Synthesis and Surface Modification of Iron Oxide Nanoparticles for the Extraction of Cadmium Ions in Food and Water Samples: A Chemometric Study
Abstract
:1. Introduction
2. Experimental Procedure
2.1. Reagents and Solutions
2.2. Instrumentation
2.3. Synthesis of Surface Modified Iron Oxide Nanoparticles (Fe3O4@SiO2@APTES)
2.3.1. Synthesis of Iron Oxide Nanoparticles
2.3.2. Surface Modification of Iron Oxide Nanoparticles
2.3.3. Functionalization of Fe3O4@SiO2 with APTES
2.4. Microextraction Procedure for Cadmium Ions
2.5. Experimental Design Methodology
2.5.1. Plackett–Burman Design
2.5.2. Central Composite Design
3. Results and Discussions
3.1. Characterization Studies
3.1.1. Fourier Transformed Infrared Spectra
3.1.2. SEM
3.1.3. X-ray Diffraction Pattern
3.1.4. Dynamic Light Scattering Analysis
3.1.5. Zeta Potential
3.1.6. Vibrating Sample Magnetometer
3.2. Optimization of Experimental Parameters via Multivariate Strategy
3.2.1. Central Composite Design
3.2.2. Response Surface Methodology
3.3. Interference Study
3.4. Analytical Figures of Merit
3.5. Validation and Estimation of Uncertainty for the Determination of Cd2+
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Massadeh, A.M.; El-Rjoob, A.-W.O.; Gharaibeh, S.A. Analysis of selected heavy metals in tap water by inductively coupled plasma-optical emission spectrometry after pre-concentration using chelex-100 ion exchange resin. Water Air Soil Pollut. 2020, 231, 243. [Google Scholar] [CrossRef]
- Sodipo, B.K.; Aziz, A.A. One minute synthesis of amino-silane functionalized superparamagnetic iron oxide nanoparticles by sonochemical method. Ultrason. Sonochem. 2018, 40, 837–840. [Google Scholar] [CrossRef] [PubMed]
- Jafari Kang, A.; Baghdadi, M.; Pardakhti, A. Removal of cadmium and lead from aqueous solutions by magnetic acid-treated activated carbon nanocomposite. Desalination Water Treat. 2016, 57, 18782–18798. [Google Scholar] [CrossRef]
- Qu, J.; Meng, X.; Zhang, Y.; Meng, Q.; Tao, Y.; Hu, Q.; Jiang, X.; You, H.; Shoemaker, C.A. A combined system of microwave-functionalized rice husk and poly-aluminium chloride for trace cadmium-contaminated source water purification: Exploration of removal efficiency and mechanism. J. Hazard. Mater. 2019, 379, 120804. [Google Scholar] [CrossRef]
- Rahimzadeh, M.; Rahimzadeh, M.; Kazemi, S.; Moghadamnia, A. Cadmium toxicity and treatment: An update. Casp. J. Intern. Med. 2017, 8, 135–145. [Google Scholar]
- Dugheri, S.; Mucci, N.; Bonari, A.; Marrubini, G.; Cappelli, G.; Ubiali, D.; Campagna, M.; Montalti, M.; Arcangeli, G. Liquid phase microextraction techniques combined with chromatography analysis: A review. Acta Chromatogr. 2020, 32, 69–79. [Google Scholar] [CrossRef]
- Hashemzadeh, M.; Nilchi, A.; Hassani, A.H. Synthesis of novel surface-modified hematite nanoparticles for lead ions removal from aqueous solution. Mater. Chem. Phys. 2019, 227, 279–290. [Google Scholar] [CrossRef]
- Ge, F.; Li, M.-M.; Ye, H.; Zhao, B.-X. Effective removal of heavy metal ions Cd2+, Zn2+, Pb2+, Cu2+ from aqueous solution by polymer-modified magnetic nanoparticles. J. Hazard. Mater. 2012, 211, 366–372. [Google Scholar] [CrossRef]
