Sustainable and Energy-Efficient Capacitive Deionization Enabled Through Upcycled Wheat Straw Biochar via Ammonium Ferric Citrate Modification
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Modified Biochar Materials
2.3. Characterization Methods
2.4. Electrochemical Characteristics
2.5. CDI Desalination Tests
3. Results and Analysis
3.1. Material Characterization
3.2. Electrochemical Characteristics’ Analysis
3.2.1. CV Test
3.2.2. EIS Test
3.2.3. GCD Test
3.3. CDI Desalination Analysis
3.3.1. Effect of Different Electrodes on Desalination
3.3.2. Effect of Voltages on Desalination
3.3.3. Effect of NaCl Concentrations on Desalination
3.3.4. Effect of Electrode Spacing on Desalination
3.3.5. Cyclic Regeneration Tests of CDI
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yao, C.; Hussain, T.; Hu, B.; Yang, J.; Liu, J. Mg-MOF-Derived hierarchical porous carbon fiber electrodes for efficient capacitive deionization. J. Electroanal. Chem. 2024, 967, 118495. [Google Scholar] [CrossRef]
- Yu, F.; Yang, Y.; Zhang, X.; Ma, J. Application of capacitive deionization in drinking water purification. Sep. Purif. Technol. 2025, 354, 129285. [Google Scholar] [CrossRef]
- Xing, W.; Liang, J.; Tang, W.; He, D.; Yan, M.; Wang, X.; Luo, Y.; Tang, N.; Huang, M. Versatile applications of capacitive deionization (CDI)-based technologies. Desalination 2020, 482, 114390. [Google Scholar] [CrossRef]
- Cai, Y.; Wu, J.; Shi, S.Q.; Li, J.; Kim, K.-H. Advances in desalination technology and its environmental and economic assessment. J. Clean. Prod. 2023, 397, 136498. [Google Scholar] [CrossRef]
- Moossa, B.; Trivedi, P.; Saleem, H.; Zaidi, S.J. Desalination in the GCC countries—A review. J. Clean. Prod. 2022, 357, 131717. [Google Scholar] [CrossRef]
- Khondoker, M.; Mandal, S.; Gurav, R.; Hwang, S. Freshwater Shortage, Salinity Increase, and Global Food Production: A Need for Sustainable Irrigation Water Desalination—A Scoping Review. Earth 2023, 4, 223–240. [Google Scholar] [CrossRef]
- Al-Amshawee, S.; Yunus, M.Y.B.M.; Azoddein, A.A.M.; Hassell, D.G.; Dakhil, I.H.; Hasan, H.A. Electrodialysis desalination for water and wastewater: A review. Chem. Eng. J. 2020, 380, 122231. [Google Scholar] [CrossRef]
- Ahmed, F.E.; Khalil, A.; Hilal, N. Emerging desalination technologies: Current status, challenges and future trends. Desalination 2021, 517, 115183. [Google Scholar] [CrossRef]
- Deng, H.; Wang, Z.; Kim, M.; Yamauchi, Y.; Eichhorn, S.J.; Titirici, M.-M.; Deng, L. Unleashing the power of capacitive deionization: Advancing ion removal with biomass-derived porous carbonaceous electrodes. Nano Energy 2023, 117, 108914. [Google Scholar] [CrossRef]
- He, J.; Chen, T.-H.; Yang, K.; Luo, L.; Hou, C.-H.; Ma, J. Stop-flow discharge operation aggravates spacer scaling in CDI treating brackish hard water. Desalination 2023, 552, 116422. [Google Scholar] [CrossRef]
- Zhang, B.; Boretti, A.; Castelletto, S. Mxene pseudocapacitive electrode material for capacitive deionization. Chem. Eng. J. 2022, 435, 134959. [Google Scholar] [CrossRef]
- Therese Angeles, A.; Park, J.; Ham, K.; Bong, S.; Lee, J. High-performance capacitive deionization electrodes through regulated electrodeposition of manganese oxide and nickel-manganese oxide/hydroxide onto activated carbon. Sep. Purif. Technol. 2022, 280, 119873. [Google Scholar] [CrossRef]
