Development of Micro-Column Preconcentration Method Using a Restricted-Access Poly(protoporphyrin-co-vinyl pyridine) Adsorbent for Copper Determination in Water and Milk Samples by FIA-FAAS
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents and Standard Solutions
2.2. Instrumentation
2.3. Polymer Synthesis
2.4. Online FIA-FAAS Determination of Cu2+
2.5. pH Effect on Cu2+ Adsorption
2.6. Influence of Buffer Solution on Cu2+ Adsorption
2.7. Influence of Flow Rate on Cu2+ Adsorption
2.8. Evaluation of Exclusion Properties of Macromolecules by Polymer
2.9. Analytical Figures of Merit
2.10. Studies of Interferent Ions in the Cu2+ Ions Preconcentration
2.11. Accuracy and Analytical Application
3. Results
3.1. Characterized by FT-IR, SEM, and XRD
3.2. pH Effect on Cu2+ Adsorption
3.3. Influence of Buffer Solutions on Cu2+ Adsorption
3.4. Influence of Flow Rate, Eluent Concentration, and Sample Volume on Cu2+ Adsorption
3.5. Study of Exclusion of Macromolecules
3.6. Analytical Figures of Merit
3.7. Tolerance of Other Ions in the Proposed Method
3.8. Accuracy and Application
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Daniel, K.G.; Harbach, R.H.; Guida, W.C.; Dou, Q.P. Copper storage diseases: Menkes, Wilsons, and cancer. Front. Biosci. 2004, 9, 2652–2662. [Google Scholar] [PubMed]
- Pavelková, M.; Vysloužil, J.; Kubová, K.; Vetchý, D. Biological role of copper as an essential trace element in the human organism. Čes. Slov. Farm. 2018, 67, 143–153. [Google Scholar]
- Royer, A.; Sharman, T. Copper Toxicity. In StatPearls; StatPearls Publishing: Treasure Island, CA, USA, 2022. [Google Scholar]
- ANVISA-Agência Nacional de Vigilância Sanitária-RESOLUÇÃO-RDC Nº 269, de 22 de setembro de 2005. Available online: https://bvsms.saude.gov.br/bvs/saudelegis/anvisa/2005/rdc0269_22_09_2005.html (accessed on 12 December 2022).
- Evaluations of the Joint FAO/WHO Expert Committee on Food Additives (JECFA)–Copper. Available online: https://apps.who.int/food-additives-contaminants-jecfa-database/Home/Chemical/2824 (accessed on 18 January 2023).
- FAO—Food and Agriculture Organization of the United Nations. Milk and Dairy Products in Human Nutrition, 3rd ed.; FAO: Rome, Italy, 2013; p. 288. [Google Scholar]
- ATSDR—Agency for Toxic Substances and Disease Registry. Toxicological Profile for Copper. Available online: https://www.atsdr.cdc.gov/toxprofiles/tp132.pdf (accessed on 12 December 2022).
- JETRO—Japan External Trade Organization. Specifications and Standards for Foods, Food Additives, etc. Under the Food Sanitation Act (Abstract). Available online: https://www.jetro.go.jp/ext_images/en/reports/regulations/pdf/foodext2010e.pdf (accessed on 12 December 2022).
- CONAMA—Conselho Nacional do Meio Ambiente-RESOLUÇÃO Nº 357, de 17 de março de 2005. Available online: http://pnqa.ana.gov.br/Publicacao/RESOLUCAO_CONAMA_n_357.pdf (accessed on 12 December 2022).
- Ministry of Health (Brazil)-PORTARIA Nº 2.914, de 12 de dezembro de 2011. Available online: https://bvsms.saude.gov.br/bvs/saudelegis/gm/2011/prt2914_12_12_2011.html (accessed on 12 December 2022).