- Božić, D.; Stanković, V.; Gorgievski, M.; Bogdanović, G.; Kovačević, R. Adsorption of heavy metal ions by sawdust of deciduous trees. J. Hazard. Mater. 2009, 171, 684–692. [Google Scholar] [CrossRef]
- Manyangadze, M.; Chikuruwo, N.; Chakra, C.; Narsaiah, T.; Radhakumari, M.; Danha, G. Enhancing adsorption capacity of nano-adsorbents via surface modification: A review. South Afr. J. Chem. Eng. 2020, 31, 25–32. [Google Scholar] [CrossRef]
- Suo, L.; Dong, X.; Gao, X.; Xu, J.; Huang, Z.; Ye, J.; Lu, X.; Zhao, L. Silica-coated magnetic graphene oxide nanocomposite based magnetic solid phase extraction of trace amounts of heavy metals in water samples prior to determination by inductively coupled plasma mass spectrometry. Microchem. J. 2019, 149, 104039. [Google Scholar] [CrossRef]
- Zhao, X.; Shi, Y.; Wang, T.; Cai, Y.; Jiang, G. Preparation of silica-magnetite nanoparticle mixed hemimicelle sorbents for extraction of several typical phenolic compounds from environmental water samples. J. Chromatogr. A 2008, 1188, 140–147. [Google Scholar] [CrossRef] [PubMed]
- Parham, H.; Zargar, B.; Rezazadeh, M. Removal, preconcentration and spectrophotometric determination of picric acid in water samples using modified magnetic iron oxide nanoparticles as an efficient adsorbent. Mater. Sci. Eng. C 2012, 32, 2109–2114. [Google Scholar] [CrossRef] [PubMed]
- Rose, L.C.; Suhaimi, H.; Mamat, M.; Lik, T.Z. Synthesis and characterization of oleic acid surface modified magnetic iron oxide nanoparticles by using biocompatible w/o microemulsion for heavy metal removal. AIP Conf. Proc. 2017, 1885, 020113. [Google Scholar]
- Dados, A.; Paparizou, E.; Eleftheriou, P.; Papastephanou, C.; Stalikas, C. Nanometer-sized ceria-coated silica–iron oxide for the reagentless microextraction/preconcentration of heavy metals in environmental and biological samples followed by slurry introduction to ICP-OES. Talanta 2014, 121, 127–135. [Google Scholar] [CrossRef]
- Parham, H.; Zargar, B.; Shiralipour, R. Fast and efficient removal of mercury from water samples using magnetic iron oxide nanoparticles modified with 2-mercaptobenzothiazole. J. Hazard. Mater. 2012, 205, 94–100. [Google Scholar] [CrossRef]
- Petcharoen, K.; Sirivat, A. Synthesis and characterization of magnetite nanoparticles via the chemical co-precipitation method. Mater. Sci. Eng. B 2012, 177, 421–427. [Google Scholar] [CrossRef]
- Bhateria, R.; Singh, R. A review on nanotechnological application of magnetic iron oxides for heavy metal removal. J. Water Process Eng. 2019, 31, 100845. [Google Scholar] [CrossRef]
- Mahmoudi, M.; Simchi, A.; Milani, A.; Stroeve, P. Cell toxicity of superparamagnetic iron oxide nanoparticles. J. Colloid Interface Sci. 2009, 336, 510–518. [Google Scholar] [CrossRef]
- Zhu, N.; Ji, H.; Yu, P.; Niu, J.; Farooq, M.; Akram, M.W.; Udego, I.; Li, H.; Niu, X. Surface modification of magnetic iron oxide nanoparticles. Nanomaterials 2018, 8, 810. [Google Scholar] [CrossRef]