- Zhao, C.; Liu, G.; Sun, N.; Zhang, X.; Wang, G.; Zhang, Y.; Zhang, H.; Zhao, H. Biomass-derived N-doped porous carbon as electrode materials for Zn-air battery powered capacitive deionization. Chem. Eng. J. 2018, 334, 1270–1280. [Google Scholar] [CrossRef]
- Zhao, X.; Li, W.; Kong, F.; Chen, H.; Wang, Z.; Liu, S.; Jin, C. Carbon spheres derived from biomass residue via ultrasonic spray pyrolysis for supercapacitors. Mater. Chem. Phys. 2018, 219, 461–467. [Google Scholar] [CrossRef]
- Deng, D.; Luhasile, M.K.; Li, H.; Pan, Q.; Zheng, F.; Wang, Y. A novel layered activated carbon with rapid ion transport through chemical activation of chestnut inner shell for capacitive deionization. Desalination 2022, 531, 115685. [Google Scholar] [CrossRef]
- Wang, C.; Chen, L.; Liu, S.; Zhu, L. Nitrite desorption from activated carbon fiber during capacitive deionization (CDI) and membrane capacitive deionization (MCDI). Colloids Surf. A 2018, 559, 392–400. [Google Scholar] [CrossRef]
- Shi, W.; Zhou, X.; Li, J.; Meshot, E.R.; Taylor, A.D.; Hu, S.; Kim, J.-H.; Elimelech, M.; Plata, D.L. High-Performance Capacitive Deionization via Manganese Oxide-Coated, Vertically Aligned Carbon Nanotubes. Environ. Sci. Technol. Lett. 2018, 5, 692–700. [Google Scholar] [CrossRef]
- Chai, W.; Wang, F.; Miao, Z.; Che, N. Hydrophilic porous activated biochar with high specific surface area for efficient capacitive deionization. Desalination Water Treat. 2024, 320, 100617. [Google Scholar] [CrossRef]
- Lin, S.; Wang, F.; Shao, Z. Biomass applied in supercapacitor energy storage devices. J. Mater. Sci. 2021, 56, 1943–1979. [Google Scholar] [CrossRef]
- Wan, L.; Wei, W.; Xie, M.; Zhang, Y.; Li, X.; Xiao, R.; Chen, J.; Du, C. Nitrogen, sulfur co-doped hierarchically porous carbon from rape pollen as high-performance supercapacitor electrode. Electrochim. Acta 2019, 311, 72–82. [Google Scholar] [CrossRef]
- Wan, L.; Song, P.; Liu, J.; Chen, D.; Xiao, R.; Zhang, Y.; Chen, J.; Xie, M.; Du, C. Facile synthesis of nitrogen self-doped hierarchical porous carbon derived from pine pollen via MgCO3 activation for high-performance supercapacitors. J. Power Sources 2019, 438, 227013. [Google Scholar] [CrossRef]
- Xu, X.; Allah, A.E.; Wang, C.; Tan, H.; Farghali, A.A.; Khedr, M.H.; Malgras, V.; Yang, T.; Yamauchi, Y. Capacitive deionization using nitrogen-doped mesostructured carbons for highly efficient brackish water desalination. Chem. Eng. J. 2019, 362, 887–896. [Google Scholar] [CrossRef]
- Zhang, P.; Duan, W.; Peng, H.; Pan, B.; Xing, B. Functional Biochar and Its Balanced Design. ACS Environ. Au 2022, 2, 115–127. [Google Scholar] [CrossRef]
- Li, J.; Lv, F.; Yang, R.; Zhang, L.; Tao, W.; Liu, G.; Gao, H.; Guan, Y. N-Doped Biochar from Lignocellulosic Biomass for Preparation of Adsorbent: Characterization, Kinetics and Application. Polymers 2022, 14, 3889. [Google Scholar] [CrossRef] [PubMed]
- Elisadiki, J.; Jande, Y.A.C.; Machunda, R.L.; Kibona, T.E. Porous carbon derived from Artocarpus heterophyllus peels for capacitive deionization electrodes. Carbon 2019, 147, 582–593. [Google Scholar] [CrossRef]
- Hui Tang, S.; Zaini Muhammad Abbas, A. Potassium hydroxide activation of activated carbon: A commentary. Carbon Lett. 2015, 16, 275–280. [Google Scholar] [CrossRef]
