H.O.; Gomes, H.D.; do Nascimento, R.F. Pesticide residues in groundwater and surface water: Recent advances in solid-phase extraction and solid-phase microextraction sample preparation methods for multiclass analysis by gas chromatography-mass spectrometry. Microchem. J. 2021, 168, 106359. [Google Scholar] [CrossRef]
- Razic, S.; Arsenijevic, J.; Mracevic, S.D.; Musovic, J.; Trtic-Petrovic, T. Greener chemistry in analytical sciences: From green solvents to applications in complex matrices. Curr. Chall. Future Perspect. Crit. Rev. Anal. 2023, 148, 3130–3152. [Google Scholar] [CrossRef]
- D’Ovidio, C.; Bonelli, M.; Rosato, E.; Tartaglia, A.; Ulusoy, H.I.; Samanidou, V.; Furton, K.G.; Kabir, A.; Ali, I.; Savini, F.; et al. Novel Applications of Microextraction Techniques Focused on Biological and Forensic Analyses. Separations 2022, 9, 18. [Google Scholar] [CrossRef]
- Han, J.L.; Kiss, L.; Mei, H.B.; Remete, A.M.; Ponikvar-Svet, M.; Sedgwick, D.M.; Roman, R.; Fustero, S.; Moriwaki, H.; Soloshonok, V.A. Chemical Aspects of Human and Environmental Overload with Fluorine. Chem. Rev. 2021, 121, 4678–4742. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, A.R.L.; Maia, A.S.; Ribeiro, C.; Tiritan, M.E. Chiral analysis with mass spectrometry detection in food and environmental chemistry. In Mass Spectrometry in Food and Environmental Chemistry; Springer: Berlin/Heidelberg, Germany, 2022; pp. 249–273. [Google Scholar]
- Vallamkonda, B.; Sethi, S.; Satti, P.; Das, D.K.; Yadav, S.; Vashistha, V.K. Enantiomeric Analysis of Chiral Drugs Using Mass Spectrometric Methods: A Comprehensive Review. Chirality 2024, 36, e23705. [Google Scholar] [CrossRef] [PubMed]
- Câmara, J.S.; Perestrelo, R.; Berenguer, C.V.; Andrade, C.F.P.; Gomes, T.M.; Olayanju, B.; Kabir, A.; Rocha, C.M.R.; Teixeira, J.A.; Pereira, J.A.M. Green Extraction Techniques as Advanced Sample Preparation Approaches in Biological, Food, and Environmental Matrices: A Review. Molecules 2022, 27, 2953. [Google Scholar] [CrossRef]
- Bocelli, M.D.; Medina, D.A.V.; Lanças, F.M.; dos Santos-Neto, A.J. Automated microextraction by packed sorbent of endocrine disruptors in wastewater using a high-throughput robotic platform followed by liquid chromatography-tandem mass spectrometry. Anal. Bioanal. Chem. 2023, 415, 6165–6176. [Google Scholar] [CrossRef]
- Eggermont, D.; Spadafora, N.D.; Aspromonte, J.; Pellegrino, R.; Purcaro, G. Exploring different high-capacity tools and extraction modes to characterize the aroma of brewed coffee. Anal. Bioanal. Chem. 2023, 415, 4501–4510. [Google Scholar] [CrossRef]
- García-Cansino, L.; García, M.Á.; Marina, M.L.; Câmara, J.S.; Pereira, J.A. Simultaneous microextraction of pesticides from wastewater using optimized μSPEed and μQuEChERS techniques for food contamination analysis. Heliyon 2023, 9, e16742. [Google Scholar] [CrossRef]
- Bayatloo, M.R.; Tabani, H.; Nojavan, S.; Alexovic, M.; Ozkan, S.A. Liquid-Phase Microextraction Approaches for Preconcentration and Analysis of Chiral Compounds: A Review on Current Advances. Crit. Rev. Anal. Chem. 2023, 53, 1623–1637. [Google Scholar] [CrossRef]
- Carbonell-Rozas, L.; Canales, R.; Lara, F.J.; García-Campaña, A.M.; Silva, M.F. A natural deep eutectic solvent as a novel dispersive solvent in dispersive liquid-liquid microextraction based on solidification of floating organic droplet for the determination of pesticide residues. Anal. Bioanal. Chem. 2021, 413, 6413–6424. [Google Scholar] [CrossRef]
- Lucci, E.; Falcinelli, G.; Antonelli, L.; Dal Bosco, C.; Felli, N.; De Cesaris, M.G.; Gentili, A. Hydrophobic deep eutectic solvent-ferrofluid microextraction followed by liquid chromatography-mass spectrometry for the enantioselective determination of chiral agrochemicals in natural waters. Anal. Bioanal. Chem. 2025, 417, 1341–1357. [Google Scholar] [CrossRef]