- Xu, H.; Yuan, H.; Yu, J.; Lin, S. Study on the competitive adsorption and correlational mechanism for heavy metal ions using the carboxylated magnetic iron oxide nanoparticles (MNPs-COOH) as efficient adsorbents. Appl. Surf. Sci. 2019, 473, 960–966. [Google Scholar] [CrossRef]
- Liang, S.; Wang, Y.; Yu, J.; Zhang, C.; Xia, J.; Yin, D. Surface modified superparamagnetic iron oxide nanoparticles: As a new carrier for bio-magnetically targeted therapy. J. Mater. Sci. Mater. Med. 2007, 18, 2297–2302. [Google Scholar] [CrossRef] [PubMed]
- Maleki, B.; Baghayeri, M.; Ghanei-Motlagh, M.; Zonoz, F.M.; Amiri, A.; Hajizadeh, F.; Hosseinifar, A.; Esmaeilnezhad, E. Polyamidoamine dendrimer functionalized iron oxide nanoparticles for simultaneous electrochemical detection of Pb2+ and Cd2+ ions in environmental waters. Measurement 2019, 140, 81–88. [Google Scholar] [CrossRef]
- Ghaemi, N.; Madaeni, S.S.; Daraei, P.; Rajabi, H.; Zinadini, S.; Alizadeh, A.; Heydari, R.; Beygzadeh, M.; Ghouzivand, S. Polyethersulfone membrane enhanced with iron oxide nanoparticles for copper removal from water: Application of new functionalized Fe3O4 nanoparticles. Chem. Eng. J. 2015, 263, 101–112. [Google Scholar] [CrossRef]
- Moser, J.; Wegscheider, W.; Sperka-Gottlieb, C. Quantifying the measurement uncertainty of results from environmental analytical methods. Fresenius’ J. Anal. Chem. 2001, 370, 679–689. [Google Scholar] [CrossRef] [PubMed]
- Díaz, A.; Vàzquez, L.; Ventura, F.; Galceran, M.T. Estimation of measurement uncertainty for the determination of nonylphenol in water using solid-phase extraction and solid-phase microextraction procedures. Anal. Chim. Acta 2004, 506, 71–80. [Google Scholar] [CrossRef]
- Maroto, A.; Boqué, R.; Riu, J.; Rius, F.X. Estimation of measurement uncertainty by using regression techniques and spiked samples. Anal. Chim. Acta 2001, 446, 131–143. [Google Scholar] [CrossRef]
- Shah, F.; Shah, M.R.; Khan, R.A.; Ismail, B.; Khan, A.M.; Khan, A.R.; Ajaz, H. Sonochemically synthesized green sorbent for the simultaneous removal of trace metal ions: Application and estimation of measurement uncertainty through bottom-up approach. N. J. Chem. 2017, 41, 11695–11700. [Google Scholar] [CrossRef]
- Tadjarodi, A.; Abbaszadeh, A.; Taghizadeh, M.; Shekari, N.; Asgharinezhad, A.A. Solid phase extraction of Cd (II) and Pb (II) ions based on a novel functionalized Fe3O4@ SiO2 core-shell nanoparticles with the aid of multivariate optimization methodology. Mater. Sci. Eng. C 2015, 49, 416–421. [Google Scholar] [CrossRef]
- Kurczewska, J.; Cegłowski, M.; Schroeder, G. Preparation of multifunctional cascade iron oxide nanoparticles for drug delivery. Mater. Chem. Phys. 2018, 211, 34–41. [Google Scholar] [CrossRef]
- Chitra, K.; Annadurai, G. Rapid capture and exemplary detection of clinical pathogen using surface modified fluorescent silica coated iron oxide nanoparticles. Biocybern. Biomed. Eng. 2014, 34, 230–237. [Google Scholar] [CrossRef]
- Shafqat, S.S.; Khan, A.A.; Zafar, M.N.; Alhaji, M.H.; Sanaullah, K.; Shafqat, S.R.; Murtaza, S.; Pang, S.C. Development of amino-functionalized silica nanoparticles for efficient and rapid removal of COD from pre-treated palm oil effluent. J. Mater. Res. Technol. 2019, 8, 385–395. [Google Scholar] [CrossRef]