- EFSA. Scientific Opinion on Dietary Reference Values for copper. EFSA J. 2015, 13, 4253. [Google Scholar] [CrossRef]
- De Oliveira, A.F.; Da Silva, C.S.; Bianchi, S.R.; Nogueira, A.R.A. The use of diluted formic acid in sample preparation for macro- and microelements determination in foodstuff samples using ICP OES. J. Food Compost. Anal. 2017, 66, 7–12. [Google Scholar] [CrossRef]
- Radke, S.L.; Ensley, S.M.; Hansen, S.L. Inductively coupled plasma mass spectrometry determination of hepatic copper, manganese, selenium, and zinc concentrations in relation to sample amount and storage duration. J. Vet. Diagn. Investig. 2020, 32, 103–107. [Google Scholar]
- Bagherian, G.; Arab, M.C.; Shariati, H.E.; Ashrafi, M. Determination of copper(II) by flame atomic absorption spectrometry after its preconcentration by a highly selective and environmentally friendly dispersive liquid–liquid microextraction technique. J. Anal. Sci. Technol. 2019, 10, 3. [Google Scholar] [CrossRef]
- Nascentes, C.C.; Kamogawa, M.Y.; Fernandes, K.G.; Arruda, M.A.Z.; Nogueira, A.R.A.; Nóbrega, J.A. Direct determination of Cu, Mn, Pb, and Zn in beer by thermospray flame furnace atomic absorption spectrometry. Spectrochim. Acta. Part B At. Spectrosc. 2005, 60, 749–753. [Google Scholar] [CrossRef]
- Neri, T.S.; Rocha, D.P.; Muñoz, R.A.A.; Coelho, N.M.M.; Batista, A.D. Highly sensitive procedure for determination of Cu(II) by GFAAS using single-drop microextraction. Microchem. J. 2019, 147, 894–898. [Google Scholar] [CrossRef]
- Bulska, E.; Ruszczyńska, A. Analytical techniques for trace element determination. Phys. Sci. Rev. 2017, 2, 1–14. [Google Scholar]
- Shyam, G.S.S.; Adhikari, S.; Rohanifar, A.; Poudel, A.; Kirchhoff, J.R. Evolution of environmentally friendly strategies for metal extraction. Separations 2020, 7, 4. [Google Scholar]
- Kulal, D.K.; Loni, P.C.; Dcosta, C.; Some, S.; Kalambate, P.K. Cyanobacteria: As a promising candidate for heavy-metals removal. In Advances in Cyanobacterial Biology, 1st ed.; Kumar, P.S., Kumar, V.S., Kumar, A., Kumar, A.S., Eds.; Elsevier Inc.: New York, NY, USA, 2020; Volume 1, pp. 291–300. [Google Scholar]
- Brewer, A.; Florek, J.; Kleitz, F. A perspective on developing solid-phase extraction technologies for industrial-scale critical materials recovery. Green Chem. 2022, 24, 2752–2765. [Google Scholar] [CrossRef]
- Almeida, F.G.; Ferreira, M.P.; Segatelli, M.G.; Beal, A.; Spinosa, W.A.; Cajamarca, F.A.S.; Tarley, C.R.T. Synthesis and performance of cross-linked poly(vinylpyridine-co-protoporphyrin) for effective cobalt determination using a micro-packed column hyphenated system coupled to FAAS. React. Funct. Polym. 2021, 164, 104934. [Google Scholar]
- Silva, D.N.; Tarley, C.R.T.; Pereira, A.C. Development of a sensor based on modified carbon paste with com iron(III) protoporphyrin immobilized on SiNbZn silica matrix for L-tryptophan determination. Electroanalysis 2017, 29, 2793–2802. [Google Scholar] [CrossRef]
- Oliveira, T.F.; Ribeiro, E.S.; Segatelli, M.G.; Tarley, C.R.T. Enhanced sorption of Mn2+ ions from aqueous medium by inserting protoporphyrin as a pendant group in poly(vinylpyridine) network. J. Chem. Eng. 2013, 221, 275–282. [Google Scholar]