- Yousefi, M.; Rahimi-Nasrabadi, M.; Mirsadeghi, S.; Pourmortazavi, S.M. Supercritical Fluid Extraction of Pesticides and Insecticides from Food Samples and Plant Materials. Crit. Rev. Anal. Chem. 2021, 51, 482–501. [Google Scholar] [CrossRef] [PubMed]
- Sharma, P.; Sharma, M.; Laddha, H.; Agarwal, M.; Gupta, R. Effective Adsorption–Desorption Kinetic Study and Statistical Modeling of Bentazon Herbicide Mediated by a Biodegradable β-Cyclodextrin Cross-Linked Poly(vinyl alcohol)–Chitosan Hydrogel. ACS Agric. Sci. Technol. 2023, 3, 1068–1080. [Google Scholar] [CrossRef]
- Madugula, A.C.S.; Haselbach, L.; Jeffryes, C.; Henry, J.; Benson, T.J. Environmental life cycle assessment methods applied to amine-ionic liquid hybrid CO absorbents. Sustain. Prod. Consum. 2025, 54, 423–440. [Google Scholar] [CrossRef]
- Zhang, Z.H.; Zhang, J.Y.; Li, M.F.; Jin, X.Z.; Yao, L.P.; Wang, W.Y.; Liu, J.S.; Li, Z.G. Combination of switchable hydrophilic solvent liquid-liquid microextraction with QuEChERS for trace determination of triazole fungicide pesticides by GC-MS. Anal. Sci. 2023, 39, 1151–1161. [Google Scholar] [CrossRef]
- Jaganmohanrao, L. Role of deep eutectic solvents as alternate solvents in the microextraction and estimation of pesticide, insecticide, fungicide residues and metal contaminants in tea (Camellia sinensis). Microchem. J. 2025, 208, 112515. [Google Scholar] [CrossRef]
- Wu, B.Q.; Guo, Z.Y.; Li, X.T.; Huang, X.; Teng, C.; Chen, Z.J.; Jing, X.; Zhao, W.T. Analysis of pyrethroids in cereals by HPLC with a deep eutectic solvent-based dispersive liquid-liquid microextraction with solidification of floating organic droplets. Anal. Methods 2021, 13, 636–641. [Google Scholar] [CrossRef]
- Khademi, S.M.S.; Salemi, A.; Jochmann, M.; Joksimoski, S.; Telgheder, U. Development and comparison of direct immersion solid phase micro extraction Arrow-GC-MS for the determination of selected pesticides in water. Microchem. J. 2021, 164, 106006. [Google Scholar] [CrossRef]
- Aghaziarati, M.; Sereshti, H. A facile in-situ ultrasonic-assisted synthesis of terephthalic acid-layered double hydroxide/bacterial cellulose: Application for eco-friendly analysis of multi-residue pesticides in vineyard soils. Microchem. J. 2024, 202, 110761. [Google Scholar] [CrossRef]
- Assress, H.A.; Nyoni, H.; Mamba, B.B.; Msagati, T.A.M. Target quantification of azole antifungals and retrospective screening of other emerging pollutants in wastewater effluent using UHPLC-QTOF-MS. Environ. Pollut. 2019, 253, 655–666. [Google Scholar] [CrossRef] [PubMed]
- Xiao, O.; Li, M.; Chen, J.; Dai, X.; Kong, Z. A Comprehensive Analysis of the Fates of Pesticide Residues in Edible Agricultural Products during Food Processing. J. Agric. Food Chem. 2025, 73, 18525–18544. [Google Scholar] [CrossRef] [PubMed]
- Zhao, S.; Li, M.; Chen, J.; Tian, J.; Dai, X.; Kong, Z. Potential risks of tebuconazole during wine fermentation at the enantiomer level based on multiomics analysis. J. Agric. Food Chem. 2023, 71, 12129–12139. [Google Scholar] [CrossRef]
- Tan, Y.; Wen, N.; Lu, Z.; Wei, W.; Shi, H.; Wang, M. Enantioselective Degradation and Processing Factors of Seven Chiral Pesticides During the Processing of Wine and Rice Wine. Chirality 2025, 37, e70018. [Google Scholar] [CrossRef]
- Zhang, J.H.; Xie, S.M.; Yuan, L.M. Recent progress in the development of chiral stationary phases for high-performance liquid chromatography. J. Sep. Sci. 2022, 45, 51–77. [Google Scholar] [CrossRef]
- Wang, X.; Zhu, Y.; Zhou, L.; Zhao, P.; Xiong, Z.; Yu, J. Magnetic solid-phase extraction based on zirconium-based metal-organic frameworks for simultaneous enantiomeric determination of eight chiral pesticides in water and fruit juices. Food Chem. 2022, 370, 131056. [Google Scholar] [CrossRef] [PubMed]