- Bayat, A.; Shakourian-Fard, M.; Ehyaei, N.; Hashemi, M.M. A magnetic supported iron complex for selective oxidation of sulfides to sulfoxides using 30% hydrogen peroxide at room temperature. RSC Adv. 2014, 4, 44274–44281. [Google Scholar] [CrossRef]
- Gemeay, A.H.; Keshta, B.E.; El-Sharkawy, R.G.; Zaki, A.B. Chemical insight into the adsorption of reactive wool dyes onto amine-functionalized magnetite/silica core-shell from industrial wastewaters. Environ. Sci. Pollut. Res. 2020, 27, 32341–32358. [Google Scholar] [CrossRef] [PubMed]
- Aljarrah, M.; Al-Harahsheh, M.S.; Mayyas, M.; Alrebaki, M. In situ synthesis of quaternary ammonium on silica-coated magnetic nanoparticles and its application for the removal of uranium (VI) from aqueous media. J. Environ. Chem. Eng. 2018, 6, 5662–5669. [Google Scholar] [CrossRef]
- Pylypchuk, I.V.; Kessler, V.G.; Seisenbaeva, G.A. Simultaneous removal of acetaminophen, diclofenac, and Cd (II) by Trametes versicolor laccase immobilized on Fe3O4/SiO2-DTPA hybrid nanocomposites. ACS Sustain. Chem. Eng. 2018, 6, 9979–9989. [Google Scholar] [CrossRef]
- Cao, X.; Prozorov, R.; Koltypin, Y.; Kataby, G.; Felner, I.; Gedanken, A. Synthesis of pure amorphous Fe2O3. J. Mater. Res. 1997, 12, 402–406. [Google Scholar] [CrossRef]
- Ahangaran, F.; Navarchian, A.H. Recent advances in chemical surface modification of metal oxide nanoparticles with silane coupling agents: A review. Adv. Colloid Interface Sci. 2020, 286, 102298. [Google Scholar] [CrossRef]
- Periakaruppan, R.; Chen, X.; Thangaraj, K.; Jeyaraj, A.; Nguyen, H.H.; Yu, Y.; Hu, S.; Lu, L.; Li, X. Utilization of tea resources with the production of superparamagnetic biogenic iron oxide nanoparticles and an assessment of their antioxidant activities. J. Clean. Prod. 2021, 278, 123962. [Google Scholar] [CrossRef]
- Ehrampoush, M.H.; Miria, M.; Salmani, M.H.; Mahvi, A.H. Cadmium removal from aqueous solution by green synthesis iron oxide nanoparticles with tangerine peel extract. J. Environ. Health Sci. Eng. 2015, 13, 84. [Google Scholar] [CrossRef]
- Kwikima, M.M.; Mateso, S.; Chebude, Y. Scientific African. Environment 2021, 36, 60. [Google Scholar]
- Kumar, U.; Tripathi, B.; Sharma, A.; Kumar, R.; Sreenivasa, B.; Singh, R.; Bandyopadhyay, M. Sorption of Cadmium from Aqueous Solution using Pre-Treated Rice Husk. Bioresour. Technol. 2006, 97, 104–109. [Google Scholar] [CrossRef] [PubMed]
- Memon, J.R.; Memon, S.Q.; Bhanger, M.; Memon, G.Z.; El-Turki, A.; Allen, G.C. Characterization of banana peel by scanning electron microscopy and FT-IR spectroscopy and its use for cadmium removal. Colloids Surf. B Biointerfaces 2008, 66, 260–265. [Google Scholar] [CrossRef]
- Álvarez-Ayuso, E.; García-Sánchez, A. Removal of cadmium from aqueous solutions by palygorskite. J. Hazard. Mater. 2007, 147, 594–600. [Google Scholar] [CrossRef] [PubMed]
- Yavuz, Ö.; Guzel, R.; Aydin, F.; Tegin, I.; Ziyadanogullari, R. Removal of Cadmium and Lead from Aqueous Solution by Calcite. Pol. J. Environ. Stud. 2007, 16, 467–471. [Google Scholar]
