Multi-Source Data Integration and Model Coupling for Watershed Eco-Assessment Systems: Progress, Challenges, and Prospects
Abstract
1. Introduction
2. Data Sources for Watershed Eco-Assessment
2.1. Ground Monitoring Data
2.2. Remote Sensing Data
2.3. Biological Monitoring Data
2.4. Model Outputs and Reanalysis Products
3. Methods of Multi-Source Data Integration
3.1. Data Cleaning and Standardization
3.2. Spatial-Temporal Harmonization
3.3. Feature Extraction and Transformation
3.4. Data Fusion Techniques
4. Models for Watershed Eco-Assessment
4.1. Hydrological Models
4.2. Water Quality Models
4.3. Integrated Ecohydrological Models
4.4. Model Selection and Application Considerations
5. Coupling Strategies for Integrated Eco-Assessment
5.1. Loose Coupling
5.2. Tight Coupling
5.3. Embedded (Seamless) Coupling
5.4. Emerging Flexible Coupling Frameworks
5.5. Coupling Strategy Selection and Best Practices
6. Challenges and Future Directions
6.1. Challenges
6.1.1. Data Heterogeneity and Quality
6.1.2. Scale Mismatch and Model Integration
6.1.3. Computational Complexity
6.1.4. Uncertainty Propagation and Communication
6.1.5. Governance, Interoperability, and Stakeholder Engagement
6.2. Future Directions
6.2.1. Toward Smart, Adaptive Watershed Systems
6.2.2. AI-Augmented Data Fusion and Modeling
6.2.3. Cross-Scale, Multi-Resolution Coupling
6.2.4. Emphasizing Uncertainty-Aware Decision Support
6.2.5. Promoting Open Science and Interoperability
7. Conclusions
Funding
Conflicts of Interest
References
- Carpenter, S.R.; Stanley, E.H.; Vander Zanden, M.J. State of the world’s freshwater ecosystems: Physical, chemical, and biological changes. Annu. Rev. Environ. Resour. 2011, 36, 75–99. [Google Scholar] [CrossRef]
- He, C.; Wang, Y.; Li, Q.-X.; Yan, Z.; Zhang, K.; Ni, S.-F.; Duan, X.-H.; Liu, L. Alkylarylation of alkenes with arylsulfonylacetate as bifunctional reagent via photoredox radical addition/Smiles rearrangement cascade. Chin. Chem. Lett. 2025, 36, 110253. [Google Scholar] [CrossRef]
- Allan, J.D. Landscapes and Riverscapes: The Influence of Land Use on Stream Ecosystems. Annu. Rev. Ecol. Evol. Syst. 2004, 35, 257–284. [Google Scholar] [CrossRef]
- Bai, Y.; Li, S.; Ho, S.-H. How do nanomaterials influence the spread of antibiotic resistance genes in aquatic environments? Chin. Chem. Lett. 2025, 111183. [Google Scholar] [CrossRef]
- Dudgeon, D.; Arthington, A.H.; Gessner, M.O.; Kawabata, Z.-I.; Knowler, D.J.; Lévêque, C.; Naiman, R.J.; Prieur-Richard, A.-H.; Soto, D.; Stiassny, M.L.J.; et al. Freshwater biodiversity: Importance, threats, status and conservation challenges. Biol. Rev. 2006, 81, 163–182. [Google Scholar] [CrossRef]
- Aredo, M.R.; Lohani, T.K.; Mohammed, A.K. Revisiting the global weights of the integrated watershed health assessment framework and Weyib watershed health analysis: Ethiopia’s policy prospects. World Water Policy 2024, 10, 940–970. [Google Scholar] [CrossRef]
- Sivapalan, M. Pattern, Process and Function: Elements of a Unified Theory of Hydrology at the Catchment Scale. In Encyclopedia of Hydrological Sciences; John Wiley & Sons: Hoboken, NJ, USA, 2005. [Google Scholar]
- Xu, Z.; Yang, P.; Yin, X.; Cai, X. Editorial: Watershed environmental changes and adaptive management for sustainability. Front. Environ. Sci. 2024, 12, 1455906. [Google Scholar] [CrossRef]
- Kirchner, J.W. Getting the right answers for the right reasons: Linking measurements, analyses, and models to advance the science of hydrology. Water Resour. Res. 2006, 42, W03S04. [Google Scholar] [CrossRef]
- Tian, Y.; Wen, Z.; Zhang, X.; Cheng, M.; Xu, M. Exploring a multisource-data framework for assessing ecological environment conditions in the Yellow River Basin, China. Sci. Total Environ. 2022, 848, 157730. [Google Scholar] [CrossRef]
- Jaywant, S.A.; Arif, K.M. Remote Sensing Techniques for Water Quality Monitoring: A Review. Sensors 2024, 24, 8041. [Google Scholar] [CrossRef]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Reichstein, M.; Camps-Valls, G.; Stevens, B.; Jung, M.; Denzler, J.; Carvalhais, N.; Prabhat, F. Deep learning and process understanding for data-driven Earth system science. Nature 2019, 566, 195–204. [Google Scholar] [CrossRef]
- Fauvel, M.; Chanussot, J.; Benediktsson, J.A. A spatial–spectral kernel-based approach for the classification of remote-sensing images. Pattern Recognit. 2012, 45, 381–392. [Google Scholar] [CrossRef]
- Gregersen, J.; Gijsbers, P.; Westen, S. OpenMI: Open modelling interface. J. Hydroinform. 2007, 9, 175–191. [Google Scholar] [CrossRef]