- Ismail, O.H.; Catani, M.; Mazzoccanti, G.; Felletti, S.; Manetto, S.; De Luca, C.; Ye, M.C.; Cavazzini, A.; Gasparrini, F. Boosting the enantioresolution of zwitterionic-teicoplanin chiral stationary phases by moving to wide-pore core-shell particles. J. Chromatogr. A 2022, 1676, 463190. [Google Scholar] [CrossRef]
- Champion, W., Jr.; Watts, W.; Umstead, W.J. The separation of several organophosphate pesticides on immobilized polysaccharide chiral stationary phases. Chirality 2022, 34, 1078–1093. [Google Scholar] [CrossRef]
- Merino, M.E.D.; Acquaviva, A.; Padró, J.M.; Castells, C.B. Comprehensive two-dimensional liquid chromatographic method (Chiral x Achiral) for the simultaneous resolution of pesticides. J. Chromatogr. A 2022, 1673, 463126. [Google Scholar] [CrossRef]
- Carrão, D.B.; Perovani, I.S.; de Albuquerque, N.C.P.; de Oliveira, A.R.M. Enantioseparation of pesticides: A critical review. TrAC Trends Anal. Chem. 2020, 122, 115719. [Google Scholar] [CrossRef]
- Zhang, W.; Di, S.; Yan, J. Chiral pesticides levels in peri-urban area near Yangtze River and their correlations with water quality and microbial communities. Environ. Geochem. Health 2023, 45, 3817–3831. [Google Scholar] [CrossRef]
- Goh, D.; Razis, A.F.A.; Yusof, N.A.; Mazlan, N.; Nordin, N.; Yu, C.Y. A review of emerging techniques for pyrethroid residue detection in agricultural commodities. Heliyon 2025, 11, e41154. [Google Scholar] [CrossRef]
- Xie, T.T.; Huang, J.L.; Wu, J.Q.; Zhang, Q.L. Evaluation of supercritical fluid chromatography coupled to tandem mass spectrometry for the analysis of pesticide residues in grain. J. Sep. Sci. 2024, 47, e2300623. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Gao, B.; Li, Y.; Shi, C.; Li, H.; You, Z.; Fang, M.; Wang, C.; Deng, X.; Shao, B. Recent Advances in Nontargeted Screening of Chemical Hazards in Foodstuffs. Annu. Rev. Food Sci. Technol. 2025, 16, 195–218. [Google Scholar] [CrossRef]
- Hunyadi, C.; Szemán, J.; Juvancz, Z.; Mörtl, M.; Székács, A.; Kaleta, Z. Chiral separation of conazole pesticides using supercritical fluid chromatography. Int. J. Environ. Anal. Chem. 2022, 104, 5012–5022. [Google Scholar] [CrossRef]
- Zhang, W.H.; Jiang, Q.T.; Xiu, F.C.; Bao, W.Q.; Hu, B.Z.; Xu, D.M. Residue analysis and degradation studies of two chiral pyrethroids in cabbage by ultra performance convergence chromatography. Microchem. J. 2025, 212, 113174. [Google Scholar] [CrossRef]
- Cutillas, V.; Ferrer, C.; Fernández-Alba, A.R. Liquid chromatography versus supercritical fluid chromatography coupled to mass spectrometry: A comparative study of performance for multiresidue analysis of pesticides. Anal. Bioanal. Chem. 2021, 413, 5849–5857. [Google Scholar] [CrossRef]
- Schiesser, S.; Chepliaka, H.; Kollback, J.; Quennesson, T.; Czechtizky, W.; Cox, R.J. N-Trifluoromethyl Amines and Azoles: An Underexplored Functional Group in the Medicinal Chemist’s Toolbox. J. Med. Chem. 2020, 63, 13076–13089. [Google Scholar] [CrossRef] [PubMed]
- Cutillas, V.; Ferrer, C.; Martínez-Bueno, M.J.; Fernández-Alba, A.R. Green analytical approaches for contaminants: Sustainable alternatives to conventional chromatographic methods. J. Chromatogr. A 2025, 1750, 465921. [Google Scholar] [CrossRef]
- Ali, I.; Perrucci, M.; Ciriolo, L.; D’Ovidio, C.; de Grazia, U.; Ulusoy, H.I.; Kabir, A.; Savini, F.; Locatelli, M. Applications of electrophoresis for small enantiomeric drugs in real-world samples: Recent trends and future perspectives. Electrophoresis 2024, 45, 55–68. [Google Scholar] [CrossRef]
- Scriba, G.K.E. Update on chiral recognition mechanisms in separation science. J. Sep. Sci. 2024, 47, e2400148. [Google Scholar] [CrossRef]