- Li, M.; Ma, W.; Tan, F.; Yu, B.; Cheng, G.; Gao, H.; Zhang, Z. Fe3O4@C-500 anode derived by commercial ammonium ferric citrate for advanced lithium ion batteries. J. Power Sources 2023, 574, 233146. [Google Scholar] [CrossRef]
- Tan, Z.; Wang, W.; Zhu, M.; Liu, Y.; Yang, Y.; Ji, X.; He, Z. Ti3C2Tx MXene@carbon dots hybrid microflowers as a binder-free electrode material toward high capacity capacitive deionization. Desalination 2023, 548, 116267. [Google Scholar] [CrossRef]
- Cai, Y.; Zhang, L.; Fang, R.; Wang, Y.; Wang, J. Maximized ion accessibility in the binder-free layer-by-layer MXene/CNT film prepared by the electrophoretic deposition for rapid hybrid capacitive deionization. Sep. Purif. Technol. 2022, 292, 121019. [Google Scholar] [CrossRef]
- Li, Y.; Yin, Y.; Xie, F.; Zhao, G.; Han, L.; Zhang, L.; Lu, T.; Amin, M.A.; Yamauchi, Y.; Xu, X.; et al. Polyaniline coated MOF-derived Mn2O3 nanorods for efficient hybrid capacitive deionization. Environ. Res. 2022, 212, 113331. [Google Scholar] [CrossRef]
- Chen, J.; Mao, Z.; Zhang, L.; Wang, D.; Xu, R.; Bie, L.; Fahlman, B.D. Nitrogen-Deficient Graphitic Carbon Nitride with Enhanced Performance for Lithium Ion Battery Anodes. ACS Nano 2017, 11, 12650–12657. [Google Scholar] [CrossRef]
- Wen, P.; Lu, J.; Tian, L.; Liu, S.; Tahir, N.; Qing, C.; Tao, H. Environmental-friendly modification of porous biochar via K2FeO4 as a capacitive deionization electrode material. Environ. Res. 2025, 285, 122714. [Google Scholar] [CrossRef] [PubMed]
- Salvatore, M.; Carotenuto, G.; De Nicola, S.; Camerlingo, C.; Ambrogi, V.; Carfagna, C. Synthesis and Characterization of Highly Intercalated Graphite Bisulfate. Nanoscale Res. Lett. 2017, 12, 167. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.-L.; Zhang, X.; Miao, Y.-X.; Wen, M.-X.; Yan, W.-J.; Lu, P.; Wang, Z.-R.; Sun, Q. In-situ plantation of Fe3O4@C nanoparticles on reduced graphene oxide nanosheet as high-performance anode for lithium/sodium-ion batteries. Appl. Surf. Sci. 2021, 546, 149163. [Google Scholar] [CrossRef]
- Chen, M.; Wang, Z.; Liu, Y.; Chen, J.; Liu, J.; Gan, D. Effect of ligands of functional magnetic MOF-199 composite on thiophene removal from model oil. J. Mater. Sci. 2021, 56, 2979–2993. [Google Scholar] [CrossRef]
- Yu, X.; Qu, B.; Zhao, Y.; Li, C.; Chen, Y.; Sun, C.; Gao, P.; Zhu, C. Growth of Hollow Transition Metal (Fe, Co, Ni) Oxide Nanoparticles on Graphene Sheets through Kirkendall Effect as Anodes for High-Performance Lithium-Ion Batteries. Chem. A Eur. J. 2016, 22, 1638–1645. [Google Scholar] [CrossRef]
- Zhang, Y.; Xu, X.; Cao, L.; Ok, Y.S.; Cao, X. Characterization and quantification of electron donating capacity and its structure dependence in biochar derived from three waste biomasses. Chemosphere 2018, 211, 1073–1081. [Google Scholar] [CrossRef]
- Hindu Bhavani, D.; Manjunatha Kumara, K.S.; Padaki, M.; Nagaraju, D.H. Tuning the membrane surface charge: Zwitterionic functionalized iron oxide nanoparticles for molecular separation and their superior antifouling property. J. Environ. Chem. Eng. 2025, 13, 118978. [Google Scholar] [CrossRef]