- Fenocchi, A.; Pella, N.; Copetti, D.; Buzzi, F.; Magni, D.; Salmaso, N.; Dresti, C. Use of process-based coupled ecological-hydrodynamic models to support lake water ecosystem service protection planning at the regional scale. J. Contam. Hydrol. 2025, 268, 104469. [Google Scholar] [CrossRef] [PubMed]
- Gan, T.; Tucker, G.E.; Hutton, E.W.H.; Piper, M.D.; Overeem, I.; Kettner, A.J.; Campforts, B.; Moriarty, J.M.; Undzis, B.; Pierce, E.; et al. CSDMS Data Components: Data–model integration tools for Earth surface processes modeling. Geosci. Model Dev. 2024, 17, 2165–2185. [Google Scholar] [CrossRef]
- Hutton, E.W.H.; Piper, M.D.; Tucker, G.E. The Babelizer: Language interoperability for model coupling in the geosciences. J. Open Source Softw. 2022, 7, 3344. [Google Scholar] [CrossRef]
- Strasser, U.; Warscher, M.; Rottler, E.; Hanzer, F. openAMUNDSEN v 0.8.3: An open source snow-hydrological model for mountain regions. EGUsphere 2024, 2024, 1–25. [Google Scholar]
- Harpham, Q.K.; Hughes, A.; Moore, R. Introductory overview: The OpenMI 2.0 standard for integrating numerical models. Environ. Model. Softw. 2019, 122, 104549. [Google Scholar] [CrossRef]
- Peckham, S.D.; Hutton, E.W.H.; Norris, B. A component-based approach to integrated modeling in the geosciences: The design of CSDMS. Comput. Geosci. 2013, 53, 3–12. [Google Scholar] [CrossRef]
- Álvarez-Romero, J.G.; Wilkinson, S.N.; Pressey, R.L.; Ban, N.C.; Kool, J.; Brodie, J. Modeling catchment nutrients and sediment loads to inform regional management of water quality in coastal-marine ecosystems: A comparison of two approaches. J. Environ. Manag. 2014, 146, 164–178. [Google Scholar] [CrossRef] [PubMed]
- Ward, S.; Scott Borden, D.; Kabo-Bah, A.; Fatawu, A.N.; Mwinkom, X.F. Water resources data, models and decisions: International expert opinion on knowledge management for an uncertain but resilient future. J. Hydroinform. 2019, 21, 32–44. [Google Scholar] [CrossRef]
- Liu, Y.; Theller, L.O.; Pijanowski, B.C.; Engel, B.A. Optimal selection and placement of green infrastructure to reduce impacts of land use change and climate change on hydrology and water quality: An application to the Trail Creek Watershed, Indiana. Sci. Total Environ. 2016, 553, 149–163. [Google Scholar] [CrossRef]
- Shen, C. A transdisciplinary review of deep learning research and its relevance for water resources scientists. Water Resour. Res. 2018, 54, 8558–8593. [Google Scholar] [CrossRef]
- Fu, B.; Merritt, W.S.; Croke, B.F.; Weber, T.R.; Jakeman, A.J. A review of catchment-scale water quality and erosion models and a synthesis of future prospects. Environ. Model. Softw. 2019, 114, 75–97. [Google Scholar] [CrossRef]
- Tricco, A.C.; Lillie, E.; Zarin, W.; O’Brien, K.K.; Colquhoun, H.; Levac, D.; Moher, D.; Peters, M.D.J.; Horsley, T.; Weeks, L.; et al. PRISMA Extension for Scoping Reviews (PRISMA-ScR): Checklist and Explanation. Ann. Intern. Med. 2018, 169, 467–473. [Google Scholar] [CrossRef]
- Blöschl, G. Runoff Prediction in Ungauged Basins: Synthesis Across Processes, Places and Scales; Cambridge University Press: Cambridge, UK, 2013. [Google Scholar]
- Harpham, Q.; Lhomme, J.; Parodi, A.; Fiori, E.; Jagers, B.; Galizia, A. Using OpenMI and a Model MAP to Integrate WaterML2 and NetCDF Data Sources into Flood Modeling of Genoa, Italy. JAWRA J. Am. Water Resour. Assoc. 2016, 52, 933–949. [Google Scholar] [CrossRef]
- Zhang, Y.; Bocquet, M.; Mallet, V.; Seigneur, C.; Baklanov, A. Real-time air quality forecasting, part II: State of the science, current research needs, and future prospects. Atmos. Environ. 2012, 60, 656–676. [Google Scholar] [CrossRef]
- Sargiotis, D. Key Principles of Data Governance: Building a Strong Foundation. In Data Governance: A Guide; Springer Nature: Cham, Switzerland, 2024; pp. 137–163. [Google Scholar]
- Ma, Z.; Huang, Z.; Chen, J.; Cao, Z.; Gong, Y.-J. Surrogate Learning in Meta-Black-Box Optimization: A Preliminary Study. In Proceedings of the Genetic and Evolutionary Computation Conference, Málaga, Spain, 14–18 July 2025; Association for Computing Machinery: New York, NY, USA, 2025; pp. 1137–1145. [Google Scholar]
- Gan, M.; Lu, T.; Yu, W.; Feng, J.; Chong, X. Capturing and visualizing the phase transition mediated thermal stress of thermal barrier coating materials via a cross-scale integrated computational approach. J. Adv. Ceram. 2024, 13, 413–428. [Google Scholar] [CrossRef]