- Li, Y.Y.; Miao, S.Y.; Tan, J.H.; Zhang, Q.; Chen, D.D.Y. Capillary Electrophoresis: A Three-Year Literature Review. Anal. Chem. 2024, 96, 7799–7816. [Google Scholar] [CrossRef]
- García-Cansino, L.; Boltes, K.; García, M.A.; Marina, M.L. Simultaneous enantiomeric separation of fenpropidin and its acid metabolite by Capillary Electrophoresis. Analysis of agrochemicals, degradation study in soil, and ecotoxicity evaluation on. Talanta 2025, 295, 128233. [Google Scholar] [CrossRef] [PubMed]
- Bu, Z.Y.; Si, Q.K.; Lu, X.L.; Wang, P.; Wu, D.Z.; Mei, Y.Y. Monolithic capillary electrochromatographic system based on gold nanoparticles and chitosan chiral molecularly imprinted polymers for enantioseparation of metolachlor and separation of structural analogs. Microchim. Acta 2025, 192, 291. [Google Scholar] [CrossRef] [PubMed]
- Chen, T.T.; Zhang, Y.J.; Wang, Y.T.; Liang, W.Y.; Yan, Z.Q.; Lu, X.; Liu, X.Y.; Zhao, C.X.; Xu, G.W. Suspect and nontarget screening of pesticides and their transformation products in agricultural products using liquid chromatography-high-resolution mass spectrometry. Talanta 2025, 283, 127154. [Google Scholar] [CrossRef] [PubMed]
- Thoben, C.; Hartner, N.T.; Hitzemann, M.; Raddatz, C.R.; Eckermann, M.; Belder, D.; Zimmermann, S. Regarding the Influence of Additives and Additional Plasma- Induced Chemical Ionization on Adduct Formation in ESI/IMS/MS. J. Am. Soc. Mass. Spectr. 2023, 34, 857–868. [Google Scholar] [CrossRef]
- Tadic, D.; de Lima, A.P.; Ricci, M. Quality assurance and quality control for human biomonitoring data-focus on matrix reference materials. Anal. Bioanal. Chem. 2025, 417, 3513–3528. [Google Scholar] [CrossRef]
- Lin, L.J.; Gao, P.; Wu, M.J.; Luo, K.; Li, J.P. Construction of a molecularly imprinted electroluminescence sensor for pyrimethanil detection dummy template imprinting combined with click-chemical labeling of mimic enzymes. Anal. Chim. Acta 2025, 1363, 344169. [Google Scholar] [CrossRef]
- Martello, L.; Ainali, N.M.; Bikiaris, D.N.; Lambropoulou, D.A. Multivariate design and application of novel molecularly imprinted polymers selective for triazole fungicides in juice and water samples. Microchem. J. 2023, 192, 108968. [Google Scholar] [CrossRef]
- Al Faysal, A.; Dorreh, S.; Kaya, B.S.; Gölcü, A. Molecularly Imprinted Electrochemical Sensors for Halogenated anti-Infective Agent Detection: A Review of Current Developments and Prospects. ACS Omega 2025, 10, 35327–35351. [Google Scholar] [CrossRef]
- Mohsenzadeh, E.; Ratautaite, V.; Brazys, E.; Ramanavicius, S.; Zukauskas, S.; Plausinaitis, D.; Ramanavicius, A. Design of molecularly imprinted polymers (MIP) using computational methods: A review of strategies and approaches. Wires Comput. Mol. Sci. 2024, 14, e1713. [Google Scholar] [CrossRef]
- Gong, W.; Chen, Z.J.; Dong, J.Q.; Liu, Y.; Cui, Y. Chiral Metal-Organic Frameworks. Chem. Rev. 2022, 122, 9078–9144. [Google Scholar] [CrossRef] [PubMed]
- Qiu, S.; Chen, G.Y.; Qin, Y.D.; Li, T.T.; Yang, F.Q. Recent Advance in Electrochemical Chiral Recognition Based on Biomaterials (2019–2024). Molecules 2025, 30, 3386. [Google Scholar] [CrossRef]
- Mahmoud, L.A.M.; dos Reis, R.A.; Chen, X.F.; Ting, V.P.; Nayak, S. Metal-Organic Frameworks as Potential Agents for Extraction and Delivery of Pesticides and Agrochemicals. ACS Omega 2022, 7, 45910–45934. [Google Scholar] [CrossRef]
- Manousi, N.; Plastiras, O.E.; Kalogiouri, N.P.; Zacharis, C.K.; Zachariadis, G.A. Metal-Organic Frameworks in Bioanalysis: Extraction of Small Organic Molecules. Separations 2021, 8, 60. [Google Scholar] [CrossRef]
- Zhou, L.; Tang, J.; Chen, T.; Peng, J.; Guo, H.; Zhang, R.; Lv, X.; Fan, R. Facile synthesis of magnetic layered double hydroxide/metal–organic framework MIL-100 (Fe) for simultaneous extraction and enantiomeric determination of three chiral triazole fungicides in water and juice samples. Microchem. J. 2024, 201, 110599. [Google Scholar] [CrossRef]