- Lodeiro, P.; Cordero, B.; Barriada, J.L.; Herrero, R.; De Vicente, M.S. Biosorption of cadmium by biomass of brown marine macroalgae. Bioresour. Technol. 2005, 96, 1796–1803. [Google Scholar] [CrossRef]
- Herrero, R.; Cordero, B.; Lodeiro, P.; Rey-Castro, C.; de Vicente, M.S. Interactions of cadmium (II) and protons with dead biomass of marine algae Fucus sp. Mar. Chem. 2006, 99, 106–116. [Google Scholar] [CrossRef]
- Parsons, J.G.; Hernandez, J.; Gonzalez, C.M.; Gardea-Torresdey, J. Sorption of Cr (III) and Cr (VI) to high and low pressure synthetic nano-magnetite (Fe3O4) particles. Chem. Eng. J. 2014, 254, 171–180. [Google Scholar] [CrossRef]
- Huang, Z.; Wang, X.; Yang, D. Adsorption of Cr(VI) in wastewater using magnetic multiwall carbon nanotubes. Water Sci. Eng. 2015, 8, 226–232. [Google Scholar] [CrossRef]
- FA, I.A.-K.; Abusharkh, B.; Khaled, M.; Atieh, M.; Nasser, M.; Saleh, T.; Agarwal, S.; Tyagi, I.; Gupta, V. Adsorptive removal of cadmium (II) ions from liquid phase using acid modified carbon-based adsorbents. J. Mol. Liq. 2015, 204, 255–263. [Google Scholar]
- Mohammadi, S.Z.; Baghelani, Y.M.; Mansori, F.; Shamspur, T.; Afzali, D. Dispersive liquid-liquid microextraction for the simultaneous separation of trace amounts of zinc and cadmium ions in water samples prior to flame atomic absorption spectrometry determination. Química Nova 2012, 35, 198–202. [Google Scholar] [CrossRef]
- Norouzian Baghani, A.; Mahvi, A.H.; Gholami, M.; Rastkari, N.; Delikhoon, M. One-Pot synthesis, characterization and adsorption studies of amine-functionalized magnetite nanoparticles for removal of Cr (VI) and Ni (II) ions from aqueous solution: Kinetic, isotherm and thermodynamic studies. J. Environ. Health Sci. Eng. 2016, 14, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Budimirović, D.; Veličković, Z.S.; Bajić, Z.; Milošević, D.L.; Nikolić, J.B.; Drmanić, S.Ž.; Marinković, A.D. Removal of heavy metals from water using multistage functionalized multiwall carbon nanotubes. J. Serb. Chem. Soc. 2017, 82, 1175–1191. [Google Scholar] [CrossRef]
- Zhou, F.; Feng, X.; Yu, J.; Jiang, X. High performance of 3D porous graphene/lignin/sodium alginate composite for adsorption of Cd (II) and Pb (II). Environ. Sci. Pollut. Res. 2018, 25, 15651–15661. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Gao, S.; Zang, X.; Li, J.; Ma, J. Graphene-based solid-phase extraction combined with flame atomic absorption spectrometry for a sensitive determination of trace amounts of lead in environmental water and vegetable samples. Anal. Chim. Acta 2012, 716, 112–118. [Google Scholar] [CrossRef]
- Ellison, S.L.; Holcombe, D.G.; Burns, M. Response surface modelling and kinetic studies for the experimental estimation of measurement uncertainty in derivatisation© Copyright LGC (Teddington) Ltd. 2000. Analyst 2001, 126, 199–210. [Google Scholar] [CrossRef]
- ISO/IEC 17025; General requirements for the competence of testing and calibration laboratories. ISO International Organization for Standardization: Geneva, Switzerland, 2006.