- Lu, Y.; Chen, J.; Gao, G.; An, A.; Feng, J.; Liu, Z. Estimation of carbon stock in the reed wetland of Weishan county in China based on Sentinel satellite series. Carbon Res. 2025, 4, 29. [Google Scholar] [CrossRef]
- Zhao, J.; Zhao, J.; Hu, Y.; Huang, T.; Zhao, X.; Liu, X. Non-planar fracture propagation model for fluid-driven fracturing based on fluid-solid coupling. Eng. Fract. Mech. 2020, 235, 107159. [Google Scholar] [CrossRef]
- Mishra, A.K.; Coulibaly, P. Developments in hydrometric network design: A review. Rev. Geophys. 2009, 47, RG2001. [Google Scholar] [CrossRef]
- Pan, F.; Wu, X.; Zeng, Q.; Tang, R.; Wang, J.; Lin, X.; You, D.; Wen, J.; Xiao, Q. A coarse pixel-scale ground “truth” dataset based on global in situ site measurements to support validation and bias correction of satellite surface albedo products. Earth Syst. Sci. Data 2024, 16, 161–176. [Google Scholar] [CrossRef]
- Vörösmarty, C.J.; Fekete, B.M.; Meybeck, M.; Lammers, R.B. Global system of rivers: Its role in organizing continental land mass and defining land-to-ocean linkages. Glob. Biogeochem. Cycles 2000, 14, 599–621. [Google Scholar] [CrossRef]
- Zheng, D.; Zhu, W.; Han, Y.; Lv, A. A novel remote sensing-based calibration and validation method for distributed hydrological modelling in ungauged basins. J. Hydrol. 2025, 658, 133119. [Google Scholar] [CrossRef]
- Buytaert, W.; Zulkafli, Z.; Grainger, S.; Acosta, L.; Alemie, T.C.; Bastiaensen, J.; De Bièvre, B.; Bhusal, J.; Clark, J.; Dewulf, A. Citizen science in hydrology and water resources: Opportunities for knowledge generation, ecosystem service management, and sustainable development. Front. Earth Sci. 2014, 2, 26. [Google Scholar] [CrossRef]
- Kerr, Y.H.; Waldteufel, P.; Wigneron, J.-P.; Delwart, S.; Cabot, F.; Boutin, J.; Escorihuela, M.-J.; Font, J.; Reul, N.; Gruhier, C. The SMOS mission: New tool for monitoring key elements ofthe global water cycle. Proc. IEEE 2010, 98, 666–687. [Google Scholar] [CrossRef]
- Aasen, H.; Honkavaara, E.; Lucieer, A.; Zarco-Tejada, P.J. Quantitative Remote Sensing at Ultra-High Resolution with UAV Spectroscopy: A Review of Sensor Technology, Measurement Procedures, and Data Correction Workflows. Remote Sens. 2018, 10, 1091. [Google Scholar] [CrossRef]
- Clark, M.P.; Nijssen, B.; Lundquist, J.D.; Kavetski, D.; Rupp, D.E.; Woods, R.A.; Freer, J.E.; Gutmann, E.D.; Wood, A.W.; Brekke, L.D.; et al. A unified approach for process-based hydrologic modeling: 1. Modeling concept. Water Resour. Res. 2015, 51, 2498–2514. [Google Scholar] [CrossRef]
- Alawathugoda, C.; Hinge, G.; Elkollaly, M.; Hamouda, M.A. Impact of Utilizing High-Resolution PlanetScope Imagery on the Accuracy of LULC Mapping and Hydrological Modeling in an Arid Region. Water 2024, 16, 2356. [Google Scholar] [CrossRef]
- Karr, J.R. Assessment of biotic integrity using fish communities. Fisheries 1981, 6, 21–27. [Google Scholar] [CrossRef]
- Johnson, N.; Druckenmiller, M.L.; Danielsen, F.; Pulsifer, P.L. The Use of Digital Platforms for Community-Based Monitoring. BioScience 2021, 71, 452–466. [Google Scholar] [CrossRef] [PubMed]
- Deiner, K.; Bik, H.M.; Mächler, E.; Seymour, M.; Lacoursière-Roussel, A.; Altermatt, F.; Creer, S.; Bista, I.; Lodge, D.M.; De Vere, N. Environmental DNA metabarcoding: Transforming how we survey animal and plant communities. Mol. Ecol. 2017, 26, 5872–5895. [Google Scholar] [CrossRef] [PubMed]
- Sedeño-Díaz, J.E.; Ruiz-Picos, R.A.; López-López, E. Calibrating and Validating the Biomonitoring Working Party (BMWP) Index for the Bioassessment of Water Quality in Neotropical Streams. In Water Quality; Tutu, H., Ed.; IntechOpen: London, UK, 2017. [Google Scholar]
- Arnold, J.G.; Srinivasan, R.; Muttiah, R.S.; Williams, J.R. Large area hydrologic modeling and assessment part I: Model development 1. JAWRA J. Am. Water Resour. Assoc. 1998, 34, 73–89. [Google Scholar] [CrossRef]
- Gómez-Tolosa, M.; Rivera-Velázquez, G.; Rioja-Paradela, T.M.; Mendoza-Cuenca, L.F.; Tejeda-Cruz, C.; López, S. The use of Odonata species for environmental assessment: A meta-analysis for the Neotropical region. Environ. Sci. Pollut. Res. 2021, 28, 1381–1396. [Google Scholar]
- Shrestha, S.; Kazama, F. Assessment of surface water quality using multivariate statistical techniques: A case study of the Fuji river basin, Japan. Environ. Model. Softw. 2007, 22, 464–475. [Google Scholar] [CrossRef]
- Keck, F.; Hürlemann, S.; Locher, N.; Stamm, C.; Deiner, K.; Altermatt, F. A triad of kicknet sampling, eDNA metabarcoding, and predictive modeling to assess aquatic macroinvertebrate biodiversity. bioRxiv 2022, 474789. [Google Scholar] [CrossRef]