- Diniz, K.M.; Segatelli, M.G.; Tarley, C.R.T. Synthesis and adsorption studies of novel hybrid mesoporous copolymer functionalized with protoporphyrin for batch and on-line solid-phase extraction of Cd2+ ions. React. Funct. Polym. 2013, 73, 838–846. [Google Scholar]
- Tarley, C.R.T.; Diniz, K.M.; Cajamarca, F.A.S.; Segatelli, M.G. Study on the performance of micro-flow injection preconcentration method on-line coupled to thermospray flame furnace AAS using MWCNTs wrapped with polyvinylpyridine nanocomposites as adsorbent. RSC Adv. 2017, 7, 19296–19304. [Google Scholar] [CrossRef]
- Tarley, C.R.T.; Farias, N.C.B.; Fátima, G.L.; Oliveira, F.M.; Bonfílio, R.; Dragunski, D.C.; Clausen, D.N.; Segatelli, M.G. Crosslinked poly (4-vinylpyridine-ethylene glycol dimethacrylate) used for preconcentration of Cd(II) and its determination by flow injection flame atomic absorption spectrometry. J. AOAC Int. 2014, 97, 605–611. [Google Scholar]
- Oliveira, T.F.; Oliveira, F.M.; Segatelli, M.G.; Tarley, C.R.T. Evaluation of poly(vinylpyridine)-supported protoporphyrin resin for the sampling/separation of manganese(II) using a hyphenated FIA-FAAS system. Anal. Methods 2013, 5, 3264–3271. [Google Scholar]
- Geckeler, K.E. Synthesis and properties of hydrophilic polymers I. Preparation and metal complexation of poly(4-vinylp dine-co-N-allythiourea). Polym. J. 1993, 25, 115–122. [Google Scholar]
- Sacharm, M.; Anderson, K.E.; Ma, X. Protoporphyrin IX: The good, the bad, and the ugly. J. Pharmacol. Exp. Ther. 2021, 356, 267–275. [Google Scholar]
- Pessoa, C.A.; Gushikem, Y. Cobalt(II) metallated hematoporphyrin IX and protoporphyrin IX immobilized on niobium(V) oxide grafted on a silica gel surface: Electrochemical studies. J. Electroanal. Chem. 1999, 477, 158–163. [Google Scholar]
- Oliveira, L.L.G.; Suquila, F.A.C.; Figueiredo, E.C.; Segatelli, M.G.; Tarley, C.R.T. Restricted access material-ion imprinted polymer-based method for on-line flow preconcentration of Cd2+ prior to flame atomic absorption spectrometry determination. Microchem. J. 2020, 157, 105022. [Google Scholar]
- Souverain, S.; Rudaz, S.; Veuthey, J.L. Restricted access materials and large particle supports for on-line sample preparation: An attractive approach for biological fluids analysis. J. Chromatogr. 2004, B801, 141–156. [Google Scholar] [CrossRef]
- Cassiano, N.M.; Lima, V.V.; Oliveira, R.V.; Pietro, A.C.; Cass, Q.B. Development of restricted-access media supports and their application to the direct analysis of biological fluid samples via high-performance liquid chromatography. Anal. Bioanal. Chem. 2006, 384, 1462–1469. [Google Scholar] [CrossRef]
- Araújo-Neto, V.G.; Nobre, C.F.A.; De Paula, D.M.; Souza, L.C.; Silva, J.C.; Moreira, M.M.; Picanço, P.R.B.; Feitosa, V.P. Glycerol-dimethacrylate as alternative hydrophilic monomer for HEMA replacement in simplified adhesives. J. Mech. Behav. Biomed. Mater. 2018, 82, 95–101. [Google Scholar] [CrossRef]
- Queiroz, M.E.C.; Souza, I.D. Restricted access media. In Solid-Phase Extraction; Poole, C.F., Ed.; Elsevier: London, UK, 2020; pp. 129–149. [Google Scholar]
- Suquila, F.A.C.; De Oliveira, L.L.G.; Tarley, C.R.T. Restricted access copper imprinted poly(allylthiourea): The role of hydroxyethyl methacrylate (HEMA) and bovine serum albumin (BSA) on the sorptive performance of imprinted polymer. J. Chem. Eng. 2018, 350, 714–728. [Google Scholar]