- Qin, S.; You, X.; Guo, X.; Chu, H.; Dong, Q.; Cui, H.; Jin, F.; Gao, L. A chiral fluorescent COF prepared by post-synthesis modification for optosensing of imazamox enantiomers. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2023, 291, 122370. [Google Scholar] [CrossRef]
- Jiao, W.; Xu, W.; Cheng, J.; Zhou, C.; Li, H. Porous Organic Frame Materials for Adsorption and Removal of Pesticide Contaminants: A Review. ACS Agric. Sci. Technol. 2024, 4, 1163–1178. [Google Scholar] [CrossRef]
- Xin, J.H.; Xu, G.J.; Zhou, Y.R.; Wang, X.; Wang, M.L.; Lian, Y.J.; Zhao, R.S. Ketoenamine Covalent Organic Framework Coating for Efficient Solid-Phase Microextraction of Trace Organochlorine Pesticides. J. Agric. Food Chem. 2021, 69, 8008–8016. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.Y.; Qiao, X.L.; Ren, H.X.; Chen, Y.; Zhang, Z.J. Industrialization of Covalent Organic Frameworks. J. Am. Chem. Soc. 2025, 147, 8063–8082. [Google Scholar] [CrossRef]
- Utzeri, G.; Verissimo, L.; Murtinho, D.; Pais, A.A.C.C.; Perrin, F.X.; Ziarelli, F.; Iordache, T.V.; Sarbu, A.; Valente, A.J.M. Poly(β-cyclodextrin)-Activated Carbon Gel Composites for Removal of Pesticides from Water. Molecules 2021, 26, 1426. [Google Scholar] [CrossRef]
- Tuominen, T.; Perera, D.; Russo, G.; Wiedmer, S.K. Liquid Chromatographic and Capillary Electromigration Techniques for the Analysis of Azole Antifungals. J. Sep. Sci. 2025, 48, e70135. [Google Scholar] [CrossRef] [PubMed]
- Mahmoudpour, M.; Karimzadeh, Z.; Ebrahimi, G.; Hasanzadeh, M.; Dolatabadi, J.E.N. Synergizing Functional Nanomaterials with Aptamers Based on Electrochemical Strategies for Pesticide Detection: Current Status and Perspectives. Crit. Rev. Anal. Chem. 2022, 52, 1818–1845. [Google Scholar] [CrossRef]
- Niu, X.H.; Liu, Y.Q.; Zhao, R.; Wang, L.H.; Yuan, M.; Zhao, H.F.; Li, H.X.; Yang, X.; Wang, K.J. Chiral carbon nanostructures: A gateway to promising chiral materials. J. Mater. Chem. A 2024, 12, 17073–17127. [Google Scholar] [CrossRef]
- Aouant, A.D.; Hela, D. Extraction and Analytical Techniques for Pharmaceuticals and Personal Care Products in Sediments: A Critical Review Towards Environmental Sustainability. Sustainability 2025, 17, 10025. [Google Scholar] [CrossRef]
- Cetinkaya, A.; Yayla, S.; Hurkul, M.M.; Ozkan, S.A. The Sample Preparation Techniques and Their Application in the Extraction of Bioactive Compounds from Medicinal Plants. Crit. Rev. Anal. Chem. 2025, in press. [Google Scholar] [CrossRef]
- Tang, K.H.D. Effects of Microplastics on Bioavailability, Persistence and Toxicity of Plant Pesticides: An Agricultural Perspective. Agriculture 2025, 15, 356. [Google Scholar] [CrossRef]
- Yahya, L.A.; Vakh, C.; Dushna, O.; Kalisz, O.; Bocian, S.; Tobiszewski, M. Guidelines on the proper selection of greenness and related metric tools in analytical chemistry-a tutorial. Anal. Chim. Acta 2025, 1357, 344052. [Google Scholar] [CrossRef]
- Ventura-Hernández, K.I.; Delgado-Alvarado, E.; Pawar, T.J.; Olivares-Romero, J.L. Chirality in Insecticide Design and Efficacy. J. Agric. Food Chem. 2024, 72, 20722–20737. [Google Scholar] [CrossRef]
- Di, S.S.; Cang, T.; Liu, Z.Z.; Xie, Y.Y.; Zhao, H.Y.; Qi, P.P.; Wang, Z.W.; Xu, H.; Wang, X.Q. Comprehensive evaluation of chiral pydiflumetofen from the perspective of reducing environmental risks. Sci. Total Environ. 2022, 826, 154033. [Google Scholar] [CrossRef]
- Arenas, M.; Martín, J.; Santos, J.L.; Aparicio, I.; Alonso, E. Enantioselective behavior of environmental chiral pollutants: A comprehensive review. Crit. Rev. Env. Sci. Tec. 2022, 52, 2995–3034. [Google Scholar] [CrossRef]