- Li, L.; Xu, H.; Zhang, Q.; Zhan, Z.; Liang, X.; Xing, J. Estimation methods of wetland carbon sink and factors influencing wetland carbon cycle: A review. Carbon Res. 2024, 3, 50. [Google Scholar] [CrossRef]
- Zhang, C.; Zhou, M.; Zhang, Y.; Li, D.; Hou, N.; Zhao, X. Novel strategies for enhancing energy metabolism and wastewater treatment in algae-bacteria symbiotic system through carbon dots-induced photogenerated electrons: The definitive role of accelerated electron transport. Chem. Eng. J. 2024, 500, 157016. [Google Scholar] [CrossRef]
- Beven, K. A manifesto for the equifinality thesis. J. Hydrol. 2006, 320, 18–36. [Google Scholar] [CrossRef]
- Little, R.J.; Rubin, D.B. Statistical Analysis with Missing Data; John Wiley & Sons: Hoboken, NJ, USA, 2019. [Google Scholar]
- Schafer, J.L. Analysis of Incomplete Multivariate Data; CRC Press: Boca Raton, FL, USA, 1997. [Google Scholar]
- Wang, L.; Qu, J.J. Satellite remote sensing applications for surface soil moisture monitoring: A review. Front. Earth Sci. China 2009, 3, 237–247. [Google Scholar] [CrossRef]
- Rapacciuolo, G.; Blois, J.L. Understanding ecological change across large spatial, temporal and taxonomic scales: Integrating data and methods in light of theory. Ecography 2019, 42, 1247–1266. [Google Scholar] [CrossRef]
- Castanedo, F. A Review of Data Fusion Techniques. Sci. World J. 2013, 2013, 704504. [Google Scholar] [CrossRef]
- Sharifnia, A.M.; Kpormegbey, D.E.; Thapa, D.K.; Cleary, M. A Primer of Data Cleaning in Quantitative Research: Handling Missing Values and Outliers. J. Adv. Nurs. Res. 2025, 1–6. [Google Scholar] [CrossRef]
- Pimentel, M.A.F.; Clifton, D.A.; Clifton, L.; Tarassenko, L. A review of novelty detection. Signal Process. 2014, 99, 215–249. [Google Scholar] [CrossRef]
- Gujar, P. Data Standardization and Interoperability. In Data Usability in the Enterprise: How Usability Leads to Optimal Digital Experiences; Apress: Berkeley, CA, USA, 2025; pp. 89–110. [Google Scholar]
- Kush, R.D.; Warzel, D.; Kush, M.A.; Sherman, A.; Navarro, E.A.; Fitzmartin, R.; Pétavy, F.; Galvez, J.; Becnel, L.B.; Zhou, F.L.; et al. FAIR data sharing: The roles of common data elements and harmonization. J. Biomed. Inform. 2020, 107, 103421. [Google Scholar] [CrossRef] [PubMed]
- Ahmadi, H.; Das, A.; Pourtaheri, M.; Komaki, C.B.; Khairy, H. Redefining the watershed line and stream networks via digital resources and topographic map using GIS and remote sensing (case study: The Neka River’s watershed). Nat. Hazards 2014, 72, 711–722. [Google Scholar] [CrossRef]
- Pan, M.; Sahoo, A.K.; Troy, T.J.; Vinukollu, R.K.; Sheffield, J.; Wood, E.F. Multisource estimation of long-term terrestrial water budget for major global river basins. J. Clim. 2012, 25, 3191–3206. [Google Scholar] [CrossRef]
- Smakhtin, V.U. Low flow hydrology: A review. J. Hydrol. 2001, 240, 147–186. [Google Scholar] [CrossRef]
- Tucker, C.J. Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens. Environ. 1979, 8, 127–150. [Google Scholar] [CrossRef]
- Huete, A.; Didan, K.; Miura, T.; Rodriguez, E.P.; Gao, X.; Ferreira, L.G. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens. Environ. 2002, 83, 195–213. [Google Scholar] [CrossRef]
- Liu, Y.; Gupta, H.V. Uncertainty in hydrologic modeling: Toward an integrated data assimilation framework. Water Resour. Res. 2007, 43, W07401. [Google Scholar] [CrossRef]
- Pelletier, C.; Webb, G.I.; Petitjean, F. Temporal convolutional neural network for the classification of satellite image time series. Remote Sens. 2019, 11, 523. [Google Scholar] [CrossRef]
- Daw, A.; Karpatne, A.; Watkins, W.D.; Read, J.S.; Kumar, V. Physics-guided neural networks (pgnn): An application in lake temperature modeling. In Knowledge Guided Machine Learning; Chapman and Hall/CRC: Boca Raton, FL, USA, 2022; pp. 353–372. [Google Scholar]
- Ajami, N.K.; Gupta, H.; Wagener, T.; Sorooshian, S. Calibration of a semi-distributed hydrologic model for streamflow estimation along a river system. J. Hydrol. 2004, 298, 112–135. [Google Scholar] [CrossRef]
- Botts, M.; Percivall, G.; Reed, C.; Davidson, J. OGC® sensor web enablement: Overview and high level architecture. In Proceedings of the International Conference on GeoSensor Networks, Boston, MA, USA, 1–3 October 2006; pp. 175–190. [Google Scholar]
- Evensen, G. The ensemble Kalman filter: Theoretical formulation and practical implementation. Ocean Dyn. 2003, 53, 343–367. [Google Scholar] [CrossRef]