- Currie, L.A. Nomenclature in evaluation of analytical methods including detection and quantification capabilities (IUPAC Recommendations 1995). Pure Appl. Chem. 1995, 67, 1699–1723. [Google Scholar] [CrossRef]
- Tarley, C.R.T.; Lima, F.G.; Nascimento, D.R.; Assis, A.R.S.; Ribeiro, E.; Diniz, K.M.; Bezerra, M.A.; Segatelli, M.G. Novel on-line sequential preconcentration system of Cr(III) and Cr(VI) hyphenated with flame atomic absorption spectrometry exploiting sorbents based on chemically modified silica. Talanta 2012, 100, 71–79. [Google Scholar]
- Suquila, F.A.C.; Tarley, C.R.T. Performance of restricted access copper-imprinted poly(allylthiourea) in an on-line preconcentration and sample clean-up FIA-FAAS system for copper determination in milk samples. Talanta 2019, 202, 460–468. [Google Scholar] [CrossRef] [PubMed]
- Mitsuzuka, A.; Fujii, A.; Ebata, T.; Mikami, N. Infrared spectroscopy of OH stretching vibrations of hydrogen-bonded tropolone-(H2O)n (n=1–3) and tropolone-(CH3OH)n (n=1 and 2) clusters. Chem. Phys. 1996, 105, 2618–2627. [Google Scholar] [CrossRef]
- Ibrahim, I.M.; Yunus, S.; Hashim, M.A. Relative performance of isopropylamine, pyrrole and pyridine as corrosion inhibitors for carbon steels in saline water at mildly elevated temperatures. Int. J. Sci. Eng. Res. 2013, 4, 1–12. [Google Scholar]
- Oliveira, F.M.; Somera, B.F.; Ribeiro, E.S.; Segatelli, M.G.; Yabe, M.J.; Galunin, E.; Tarley, C.R.T. Kinetic and isotherm studies of Ni2+ adsorption on poly(methacrylic acid) synthesized through a hierarchical double-imprinting method using a Ni2+ ion and cationic surfactant as templates. Ind. Eng. Chem. Res. 2013, 52, 8550–8557. [Google Scholar] [CrossRef]
- Grochowicz, M. Investigation of the thermal behavior of 4-vinylpyridine–trimethylolpropane trimethacrylate copolymeric microspheres. J. Therm. Anal. Calorim. 2014, 118, 1603–1611. [Google Scholar] [CrossRef]
- Cui, H.; Ren, W.; Lin, P.; Liu, Y. Structure control synthesis of iron oxide polymorph nanoparticles through an epoxide precipitation route. J. Exp. Nanosci. 2013, 8, 869–875. [Google Scholar] [CrossRef]
- Shah, B.; Shah, A.; Tailor, R. Characterization of hydroxybenzoic acid chelating resins: Equilibrium, kinetics, and isotherm profiles for Cd(II) and Pb(II) uptake. J. Serb. Chem. Soc. 2011, 76, 903–922. [Google Scholar]
- Basaglia, A.M.; Corazza, M.Z.; Segatelli, M.G.; Tarley, C.R.T. Synthesis of Pb(II)-imprinted poly(methacrylic acid) polymeric particles loaded with 1-(2-pyridylazo)-2-naphthol (PAN) for micro-solid phase preconcentration of Pb2+ on-line coupled to flame atomic absorption spectrometry. RSC Adv. 2017, 7, 33001–33011. [Google Scholar] [CrossRef]
- Afzali, D.; Afzali, M.; Ghanbarian, M. Preconcentration of trace amounts of cobalt(II) ions in water and agricultural products samples using of 5-(4-dimethylaminobenzylidene) rhodanin modified SBA-15 sorbent prior to FAAS determination. J. Environ. Anal. Chem. 2018, 98, 338–348. [Google Scholar] [CrossRef]
- Pearson, R.G. Chemical hardness and bond dissociation energies. J. Am. Chem. Soc. 1988, 110, 7684–7690. [Google Scholar]