- He, A.; Yao, Y.M.; Chen, S.J.; Li, Y.C.; Xiao, N.; Chen, H.; Zhao, H.Z.; Wang, Y.; Cheng, Z.P.; Zhu, H.K.; et al. An Enhanced Protocol to Expand Human Exposome and Machine Learning-Based Prediction for Methodology Application. Environ. Sci. Technol. 2025, 59, 3376–3387. [Google Scholar] [CrossRef] [PubMed]
- Lv, B.; Zhong, R.; Wang, Y.; Li, G.; Zhang, S.; Yang, L.; Cai, M.; Zhang, J.; Lu, Z.; Li, H.; et al. Construction of Micropore Membranes for Efficient Separation of Chiral Pesticides Based on Layer-by-Layer Technology. ACS Agric. Sci. Technol. 2022, 2, 1230–1238. [Google Scholar] [CrossRef]
- Xie, A.Y.; Wu, W.H.; Jin, M.Q. Electrochemical aptasensing strategies for emerging organic pollutants in environmental analysis. Anal. Methods 2025, 17, 7586–7607. [Google Scholar] [CrossRef]
- Roman, D.L.; Voiculescu, D.I.; Filip, M.; Ostafe, V.; Isvoran, A. Effects of Triazole Fungicides on Soil Microbiota and on the Activities of Enzymes Found in Soil: A Review. Agriculture 2021, 11, 893. [Google Scholar] [CrossRef]
- Ramteke, P.K.; Rathod, A.P. Biological Treatment Methods for Remediating Wastewater. In Machine Learning in Water Treatment; Wiley: Hoboken, NJ, USA, 2025; pp. 145–168. [Google Scholar]
- Gámiz, B.; López-Cabeza, R.; Cox, L.; Celis, R. Environmental Fate of Chiral Pesticides in Soils. In The Handbook of Environmental Chemistry; Springer: Berlin/Heidelberg, Germany, 2021. [Google Scholar] [CrossRef]
- Cui, M.T.; Wang, H.; Fan, X.; Zhang, J.H.; Xing, C.R.; Yan, W.J. Photocatalytic degradation of four organophosphorus pesticides in aqueous solution using D-cys/Au NPs modified TiO2 by natural sunlight. Appl. Surf. Sci. 2024, 663, 160197. [Google Scholar] [CrossRef]
- Zhang, B.Y.; Lv, F.; Yang, J. Pesticides Toxicity, Removal and Detoxification in Plants: A Review. Agronomy-Basel 2024, 14, 1260. [Google Scholar] [CrossRef]
- Zhang, L.; Zhou, X.Y.; Liu, S.X.; Liu, H.; Zhu, S.; Mao, Y.Y.; Yang, Q.; Zhu, S.; Zhang, C.G.; Wang, T.Y.; et al. Two birds, one stone: Rational design of Bi-MOF/g-C3N4 photocatalyst for effective nitrogen fixation and pollutants degradation. J. Clean. Prod. 2023, 425, 138912. [Google Scholar] [CrossRef]
- Liu, C.C.; Chu, S.Y.; Feng, X.F.; Wu, H.R.; Yang, J.; Yin, B.; Liu, X.B.; Yang, W. Recyclable Engineering of Metal-Organic Frameworks toward Sustainable Water Remediation: From Strategies to Applications. Acs Appl. Mater. Inter. 2025, 17, 49092–49118. [Google Scholar] [CrossRef]
- Chae, K.; Mohamad, N.A.R.C.; Kim, J.; Won, D.I.; Lin, Z.Q.; Kim, J.; Kim, D.H. The promise of chiral electrocatalysis for efficient and sustainable energy conversion and storage: A comprehensive review of the CISS effect and future directions. Chem. Soc. Rev. 2024, 53, 9029–9058. [Google Scholar] [CrossRef]
- Daelemans, B.; Bilbao, N.; Dehaen, W.; De Feyter, S. Carbocatalysis with pristine graphite: On-surface nanochemistry assists solution-based catalysis. Chem. Soc. Rev. 2021, 50, 2280–2296. [Google Scholar] [CrossRef]
- Nicastro, R.; Papale, M.; Fusco, G.M.; Capone, A.; Morrone, B.; Carillo, P. Legal Barriers in Sustainable Agriculture: Valorization of Agri-Food Waste and Pesticide Use Reduction. Sustainability 2024, 16, 8677. [Google Scholar] [CrossRef]
- Chintada, V.; Veraiah, K.; Golla, N. Monitoring and Managing Endocrine Disrupter Pesticides (EPDS) for Environmental Sustainability. In Biotechnology for Environmental Sustainability; Springer: Berlin/Heidelberg, Germany, 2025; pp. 101–126. [Google Scholar]
- Sala, S.; Biganzoli, F.; Mengual, E.S.; Saouter, E. Toxicity impacts in the environmental footprint method: Calculation principles. Int. J. Life Cycle Ass 2022, 27, 587–602. [Google Scholar] [CrossRef]
- Kim, C.J.; Yuan, X.; Kim, M.; Kyung, K.S.; Noh, H.H. Monitoring and risk analysis of residual pesticides drifted by unmanned aerial spraying. Sci. Rep. 2023, 13, 10834. [Google Scholar] [CrossRef]