- Analytical Methods Committee. Uncertainty of measurement: Implications of its use in analytical science. Analyst 1995, 120, 2303–2308. [Google Scholar] [CrossRef]
(a) | |||||||
Factors | ID | Unit | Lower− | Higher+ | Optimum a | ||
---|---|---|---|---|---|---|---|
pH | A | - | 3 | 8 | 4.5 | ||
Temperature | B | °C | 30 | 50 | 40 | ||
Amount of sorbent | C | mg | 20 | 40 | 30 | ||
Sonication time | D | min | 2 | 10 | 6 | ||
Sample volume | E | mL | 10 | 30 | 20 | ||
Eluent volume | F | mL | 5 | 15 | 10 | ||
(b) | |||||||
S. No. | A | B | C | D | E | F | % Recovery |
1 | + | + | − | − | − | − | 37.0 ± 2.3 |
2 | + | + | − | − | − | − | 40.7 ± 3.2 |
3 | + | + | + | − | − | − | 38.3 ± 2.6 |
4 | + | + | + | + | − | − | 87.7 ± 0.8 |
5 | + | + | + | + | + | − | 99.8 ± 0.2 |
6 | − | + | + | + | + | + | 83.9 ± 1.4 |
7 | + | − | + | + | + | + | 41.9 ± 2.9 |
8 | − | + | − | + | + | + | 43.8 ± 1.6 |
9 | + | − | + | − | + | + | 48.1 ± 0.9 |
10 | + | + | − | + | − | + | 42.5 ± 3.7 |
11 | − | + | + | − | + | − | 93.8 ± 0.6 |
12 | − | − | + | + | − | + | 87.0 ± 1.5 |
13 | + | − | − | + | + | − | 55.5 ± 0.3 |
14 | + | + | − | − | + | + | 83.9 ± 1.2 |
15 | − | + | + | − | − | + | 54.9 ± 2.5 |
16 | − | − | + | + | − | − | 53.7 ± 2.3 |
17 | + | − | − | + | + | − | 49.4 ± 3.3 |
18 | − | + | − | − | + | + | 56.2 ± 4.6 |
19 | + | − | + | − | − | + | 72.9 ± 1.8 |
20 | − | + | − | + | − | − | 88.3 ± 1.3 |
21 | − | − | + | − | + | − | 38.3 ± 4.7 |
22 | − | − | − | + | − | + | 96.3 ± 0.6 |
23 | − | − | − | − | + | − | 85.2 ± 2.4 |
24 | − | − | − | − | − | + | 51.2 ± 4.2 |
S. No. | A | B | C | D | E | % Recovery |
---|---|---|---|---|---|---|
1 | aA | aB | aC | aD | aE | 97.8 ± 0.6 |
2 | − | − | − | − | + | 20.1 ± 1.7 |
3 | + | − | − | − | − | 25.2 ± 4.6 |
4 | − | + | − | − | − | 16.8 ± 3.2 |
5 | + | + | − | − | + | 21.4 ± 2.7 |
6 | − | − | + | − | − | 32.5 ± 2.8 |
7 | + | − | + | − | + | 37.3 ± 1.7 |
8 | − | + | + | − | + | 39.2 ± 0.9 |
9 | + | + | + | − | − | 42.8 ± 2.1 |
10 | − | − | − | + | − | 19.3 ± 3.4 |
11 | + | − | − | + | + | 27.9 ± 0.8 |
12 | − | + | − | + | + | 25.7 ± 3.4 |
13 | + | + | − | + | − | 36.5 ± 1.5 |
14 | − | − | + | + | + | 39.7 ± 2.6 |
15 | + | − | + | + | − | 42.4 ± 0.6 |
16 | − | + | + | + | − | 27.7 ± 3.3 |
17 | + | + | + | + | + | 35.5 ± 3.2 |
18 | −aA | aB | aC | aD | aE | 9.8 ± 1.6 |
19 | +aA | aB | aC | aD | aE | 4.5 ± 0.7 |
20 | aA | −aB | aC | aD | aE | 7.4 ± 1.2 |
21 | aA | +aB | aC | aD | aE | 16.8 ± 2.4 |
22 | aA | aB | −aC | aD | aE | 6.4 ± 0.4 |
23 | aA | aB | +aC | aD | aE | 72.9 ± 3.4 |
24 | aA | aB | aC | −aD | aE | 3.9 ± 1.9 |
25 | aA | aB | aC | +aD | aE | 59.6 ± 1.5 |
26 | aA | aB | aC | aD | −aE | 1.7 ± 0.2 |
27 | aA | aB | aC | aD | +aE | 65.6 ± 3.2 |
28 | aA | aB | aC | aD | aE | 94.9 ± 0.9 |
Coexisting Ions | Concentration (ppm) |
---|---|
Mg2+, Ca2+, Na+, K+, Cl− | 10,000 |
Al3+, Fe2+, Cr3+, Fe3+, Zn2+ | 5000 |
Cd2+, Pb+2, | 2000 |
Co2+, Ni2+, PO43−, SO42− | 1000 |
F−, CO32- | 500 |
Analytical Parameters | |
---|---|
Linear range (µg L−1) | 0.58 to 200 |
Correlation coefficient | 0.998 |