- Sorokhaibam, L.G.; Ahmaruzzaman, M. Phenolic wastewater treatment: Development and applications of new adsorbent materials. In Industrial Wastewater Treatment, Recycling and Reuse, 1st ed.; Ranade, V.V., Bhandari, V.M., Eds.; Butterworth-Heinemann: Oxford, UK, 2014; Volume 1, pp. 323–368. [Google Scholar]
- Casarin, J.; Gonçalves, A.C.; Segatelli, M.G.; Tarley, C.R.T. Poly(methacrylic acid)/SiO2/Al2O3 based organic-inorganic hybrid adsorbent for adsorption of imazethapyr herbicide from aqueous medium. React. Funct. Polym. 2017, 121, 101–109. [Google Scholar]
- Ding, L.; Han, X.; Cao, L.; Chen, Y.; Ling, Z.; Han, J.; He, S.; Jiang, S. Characterization of natural fiber from manau rattan (Calamus manan) as a potential reinforcement for polymer-based composites. J. Bioresour. Bioprod. 2022, 7, 190–200. [Google Scholar]
- Chen, Y.; Zhao, W.; Zhang, J. Preparation of 4-vinylpyridine (4VP) resin and its adsorption performance for heavy metal ions. RSC Adv. 2017, 7, 4226–4236. [Google Scholar] [CrossRef]
- Cuppett, J.D.; Duncan, S.E.; Dietrich, A.M. Evaluation of copper speciation and water quality factors that affect aqueous copper tasting response. Chem. Senses 2006, 31, 689–697. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, F.M.; Segatelli, M.G.; Tarley, C.R.T. Preparation of a new restricted access molecularly imprinted hybrid adsorbent for the extraction of folic acid from milk powder samples. Anal. Methods 2016, 8, 656–665. [Google Scholar] [CrossRef]
- Elci, A.; Kabakçi, E.; Elci, L. Solid-phase extractive preconcentration of trace copper as its calmagite anionic chelate using a polyaniline column for flame atomic absorption spectrometric determination. Anal. Lett. 2015, 48, 632–646. [Google Scholar] [CrossRef]
- Pourjavid, M.R.; Arabieh, M.; Yousefi, S.R.; Akbari, A.S. Interference free and fast determination of manganese(II), iron(III) and copper(II) ions in different real samples by flame atomic absorption spectroscopy after column graphene oxide-based solid phase extraction. Microchem. J. 2016, 129, 259–267. [Google Scholar]
- Jasmin, S.; Jan, M.R. Selective Solid Phase Extraction of Copper from Different Samples using Copper Ion-Imprinted Polymer. J. Anal. Chem. 2018, 73, 1146–1153. [Google Scholar]
- Rais, S.; Islam, A.; Ahmad, I.; Kumar, S.; Chauhan, A.; Javed, H. Preparation of a new magnetic ion-imprinted polymer and optimization using Box-Behnken design for selective removal and determination of Cu(II) in food and wastewater samples. Food Chem. 2021, 334, 127563. [Google Scholar]
- Turan, K.; Canlidinç, R.S.; Kalfa, O.M. Preconcentration of trace amount Cu(II) by solid-phase extraction method using activated carbon-based ion-imprinted sorbent. Turk. J. Chem. 2022, 46, 550–566. [Google Scholar]
- Gao, Y.; Zhou, R.-Y.; Yao, L.; Yin, W.; Yu, J.-X.; Yue, Q.; Xue, Z.; He, H.; Gao, B. Synthesis of rice husk-based ion-imprinted polymer for selective capturing Cu(II) from aqueous solution and re-use of its waste material in Glaser coupling reaction. J. Hazard. Mater. 2022, 424, 127203. [Google Scholar] [CrossRef]
- Andersen, J.R.; Pedersen, C.T. Physicochemical Analysis Methods. In Encyclopedia of Meat Sciences, 2nd ed.; Dikeman, M., Devine, C., Eds.; Elsevier Science Publishing Co. Inc.: New York, NY, USA, 2014; Volume 1, pp. 173–0179. [Google Scholar]