- Huynh, L.T.N.; Nguyen, H.A.; Pham, H.V.; Tran, T.N.; Ho, T.T.N.; Doan, T.L.H.; Le, V.H.; Nguyen, T.H. Electrosorption of Cu(II) and Zn(II) in Capacitive Deionization by KOH Activation Coconut-Shell Activated Carbon. Arab. J. Sci. Eng. 2023, 48, 551–560. [Google Scholar] [CrossRef]
- Gao, X.; Wu, L.; Xu, Q.; Tian, W.; Li, Z.; Kobayashi, N. Adsorption kinetics and mechanisms of copper ions on activated carbons derived from pinewood sawdust by fast H3PO4 activation. Environ. Sci. Pollut. Res. 2018, 25, 7907–7915. [Google Scholar] [CrossRef]
- Tran, H.N.; You, S.-J.; Chao, H.-P. Fast and efficient adsorption of methylene green 5 on activated carbon prepared from new chemical activation method. J. Environ. Manag. 2017, 188, 322–336. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.; Sharma, R.; Pant, D.; Malaviya, P. Engineered algal biochar for contaminant remediation and electrochemical applications. Sci. Total Environ. 2021, 774, 145676. [Google Scholar] [CrossRef]
- Ghasemi, S.; Karimzadeh, M.; Kafshboran, H.R. Magnetically recoverable gold catalyst supported on PVim-Grafted Fe3O4@CQD composite for efficient nitroarene reduction in water. J. Organomet. Chem. 2026, 1044, 123941. [Google Scholar] [CrossRef]
- Shao, Y.; El-Kady, M.F.; Sun, J.; Li, Y.; Zhang, Q.; Zhu, M.; Wang, H.; Dunn, B.; Kaner, R.B. Design and Mechanisms of Asymmetric Supercapacitors. Chem. Rev. 2018, 118, 9233–9280. [Google Scholar] [CrossRef] [PubMed]
- Stephanie, H.; Mlsna, T.E.; Wipf, D.O. Functionalized biochar electrodes for asymmetrical capacitive deionization. Desalination 2021, 516, 115240. [Google Scholar] [CrossRef]
- Cao, L.; Li, H.; Liu, X.; Liu, S.; Zhang, L.; Xu, W.; Yang, H.; Hou, H.; He, S.; Zhao, Y.; et al. Nitrogen, sulfur co-doped hierarchical carbon encapsulated in graphene with “sphere-in-layer” interconnection for high-performance supercapacitor. J. Colloid Interface Sci. 2021, 599, 443–452. [Google Scholar] [CrossRef]
- Xu, Z.; Zhang, X.; Liang, Y.; Lin, H.; Zhang, S.; Liu, J.; Jin, C.; Choe, U.; Sheng, K. Green Synthesis of Nitrogen-doped Porous Carbon Derived from Rice Straw for High-performance Supercapacitor Application. Energy Fuels 2020, 34, 8966–8976. [Google Scholar] [CrossRef]
- Mohamed, S.K.; Abuelhamd, M.; Allam, N.K.; Shahat, A.; Ramadan, M.; Hassan, H.M.A. Eco-friendly facile synthesis of glucose–derived microporous carbon spheres electrodes with enhanced performance for water capacitive deionization. Desalination 2020, 477, 114278. [Google Scholar] [CrossRef]
- Li, Y.; Liu, Y.; Wang, M.; Xu, X.; Lu, T.; Sun, C.Q.; Pan, L. Phosphorus-doped 3D carbon nanofiber aerogels derived from bacterial-cellulose for highly-efficient capacitive deionization. Carbon 2018, 130, 377–383. [Google Scholar] [CrossRef]
- Luo, G.; Gao, L.; Zhang, D.; Zhang, J.; Lin, T. Highly efficient capacitive deionization electrodes from electro spun carbon nanofiber membrane containing reduced graphene oxide and carbon nanotubes. Desalination Water Treat. 2018, 135, 157–166. [Google Scholar] [CrossRef]
- Gong, X.; Zhang, S.; Luo, W.; Guo, N.; Wang, L.; Jia, D.; Zhao, Z.; Feng, S.; Jia, L. Enabling a Large Accessible Surface Area of a Pore-Designed Hydrophilic Carbon Nanofiber Fabric for Ultrahigh Capacitive Deionization. ACS Appl. Mater. Interfaces 2020, 12, 49586–49595. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Wang, S.; Yang, J.; Liao, J.; Lu, M.; Pan, H.; An, L. ZnCl2 activated electrospun carbon nanofiber for capacitive desalination. Desalination 2014, 344, 446–453. [Google Scholar] [CrossRef]