- Wang, G.; Wang, L.; Ma, F.; Yang, D.; You, Y. Earthworm and arbuscular mycorrhiza interactions: Strategies to motivate antioxidant responses and improve soil functionality. Environ. Pollut. 2021, 272, 115980. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Meng, X.; Li, Q.; Ho, S.-H. Nitrogen metabolic responses of non-rhizosphere and rhizosphere microbial communities in constructed wetlands under nanoplastics disturbance. J. Hazard. Mater. 2025, 484, 136777. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Cao, Y.; Wei, J.; Bai, S. Structure-activity relationship of self-immobilized mycelial pellets and their functions in wastewater treatment. Bioresour. Technol. 2025, 430, 132558. [Google Scholar] [CrossRef]
- Yang, D.; Wang, L.; Bai, S. Enhancement of alfalfa growth resistance by arbuscular mycorrhiza and earthworm in molybdenum-contaminated soils: From the perspective of soil nutrient turnover. Environ. Res. 2025, 267, 120714. [Google Scholar] [CrossRef]
- Fang, K.; Shen, C.; Kifer, D.; Yang, X. Prolongation of SMAP to spatiotemporally seamless coverage of continental US using a deep learning neural network. Geophys. Res. Lett. 2017, 44, 11030–11039. [Google Scholar] [CrossRef]
- Karpatne, A.; Atluri, G.; Faghmous, J.H.; Steinbach, M.; Banerjee, A.; Ganguly, A.; Shekhar, S.; Samatova, N.; Kumar, V. Theory-guided data science: A new paradigm for scientific discovery from data. IEEE Trans. Knowl. Data Eng. 2017, 29, 2318–2331. [Google Scholar] [CrossRef]
- Li, L.; Chai, W.; Kang, J.; Liu, J.; Xing, J.; Li, G.; Zhan, Z. Utilization of graphite tailings and coal gangue in the preparation of foamed ceramics. Int. J. Appl. Ceram. Technol. 2025, 22, e15012. [Google Scholar] [CrossRef]
- Zhang, C.; Zhou, M.; Du, H.; Li, D.; Lv, D.; Hou, N. Influence of microbial agents-loaded biochar on bacterial community assembly and heavy metals morphology in sewage sludge compost: Insights from community stability and complexity. Bioresour. Technol. 2025, 419, 132070. [Google Scholar] [CrossRef]
- Beven, K.J. Rainfall-Runoff Modelling: The Primer; Wiley: Hoboken, NJ, USA, 2012. [Google Scholar]
- Willard, J.; Jia, X.; Xu, S.; Steinbach, M.; Kumar, V. Integrating physics-based modeling with machine learning: A survey. arXiv 2020, arXiv:2003.04919. [Google Scholar]
- Liang, X.; Lettenmaier, D.P.; Wood, E.F.; Burges, S.J. A simple hydrologically based model of land surface water and energy fluxes for general circulation models. J. Geophys. Res. Atmos. 1994, 99, 14415–14428. [Google Scholar] [CrossRef]
- Bergström, S. The HBV model–Its Structure and Applications; SMHI: Norrköping, Sweden, 1992.
- Hrachowitz, M.; Savenije, H.H.G.; Blöschl, G.; McDonnell, J.J.; Sivapalan, M.; Pomeroy, J.W.; Arheimer, B.; Blume, T.; Clark, M.P.; Ehret, U.; et al. A decade of Predictions in Ungauged Basins (PUB)—A review. Hydrol. Sci. J. 2013, 58, 1198–1255. [Google Scholar] [CrossRef]
- Kratzert, F.; Klotz, D.; Shalev, G.; Klambauer, G.; Hochreiter, S.; Nearing, G. Towards learning universal, regional, and local hydrological behaviors via machine learning applied to large-sample datasets. Hydrol. Earth Syst. Sci. 2019, 23, 5089–5110. [Google Scholar] [CrossRef]
- Wool, T.A.; Ambrose, R.B.; Martin, J.L.; Comer, E.A.; Tech, T. Water Quality Analysis Simulation Program (WASP), Version 6.0; User’s Manual; CHI: Guelph, ON, Canada, 2006. [Google Scholar]
- Liu, Z.; Gan, Y.; Luo, J.; Luo, X.; Ding, C.; Cui, Y. Current Status of Emerging Contaminant Models and Their Applications Concerning the Aquatic Environment: A Review. Water 2025, 17, 85. [Google Scholar] [CrossRef]
- Song, J.; Xu, R.; Li, D.; Jiang, S.; Cai, M.; Xiong, J. Source apportionment and ecological risk assessment of antibiotics in Dafeng River Basin using PMF and Monte-Carlo simulation. Environ. Geochem. Health 2024, 46, 479. [Google Scholar] [CrossRef] [PubMed]
- Moriasi, D.N.; Arnold, J.G.; Van Liew, M.W.; Bingner, R.L.; Harmel, R.D.; Veith, T.L. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Trans. ASABE 2007, 50, 885–900. [Google Scholar] [CrossRef]
- Tague, C.L.; Band, L.E. RHESSys: Regional Hydro-Ecologic Simulation System—An Object-Oriented Approach to Spatially Distributed Modeling of Carbon, Water, and Nutrient Cycling. Earth Interact. 2004, 8, 1–42. [Google Scholar] [CrossRef]
- Graham, D.N.; Butts, M.B. Flexible, integrated watershed modelling with MIKE SHE. Watershed Models 2005, 849336090, 245–272. [Google Scholar]
- You, Y.; Ju, C.; Wang, L.; Wang, X.; Ma, F.; Wang, G.; Wang, Y. The mechanism of arbuscular mycorrhizal enhancing cadmium uptake in Phragmites australis depends on the phosphorus concentration. J. Hazard. Mater. 2022, 440, 129800. [Google Scholar] [CrossRef]