Adsorbent | Preconcentration Modality | Detection Mode | Figures of Merit | Samples | Ref. | ||||
---|---|---|---|---|---|---|---|---|---|
LOD | LOQ | PF | PV | ST | |||||
Polyaniline/Calmagite | SPE Off-line | FAAS | 1.98 | NI | 200.0 | NI | NI | Water (drinking, bottled, sea) | [55] |
Graphene oxide/PTT | SPE | FAAS | 0.06 | NI | 280.0 | 1400 | NI | Leaves of spinach, honey, hair, blood, and various water samples | [56] |
IIP | SPE | FAAS | NI | NI | NI | NI | NI | Water samples and industrial effluent water | [57] |
IIP-HEMA-BSA | SPE Online | FI-FAAS | 1.10 | 3.60 | 24.0 | 20.0 | 20 | Bovine and soybean milk | [39] |
Fe3O4@IIP-IDC | SPE Off-line | FAAS | 1.03 | 4.50 | 50.0 | NI | NI | Food samples and battery wastewater | [58] |
IAC | SPE Off-line | FAAS | 0.03 | NI | 150.0 | 750 | NI | Tap water | [59] |
RH-CIIP | SPE | FAAS | NI | NI | NI | NI | NI | Wastewater | [60] |
poly(protoporphyrin-co-vinyl pyridine) | SPE Online | FIA-FAAS | 0.90 | 2.90 | 44.7 | 30.0 | 20 | Water samples and milk samples | This work |
Samples | Cu2+ (μg L−1) | Recovery (%) | |
---|---|---|---|
Amount Added | Amount Found ± SD a | ||
S1 Igapó lake | 0 | <LOQ | - |
50 | 54 ± 4 | 92.1 | |
100 | 103 ± 8 | 103.1 | |
S2 Igapó lake | 0 | <LOQ | - |
50 | 47.8 ± 0.3 | 104.6 | |
100 | 92 ± 4 | 91.7 | |
S3 Igapó lake | 0 | <LOQ | - |
50 | 54 ± 2 | 108.4 | |
100 | 102 ± 4 | 101.8 | |
S4 * Bovine milk | 0 | <LOQ | - |
50 | 52± 6 | 103.2 | |
100 | 107 ± 1 | 106.8 | |
S5 * Bovine milk | 0 | <LOQ | - |
50 | 49 ± 5 | 98.2 | |
100 | 97 ± 9 | 96.7 | |
S4 ** Bovine milk | 0 | <LOQ | - |
50 | 50 ± 6 | 100.8 | |
100 | 101.9 ± 0.3 | 101.9 | |
S5 ** Bovine milk | 0 | <LOQ | - |
50 | 47 ± 3 | 94.8 | |
100 | 99.2 ± 0.3 | 99.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cajamarca Suquila, F.A.; Bertoldo, L.A.; Lins, E.; Tarley, C.R.T. Development of Micro-Column Preconcentration Method Using a Restricted-Access Poly(protoporphyrin-co-vinyl pyridine) Adsorbent for Copper Determination in Water and Milk Samples by FIA-FAAS. Separations 2023, 10, 122. https://doi.org/10.3390/separations10020122
Cajamarca Suquila FA, Bertoldo LA, Lins E, Tarley CRT. Development of Micro-Column Preconcentration Method Using a Restricted-Access Poly(protoporphyrin-co-vinyl pyridine) Adsorbent for Copper Determination in Water and Milk Samples by FIA-FAAS. Separations. 2023; 10(2):122. https://doi.org/10.3390/separations10020122
Chicago/Turabian StyleCajamarca Suquila, Fabio Antonio, Letícia Alana Bertoldo, Eduardo Lins, and César Ricardo Teixeira Tarley. 2023. "Development of Micro-Column Preconcentration Method Using a Restricted-Access Poly(protoporphyrin-co-vinyl pyridine) Adsorbent for Copper Determination in Water and Milk Samples by FIA-FAAS" Separations 10, no. 2: 122. https://doi.org/10.3390/separations10020122
APA StyleCajamarca Suquila, F. A., Bertoldo, L. A., Lins, E., & Tarley, C. R. T. (2023). Development of Micro-Column Preconcentration Method Using a Restricted-Access Poly(protoporphyrin-co-vinyl pyridine) Adsorbent for Copper Determination in Water and Milk Samples by FIA-FAAS. Separations, 10(2), 122. https://doi.org/10.3390/separations10020122