- Li, C.-P.; Wu, Y.-Q.; Gao, L.-X.; Zhang, D.-Q.; An, Z.-X. Lignin-derived carbon nanofibers with the micro-cracking structure for high-performance capacitive deionization. J. Environ. Chem. Eng. 2022, 10, 108952. [Google Scholar] [CrossRef]
- Ma, D.; Cai, Y.; Wang, Y.; Xu, S.; Wang, J.; Khan, M.U. Grafting the Charged Functional Groups on Carbon Nanotubes for Improving the Efficiency and Stability of Capacitive Deionization Process. ACS Appl. Mater. Interfaces 2019, 11, 17617–17628. [Google Scholar] [CrossRef]
- Chen, Z.; Xu, X.; Liu, Y.; Li, J.; Wang, K.; Ding, Z.; Meng, F.; Lu, T.; Pan, L. Ultra-durable and highly-efficient hybrid capacitive deionization by MXene confined MoS2 heterostructure. Desalination 2022, 528, 115616. [Google Scholar] [CrossRef]
- Chen, Z.; Ding, Z.; Chen, Y.; Xu, X.; Liu, Y.; Lu, T.; Pan, L. Three-dimensional charge transfer pathway in close-packed nickel hexacyanoferrate−on−MXene nano-stacking for high-performance capacitive deionization. Chem. Eng. J. 2023, 452, 139451. [Google Scholar] [CrossRef]





| Samples | SBET (m2·g−1) | VBJH (cm3·g−1) | Pore Size (nm) |
|---|---|---|---|
| MWC-0 | 97.44 | 0.033 | 2.825 |
| MWC-0.6 | 291.14 | 0.135 | 3.825 |
| MWC-0.7 | 299.55 | 0.140 | 3.813 |
| MWC-0.8 | 303.54 | 0.166 | 3.828 |
| MWC-0.9 | 310.04 | 0.174 | 3.830 |
| MWC-1.0 | 321.27 | 0.186 | 3.834 |
| MWC-1.1 | 307.41 | 0.170 | 3.839 |
| Samples | CNaCl (mg·L−1) | U (V) | q (mg·g−1) | Refs. |
|---|---|---|---|---|
| HCNF/Mg-700 | 500 | 1.2 | 9.93 | [1] |
| P-CNFA | 500 | 1.2 | 13.72 | [49] |
| MNCF-5 | 500 | 1.2 | 19.34 | [51] |
| Zn-AECNF | 500 | 1.2 | 10.5 | [52] |
| PDLCN | 500 | 1.2 | 18.8 | [53] |
| RG/CNT/C | 500 | 1.2 | 13.6 | [50] |
| CNTs | 500 | 1.2 | 6.18 | [54] |
| MoS2/MXene | 500 | 1.2 | 23.98 | [55] |
| NiHCF/MX-5 | 500 | 1.2 | 26.3 | [56] |
| MWC-1.0 | 500 | 1.2 | 13.62 | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Lu, J.; Wen, P.; Wang, J.; Zhang, P.; Liu, S.; Qing, C.; Tao, H.; Wu, Y.; Ma, S.; Chen, B. Sustainable and Energy-Efficient Capacitive Deionization Enabled Through Upcycled Wheat Straw Biochar via Ammonium Ferric Citrate Modification. Separations 2026, 13, 38. https://doi.org/10.3390/separations13010038
Lu J, Wen P, Wang J, Zhang P, Liu S, Qing C, Tao H, Wu Y, Ma S, Chen B. Sustainable and Energy-Efficient Capacitive Deionization Enabled Through Upcycled Wheat Straw Biochar via Ammonium Ferric Citrate Modification. Separations. 2026; 13(1):38. https://doi.org/10.3390/separations13010038
Chicago/Turabian StyleLu, Jie, Ping Wen, Jiong Wang, Pin Zhang, Shengyong Liu, Chunyao Qing, Hongge Tao, Yifeng Wu, Sihan Ma, and Binglin Chen. 2026. "Sustainable and Energy-Efficient Capacitive Deionization Enabled Through Upcycled Wheat Straw Biochar via Ammonium Ferric Citrate Modification" Separations 13, no. 1: 38. https://doi.org/10.3390/separations13010038
APA StyleLu, J., Wen, P., Wang, J., Zhang, P., Liu, S., Qing, C., Tao, H., Wu, Y., Ma, S., & Chen, B. (2026). Sustainable and Energy-Efficient Capacitive Deionization Enabled Through Upcycled Wheat Straw Biochar via Ammonium Ferric Citrate Modification. Separations, 13(1), 38. https://doi.org/10.3390/separations13010038