- Wigmosta, M.S.; Vail, L.W.; Lettenmaier, D.P. A distributed hydrology-vegetation model for complex terrain. Water Resour. Res. 1994, 30, 1665–1679. [Google Scholar] [CrossRef]
- Wang, Z.; Chen, S.; Yang, L.; Wang, Q.; Hou, N.; Zhang, J.; Tong, Y.; Li, X. Remediation strategies of biochar and microbial inoculum for PAHs-contaminated soil: Quorum sensing-mediated PAHs degradation and element cycling. J. Hazard. Mater. 2025, 490, 137854. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Z.; Wang, Y.; Zhu, L.; Zhang, C.; Sun, Y. Machine-learning-aided biochar production from aquatic biomass. Carbon Res. 2024, 3, 77. [Google Scholar] [CrossRef]
- Bieger, K.; Arnold, J.G.; Rathjens, H.; White, M.J.; Bosch, D.D.; Allen, P.M.; Volk, M.; Srinivasan, R. Introduction to SWAT+, a completely restructured version of the soil and water assessment tool. JAWRA J. Am. Water Resour. Assoc. 2017, 53, 115–130. [Google Scholar] [CrossRef]
- Gijsbers, P.; Gregersen, J. OpenMI: A glue for model integration. In Proceedings of the MODSIM 2005 International Congress on Modelling and Simulation, Melbourne, Australia, 12–15 December 2005; pp. 648–654. [Google Scholar]
- David, O.; Ascough II, J.C.; Lloyd, W.; Green, T.R.; Rojas, K.; Leavesley, G.H.; Ahuja, L.R. A software engineering perspective on environmental modeling framework design: The Object Modeling System. Environ. Model. Softw. 2013, 39, 201–213. [Google Scholar] [CrossRef]
- Tarboton, D.G.; Idaszak, R.; Horsburgh, J.S.; Heard, J.; Ames, D.; Goodall, J.L.; Band, L.; Merwade, V.; Couch, A.; Arrigo, J.; et al. HydroShare: Advancing collaboration through hydrologic data and model sharing. In Proceedings of the International Congress on Environmental Modelling and Software, San Diego, CA, USA, 15–19 June 2014. [Google Scholar]
- Voinov, A.; Shugart, H.H. ‘Integronsters’, integral and integrated modeling. Environ. Model. Softw. 2013, 39, 149–158. [Google Scholar] [CrossRef]
- Argent, R.M. An overview of model integration for environmental applications—Components, frameworks and semantics. Environ. Model. Softw. 2004, 19, 219–234. [Google Scholar] [CrossRef]
- Gober, P.; Wheater, H.S. Debates—Perspectives on socio-hydrology: Modeling flood risk as a public policy problem. Water Resour. Res. 2015, 51, 4782–4788. [Google Scholar] [CrossRef]
- Belete, G.F.; Voinov, A.; Laniak, G.F. An overview of the model integration process: From pre-integration assessment to testing. Environ. Model. Softw. 2017, 87, 49–63. [Google Scholar] [CrossRef]
- Hill, M.C.; Tiedeman, C.R. Effective Groundwater Model Calibration: With Analysis of Data, Sensitivities, Predictions, and Uncertainty; John Wiley & Sons: Hoboken, NJ, USA, 2007. [Google Scholar]
- Moore, R.V.; Tindall, C.I. An overview of the open modelling interface and environment (the OpenMI). Environ. Sci. Policy 2005, 8, 279–286. [Google Scholar] [CrossRef]
- Gassman, P.W.; Reyes, M.R.; Green, C.H.; Arnold, J.G. The soil and water assessment tool: Historical development, applications, and future research directions. Trans. ASABE 2007, 50, 1211–1250. [Google Scholar] [CrossRef]
- Politano, M.; Antonio, A.; and Weber, L. A process-based hydrological model for continuous multi-year simulations of large-scale watersheds. Int. J. River Basin Manag. 2025, 23, 15–28. [Google Scholar] [CrossRef]
- Voinov, A.; Cerco, C. Model integration and the role of data. Environ. Model. Softw. 2010, 25, 965–969. [Google Scholar] [CrossRef]
- Singh, V.P. Hydrologic modeling: Progress and future directions. Geosci. Lett. 2018, 5, 15. [Google Scholar] [CrossRef]
- Ascough Ii, J.; Maier, H.; Ravalico, J.; Strudley, M. Future research challenges for incorporation of uncertainty in environmental and ecological decision-making. Ecol. Model. 2008, 219, 383–399. [Google Scholar] [CrossRef]
- Pal, D.; Marttila, H.; Ala-Aho, P.; Lotsari, E.; Ronkanen, A.-K.; Gonzales-Inca, C.; Croghan, D.; Korppoo, M.; Kämäri, M.; Rooijen, E.v.; et al. Blueprint conceptualization for a river basin’s digital twin. Hydrol. Res. 2025, 56, 197–212. [Google Scholar] [CrossRef]
- Yang, Y.; Xie, C.; Fan, Z.; Xu, Z.; Melville, B.W.; Liu, G.; Hong, L. Digital twinning of river basins towards full-scale, sustainable and equitable water management and disaster mitigation. npj Nat. Hazards 2024, 1, 43–117. [Google Scholar] [CrossRef]
- Refsgaard, J.C.; van der Sluijs, J.P.; Højberg, A.L.; Vanrolleghem, P.A. Uncertainty in the environmental modelling process—A framework and guidance. Environ. Model. Softw. 2007, 22, 1543–1556. [Google Scholar] [CrossRef]
