Abstract
The growing pressure to achieve carbon neutrality has exposed major limitations in current industrial processes, which often operate in isolation, rely on simplified mass-balance assumptions, and struggle to manage increasingly complex material and energy flows. Traditional industrial symbiosis and circular economy strategies have improved resource efficiency, yet they rarely capture molecular-level interactions or enable coordinated optimization across multiple facilities, restricting their ability to support large-scale decarbonization. In this context, Carbon–Hydrogen–Oxygen Symbiosis Networks (CHOSYNs) have emerged as an advanced framework that integrates atomic-level targeting with multi-scale process systems engineering to identify synergies, valorization pathways, and cross-sector exchanges that conventional approaches overlook. This review consolidates the theoretical foundations, historical development, and recent applications of CHOSYNs, illustrating how it can enhance efficiency, reduce emissions, and strengthen resilience in energy systems, chemical industries, and circular resource management. Although the literature remains limited, existing studies demonstrate the promise of CHOSYNs as a unifying methodology for designing low-carbon industrial ecosystems. Key challenges related to scalability, validation, governance, and operational robustness are examined, and a roadmap is proposed to guide the evolution and practical deployment of CHOSYNs toward 2035.