Enhancement factor | 83.5 |
Extraction recovery (%) | 96 |
Calibration equation | y = 0.01x |
LOD (µg L−1) | 0.17 |
LOQ (µg L−1) | 0.58 |
RSDr (n = 7) | <3.5 |
RSDR (n = 15) | <9 |
MDL (µg L−1) | 0.10 |
MQL (µg L−1) | 0.35 |
Adsorbent | Adsorption Capacity (mg g−1) | Reference |
---|---|---|
Plant-based sorbents | ||
Activated carbon | 1.39 | [41] |
Raw rice husk | 8.58 | [42] |
Banana peel | 35.52 | [43] |
Naturally occurring inorganic sorbents | ||
Palygorskite | 4.54 | [44] |
Calcite | 18.52 | [45] |
Microorganisms based sorbents | ||
Ascophyllum nodosum | 38 | [46] |
Algae, marine, dead biomass | 80 | [47] |
Nanosorbents | ||
Nanomagnetite particles | 1.71 | [48] |
Magnetic MWCNT | 1.73 | [49] |
Modified carbon nano tubes | 2.02 | [50] |
BaFe12O19 magnetic nanopowder | 13.25 | [51] |
Fe3O4-NH2 | 24.25 | [52] |
MWCNT/PD | 44.20 | [53] |
Graphene/lignin/sodium alginate | 80.32 | [54] |
EDA-MP microspheres | 145.20 | [55] |
Fe3O4@SiO2@APTES | 165.20 | Current study |
Sample | Added Amount (mg) | Found Amount (mg) | % Recovery | Uexp a |
---|---|---|---|---|
Tap water | 0 | BDL | - | - |
0.25 | 0.25 | 98.8 ± 1.8 | 1.7 | |
0.50 | 0.49 | 98.2 ± 2.0 | 1.6 | |
1.00 | 0.97 | 96.8 ± 2.1 | 1.7 | |
Wastewater | 0 | 0.08 | - | - |
0.25 | 0.33 | 99.6 ± 0.4 | 0.3 | |
0.50 | 0.56 | 97.4 ± 1.2 | 0.9 | |
1.00 | 1.06 | 98.3 ± 1.5 | 1.2 | |
Spices samples | 0 | BDL | - | - |
0.25 | 0.25 | 100.4 ± 0.3 | 0.2 | |
0.50 | 0.50 | 100.2 ± 0.7 | 0.6 | |
1.00 | 0.99 | 99.5 ± 0.9 | 0.7 | |
Milk powder | 0 | BDL | - | - |
0.25 | 0.24 | 97.6 ± 1.1 | 0.9 | |
0.50 | 0.50 | 100.4 ± 0.7 | 0.6 | |
1.00 | 1.01 | 101.2 ± 1.0 | 0.8 | |
Certified reference material (µg L−1) (n = 5) | ||||
Certified value | Found value | % Recovery | Uexp a | |
Water SRM 1643e | ||||
6.57 ± 0.07 | 6.55 ± 0.34 | 99.7 ± 1.2 | 1.1 | |
Drinking water ERM-CA011 | ||||
4.88 ± 0.04 | 4.84 ± 0.07 | 99.2 ± 0.9 | 0.8 | |
Rainwater NWTMRAIN-04 | ||||
0.52 ± 0.01 | 0.50 ± 0.02 | 96.1 ± 2.3 | 2.1 | |
Fortified water NWTM-15.2 | ||||
13.0 ± 1.02 | 12.6 ± 1.07 | 96.9 ± 1.9 | 1.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shah, F.; Ghafoor, M. Synthesis and Surface Modification of Iron Oxide Nanoparticles for the Extraction of Cadmium Ions in Food and Water Samples: A Chemometric Study. Separations 2023, 10, 124. https://doi.org/10.3390/separations10020124
Shah F, Ghafoor M. Synthesis and Surface Modification of Iron Oxide Nanoparticles for the Extraction of Cadmium Ions in Food and Water Samples: A Chemometric Study. Separations. 2023; 10(2):124. https://doi.org/10.3390/separations10020124
Chicago/Turabian StyleShah, Faheem, and Munazza Ghafoor. 2023. "Synthesis and Surface Modification of Iron Oxide Nanoparticles for the Extraction of Cadmium Ions in Food and Water Samples: A Chemometric Study" Separations 10, no. 2: 124. https://doi.org/10.3390/separations10020124
APA StyleShah, F., & Ghafoor, M. (2023). Synthesis and Surface Modification of Iron Oxide Nanoparticles for the Extraction of Cadmium Ions in Food and Water Samples: A Chemometric Study. Separations, 10(2), 124. https://doi.org/10.3390/separations10020124