- Voinov, A.; Bousquet, F. Modelling with stakeholders. Environ. Model. Softw. 2010, 25, 1268–1281. [Google Scholar] [CrossRef]
- Shu, L.; Li, X.; Chang, Y.; Meng, X.; Chen, H.; Qi, Y.; Wang, H.; Li, Z.; Lyu, S. Advancing understanding of lake–watershed hydrology: A fully coupled numerical model illustrated by Qinghai Lake. Hydrol. Earth Syst. Sci. 2024, 28, 1477–1491. [Google Scholar] [CrossRef]
- Moriasi, D.N.; Gitau, M.W.; Pai, N.; Daggupati, P. Hydrologic and Water Quality Models: Performance Measures and Evaluation Criteria. Trans. ASABE 2015, 58, 1763–1785. [Google Scholar] [CrossRef]
- Vrugt, J.A.; ter Braak, C.J.; Diks, C.G.; Robinson, B.A.; Hyman, J.M.; Higdon, D. Accelerating Markov chain Monte Carlo simulation by differential evolution with self-adaptive randomized subspace sampling. Int. J. Nonlinear Sci. Numer. Simul. 2009, 10, 273–290. [Google Scholar] [CrossRef]
- Wilkinson, S.R.; Aloqalaa, M.; Belhajjame, K.; Crusoe, M.R.; de Paula Kinoshita, B.; Gadelha, L.; Garijo, D.; Gustafsson, O.J.R.; Juty, N.; Kanwal, S.; et al. Applying the FAIR Principles to computational workflows. Sci. Data 2025, 12, 328. [Google Scholar] [CrossRef]
- Haddeland, I.; Clark, D.B.; Franssen, W.; Ludwig, F.; Voß, F.; Arnell, N.W.; Bertrand, N.; Best, M.; Folwell, S.; Gerten, D. Multimodel estimate of the global terrestrial water balance: Setup and first results. J. Hydrometeorol. 2011, 12, 869–884. [Google Scholar] [CrossRef]
- Gupta, H.V.; Clark, M.P.; Vrugt, J.A.; Abramowitz, G.; Ye, M. Towards a comprehensive assessment of model structural adequacy. Water Resour. Res. 2012, 48, W08301. [Google Scholar] [CrossRef]
- Blöschl, G.; Bierkens, M.F.; Chambel, A.; Cudennec, C.; Destouni, G.; Fiori, A.; Kirchner, J.W.; McDonnell, J.J.; Savenije, H.H.; Sivapalan, M. Twenty-three unsolved problems in hydrology (UPH)–a community perspective. Hydrol. Sci. J. 2019, 64, 1141–1158. [Google Scholar] [CrossRef]
- Fatichi, S.; Pappas, C.; Ivanov, V.Y. Modeling plant–water interactions: An ecohydrological overview from the cell to the global scale. Wiley Interdiscip. Rev. Water 2016, 3, 327–368. [Google Scholar] [CrossRef]
- Clark, M.P.; Bierkens, M.F.; Samaniego, L.; Woods, R.A.; Uijlenhoet, R.; Bennett, K.E.; Pauwels, V.; Cai, X.; Wood, A.W.; Peters-Lidard, C.D. The evolution of process-based hydrologic models: Historical challenges and the collective quest for physical realism. Hydrol. Earth Syst. Sci. 2017, 21, 3427–3440. [Google Scholar] [CrossRef]
- Beven, K. Facets of uncertainty: Epistemic uncertainty, non-stationarity, likelihood, hypothesis testing, and communication. Hydrol. Sci. J. 2016, 61, 1652–1665. [Google Scholar] [CrossRef]
- Voinov, A.; Seppelt, R.; Reis, S.; Nabel, J.E.; Shokravi, S. Values in socio-environmental modelling: Persuasion for action or excuse for inaction. Environ. Model. Softw. 2014, 53, 207–212. [Google Scholar] [CrossRef]
- Brunet, G.; Shapiro, M.; Hoskins, B.; Moncrieff, M.; Dole, R.; Kiladis, G.N.; Kirtman, B.; Lorenc, A.; Mills, B.; Morss, R. Collaboration of the weather and climate communities to advance subseasonal-to-seasonal prediction. Bull. Am. Meteorol. Soc. 2010, 91, 1397–1406. [Google Scholar] [CrossRef]
- Laniak, G.F.; Olchin, G.; Goodall, J.; Voinov, A.; Hill, M.; Glynn, P.; Whelan, G.; Geller, G.; Quinn, N.; Blind, M. Integrated environmental modeling: A vision and roadmap for the future. Environ. Model. Softw. 2013, 39, 3–23. [Google Scholar] [CrossRef]
- Bierkens, M.F.P.; Bell, V.A.; Burek, P.; Chaney, N.; Condon, L.E.; David, C.H.; de Roo, A.; Döll, P.; Drost, N.; Famiglietti, J.S.; et al. Hyper-resolution global hydrological modelling: What is next? Hydrol. Process. 2015, 29, 310–320. [Google Scholar] [CrossRef]
- Yang, J.; Zhang, T.; Ma, S.; Shang, J.; Li, L.; Ning, Y.; Zhao, X. Enhancing microplastic removal and nitrogen mitigation in constructed wetlands: An earthworm-centric perspective. J. Hazard. Mater. 2025, 489, 137540. [Google Scholar] [CrossRef]
- Zeng, Q.; Gao, Y.; Guan, K.; Liu, J.; Feng, Z. Machine learning and a computational fluid dynamic approach to estimate phase composition of chemical vapor deposition boron carbide. J. Adv. Ceram. 2021, 10, 537–550. [Google Scholar] [CrossRef]
- Thyer, M.; Renard, B.; Kavetski, D.; Kuczera, G.; Franks, S.W.; Srikanthan, S. Critical evaluation of parameter consistency and predictive uncertainty in hydrological modeling: A case study using Bayesian total error analysis. Water Resour. Res. 2009, 45, W00B14. [Google Scholar] [CrossRef]
