Abstract
In photovoltaic (PV) power generation, the intermittency and uncertainty caused by meteorological factors pose challenges to grid operations. Accurate PV power prediction is crucial for optimizing power dispatching and balancing supply and demand. This paper proposes a PV power prediction model based on Density Peak Clustering Algorithm (DPCA)–Crested Porcupine Optimizer (CPO)–Random Forest (RF)–Gated Recurrent Unit (GRU)–Kolmogorov–Arnold Network (KAN). First, the DPCA is used to accurately classify weather conditions according to meteorological data such as solar radiation, temperature, and humidity. Then, the CPO algorithm is established to optimize the factor screening characteristic variables of the RF. Subsequently, a hybrid GRU model with a KAN layer is introduced for short-term PV power prediction. The Shapley Additive Explanation (SHAP) method values evaluating feature importance and the impact of causal features. Compared with other contrast models, the DPCA-CPO-RF-KAN-GRU model demonstrates better error reduction capabilities under three weather types, with an average fitting accuracy R2 reaching 97%. SHAP analysis indicates that the combined average SHAP value of total solar radiation and direct solar radiation contributes more than 70%. Finally, the Kernel Density Estimation (KDE) is utilized to verify that the KAN-GRU model has high robustness in interval prediction, providing strong technical support for ensuring the stability of the power grid and precise decision-making in the electricity market.