- Fan, J.J.; Li, P.X.; Zhao, F.R.; Zheng, L.; Wang, P.; Liu, D.H.; Zhou, Z.Q.; Liu, X.K. Enantioseparation, bioactivity, environmental fate and toxicity of chiral triazole fungicide ipconazole in soil and earthworm. J. Hazard. Mater. 2025, 485, 136921. [Google Scholar] [CrossRef] [PubMed]
- Scaggiante, G.; Zingaretti, D.; Verginelli, I. Comparison of four PFAS mixtures assessment approaches based on extensive tap water and groundwater data. Environ. Pollut. 2025, 386, 127177. [Google Scholar] [CrossRef]
- Ruan, T.; Li, P.Y.; Wang, H.T.; Li, T.Y.; Jiang, G.B. Identification and Prioritization of Environmental Organic Pollutants: From an Analytical and Toxicological Perspective. Chem. Rev. 2023, 123, 10584–10640. [Google Scholar] [CrossRef] [PubMed]
- Mentzel, S.; Martinez-Megias, C.; Grung, M.; Rico, A.; Tollefsen, K.E.; van den Brink, P.J.; Moe, S.J. Using a Bayesian Network Model to Predict Risk of Pesticides on Aquatic Community Endpoints in a Rice Field-A Southern European Case Study. Environ. Toxicol. Chem. 2024, 43, 182–196. [Google Scholar] [CrossRef] [PubMed]
- Xia, D.; Fu, S.N.; Yang, P.; Liu, H.; Wu, Y.N.; Su, Y.M.; Tang, T.; Lu, G.N.; Wang, R. Enhanced Fingerprinting Strategy for Rapid and Accurate Quantitative Source and Contaminant Apportionment via Online SPE-UHPLC-QTOF-MS. Anal. Chem. 2025, 97, 20399–20411. [Google Scholar] [CrossRef]
- Menger, F.; Boström, G.; Jonsson, O.; Ahrens, L.; Wiberg, K.; Kreuger, J.; Gago-Ferrero, P. Identification of Pesticide Transformation Products in Surface Water Using Suspect Screening Combined with National Monitoring Data. Environ. Sci. Technol. 2021, 55, 10343–10353. [Google Scholar] [CrossRef] [PubMed]
- You, X.W.; Suo, F.Y.; Yin, S.J.; Wang, X.; Zheng, H.; Fang, S.; Zhang, C.S.; Li, F.M.; Li, Y.Q. Biochar decreased enantioselective uptake of chiral pesticide metalaxyl by lettuce and shifted bacterial community in agricultural soil. J. Hazard. Mater. 2021, 417, 126047. [Google Scholar] [CrossRef] [PubMed]
- Ammeri, R.W.; Hidri, Y.; Ouesleti, M.; Eturki, S.; Sadfi-Zouaoui, N.; Hassen, A. Impact of Phosphorus Biofertilization on Arid Tunisian Soils Irrigated with Treated Wastewater. J. Soil. Sci. Plant Nutr. 2025, 25, 3040–3055. [Google Scholar] [CrossRef]
- Asgari, S.; Wu, G.F.; Aghvami, S.A.; Zhang, Y.; Lin, M.S. Optimisation using the finite element method of a filter-based microfluidic SERS sensor for detection of multiple pesticides in strawberry. Food Addit. Contam. A 2021, 38, 646–658. [Google Scholar] [CrossRef] [PubMed]
- Schymanski, D.; Ossmann, B.E.; Benismail, N.; Boukerma, K.; Dallmann, G.; von der Esch, E.; Fischer, D.; Fischer, F.; Gilliland, D.; Glas, K.; et al. Analysis of microplastics in drinking water and other clean water samples with micro-Raman and micro-infrared spectroscopy: Minimum requirements and best practice guidelines. Anal. Bioanal. Chem. 2021, 413, 5969–5994. [Google Scholar] [CrossRef]
- Athulya, P.A.; Waychal, Y.; Rodriguez-Seijo, A.; Devalla, S.; Doss, C.G.P.; Chandrasekaran, N. Microplastic interactions in the agroecosystems: Methodological advances and limitations in quantifying microplastics from agricultural soil. Environ. Geochem. Health 2024, 46, 85. [Google Scholar] [CrossRef]
- Mlangeni, A.T.; Raab, A.; Kumambala, P.; Monjerezi, M.; Matumba, L.; Feldmann, J. Evaluation of Metal(loids) Concentrations in Soils of Selected Rice Paddy Fields in Malawi. Agronomy 2022, 12, 2349. [Google Scholar] [CrossRef]
- Giraud, R.; Le Blanc, J.C.Y.; Guna, M.; Hopfgartner, G. General Screening and Multiple Dissociation Methods for Complementary LC-MS Analysis of Pesticides in Beverages: Potential and Pitfalls. Anal. Chem. 2025, 97, 14503–14511. [Google Scholar] [CrossRef]