- Wilkinson, M.D.; Dumontier, M.; Aalbersberg, I.J.; Appleton, G.; Axton, M.; Baak, A.; Blomberg, N.; Boiten, J.-W.; da Silva Santos, L.B.; Bourne, P.E. The FAIR Guiding Principles for scientific data management and stewardship. Sci. Data 2016, 3, 160018. [Google Scholar] [CrossRef] [PubMed]
- Stockhause, M.; Huard, D.; Al Khourdajie, A.; Gutiérrez, J.M.; Kawamiya, M.; Klutse, N.A.B.; Krey, V.; Milward, D.; Okem, A.E.; Pirani, A.; et al. Implementing FAIR data principles in the IPCC seventh assessment cycle: Lessons learned and future prospects. PLoS Clim. 2024, 3, e0000533. [Google Scholar] [CrossRef]
- Deng, Y.; Wang, D.; Cheng, J.; Zhao, Y.; Li, Z.; Zang, C.; Li, J.; Jia, L. A new popular transition metal-based catalyst: SmMn2O5 mullite-type oxide. Chin. Chem. Lett. 2024, 35, 109141. [Google Scholar] [CrossRef]
- Lu, X.; Shen, L.; Chen, C.; Yu, W.; Wang, B.; Kong, N.; Zeng, Q.; Chen, S.; Huang, X.; Wang, Y.; et al. Advance of self-cleaning separation membranes for oil-containing wastewater treatment. Environ. Funct. Mater. 2024, 3, 72–93. [Google Scholar]
- Shao, L.; Zhang, Y.; Geng, S.; Yang, S.; Wang, T.; Song, X.; Liu, J.; Zheng, J. Physicochemical characteristics and environmental impact of coal mine solid waste. J. Min. Sci. Technol. 2024, 9, 653–667. [Google Scholar]
Data Source | Main Variables Measured | Spatial Coverage | Temporal Resolution | Strengths | Limitations |
---|---|---|---|---|---|
Ground Monitoring | Streamflow, Precipitation, Groundwater Level, Water Quality (Nutrients, DO, Temperature, Turbidity) | Local to regional | Hourly to daily | High measurement accuracy; long historical records; essential for trend analysis | Sparse spatial distribution; Data gaps due to maintenance failures; Variable data quality [37,38,40,58] |
Remote Sensing | Land Cover, Vegetation Indices (NDVI), Surface Water Extent, Soil Moisture, Snowpack, Water Quality Proxies (Chlorophyll-a, Turbidity) | Regional to global | Weekly to monthly | Wide spatial coverage; regular repeat cycles; ability to monitor inaccessible areas | Cloud contamination (optical sensors); Need for calibration/validation with ground data [41,45] |
Biological Monitoring | Macroinvertebrate Assemblages, Fish Communities, Algal Biomass, Biofilm Diversity | Site-specific | Seasonal to annual | Sensitive indicators of cumulative watershed health; capture biological responses | Labor-intensive; Sampling biases; Requires taxonomic expertise; Limited temporal coverage [47,49,51] |
Model Outputs and Reanalysis | Runoff, Soil Moisture, Groundwater Recharge, Nutrient Transport, Meteorological Forcings (Precipitation, Temperature) | Gridded (regional/global) | Hourly to monthly | Provide spatial and temporal continuity; Enable scenario analysis and future projections | Model structural uncertainties; Calibration and validation dependency; Potential error propagation [12,55,56,57] |
Criteria | Loose Coupling | Tight Coupling | Embedded Coupling |
---|---|---|---|
Implementation Complexity | Low | Medium | High |
Flexibility and Modularity | High | Moderate | Low |
Computational Efficiency | Low to Moderate | High | Very High |
Feedback Representation | Weak/Sequential | Strong/Dynamic | Strong/Fully Integrated |
Transparency and Debuggability | High | Moderate | Low |
Application Context | Exploratory studies, Legacy model linkage | Predictive management, Real-time forecasting | High-fidelity research, Integrated process studies |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, L.; Xu, Z.; Fan, L.; Jia, H.; Hu, H.; Li, L. Multi-Source Data Integration and Model Coupling for Watershed Eco-Assessment Systems: Progress, Challenges, and Prospects. Processes 2025, 13, 2998. https://doi.org/10.3390/pr13092998
Ma L, Xu Z, Fan L, Jia H, Hu H, Li L. Multi-Source Data Integration and Model Coupling for Watershed Eco-Assessment Systems: Progress, Challenges, and Prospects. Processes. 2025; 13(9):2998. https://doi.org/10.3390/pr13092998
Chicago/Turabian StyleMa, Li, Zihe Xu, Lina Fan, Hongxia Jia, Hao Hu, and Lixin Li. 2025. "Multi-Source Data Integration and Model Coupling for Watershed Eco-Assessment Systems: Progress, Challenges, and Prospects" Processes 13, no. 9: 2998. https://doi.org/10.3390/pr13092998
APA StyleMa, L., Xu, Z., Fan, L., Jia, H., Hu, H., & Li, L. (2025). Multi-Source Data Integration and Model Coupling for Watershed Eco-Assessment Systems: Progress, Challenges, and Prospects. Processes, 13(9), 2998. https://doi.org/10.3390/pr13092998