- Mie, A.; Rudén, C. Non-disclosure of developmental neurotoxicity studies obstructs the safety assessment of pesticides in the European Union. Environ. Health 2023, 22, 44. [Google Scholar] [CrossRef]
- Sartore, D.M.; Medina, D.A.V.; Bocelli, M.D.; Jordan-Sinisterra, M.; Santos-Neto, A.J.; Lanças, F.M. Modern automated microextraction procedures for bioanalytical, environmental, and food analyses. J. Sep. Sci. 2023, 46, e2300215. [Google Scholar] [CrossRef]
- Kaleta, M.; Oklestkova, J.; Novák, O.; Strnad, M. Analytical Methods for the Determination of Neuroactive Steroids. Biomolecules 2021, 11, 553. [Google Scholar] [CrossRef]
- Meher, A.K.; Zarouri, A. Green Analytical Chemistry—Recent Innovations. Analytica 2025, 6, 10. [Google Scholar] [CrossRef]
- Xu, S.T.; Yan, X.P.; Qian, H.L. Recent Advances in Separation and Analysis of Chiral Compounds. Anal. Chem. 2023, 95, 304–318. [Google Scholar] [CrossRef]
- Li, Y.L.; Zhou, B.W.; Wang, K.K.; Zhang, J.; Sun, W.J.; Zhang, L.; Guo, Y.L. Powerful Steroid-Based Chiral Selector for High-Throughput Enantiomeric Separation of α-Amino Acids Utilizing Ion Mobility-Mass Spectrometry. Anal. Chem. 2021, 93, 13589–13596. [Google Scholar] [CrossRef] [PubMed]
- Yao, M.J.; Tang, X.D.; Qing, D.Y.; Li, J.J.; Wang, H. Progress in Continuous Process Technology: Reactions, Post-Process, and Development Trends. Chembioeng Rev. 2025, 12, e70034. [Google Scholar] [CrossRef]
- Yu, X.; Chen, Z.; Lv, L.W.; Li, M.; Li, Q. Evaluation of Chiral Pesticide Chlorbufam at the Enantiomeric Level: Absolute Configuration, Separation, Herbicidal Activity, and Degradation in Soil. J. Agric. Food Chem. 2025, 73, 5748–5756. [Google Scholar] [CrossRef]
- Jeschke, P. The continuing significance of chiral agrochemicals. Pest. Manag. Sci. 2025, 81, 1697–1716. [Google Scholar] [CrossRef]
- Kuznetsova, V.; Coogan, A.; Botov, D.; Gromova, Y.; Ushakova, E.V.; Gun’ko, Y.K. Expanding the Horizons of Machine Learning in Nanomaterials to Chiral Nanostructures. Adv. Mater. 2024, 36, e2308912. [Google Scholar] [CrossRef] [PubMed]
- Barik, D.; Rakhi Mol, K.; Anand, G.; Nandamol, P.; Das, D.; Porel, M. Environmental pollutants such as endocrine disruptors/pesticides/reactive dyes and inorganic toxic compounds metals, radionuclides, and metalloids and their impact on the ecosystem. In Biotechnology for Environmental Sustainability; Springer: Berlin/Heidelberg, Germany, 2025; pp. 391–442. [Google Scholar]
- Ateia, M.; Sigmund, G.; Bentel, M.J.; Washington, J.W.; Lai, A.; Merrill, N.H.; Wang, Z.Y. Integrated data-driven cross-disciplinary framework to prevent chemical water pollution. One Earth 2023, 6, 952–963. [Google Scholar] [CrossRef] [PubMed]






Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Liu, B.; Gong, Z.; Gao, H. The Neglected Dimension in Pesticide Residues: Emerging Green and Enantioselective Strategies for the Analysis and Removal of Chiral Pesticides. Separations 2026, 13, 4. https://doi.org/10.3390/separations13010004
Liu B, Gong Z, Gao H. The Neglected Dimension in Pesticide Residues: Emerging Green and Enantioselective Strategies for the Analysis and Removal of Chiral Pesticides. Separations. 2026; 13(1):4. https://doi.org/10.3390/separations13010004
Chicago/Turabian StyleLiu, Binbin, Ziyan Gong, and Haixiang Gao. 2026. "The Neglected Dimension in Pesticide Residues: Emerging Green and Enantioselective Strategies for the Analysis and Removal of Chiral Pesticides" Separations 13, no. 1: 4. https://doi.org/10.3390/separations13010004
APA StyleLiu, B., Gong, Z., & Gao, H. (2026). The Neglected Dimension in Pesticide Residues: Emerging Green and Enantioselective Strategies for the Analysis and Removal of Chiral Pesticides. Separations, 13(1), 4. https://doi.org/10.3390/separations13010004

