Optimization and Characterization of an O/W Emulsion Based on Coccoloba uvifera Seed Protein Loaded with Extract of Randia monantha
Abstract
1. Introduction
2. Materials and Methods
2.1. Vegetal Material and Chemical Subtances
2.2. Protein Concentrate Extraction
2.3. Spray Drying of Protein
2.4. Extracting High-Value Biological Compounds (HVBCs) from Randia Monantha
2.5. Optimization of the Ultrasound-Assisted Emulsification (UAEm) Parameters
2.6. Preparation of the Emulsion (O/W)
2.7. Particle Size Distribution
2.8. Entrapment Efficiency of the Emulsion (EEE)
2.9. Radical Scavenging Activity (RSA) Assessment
2.10. Photostability Evaluation of the Entrapped Extract
2.11. Evaluation of Emulsion Stability Under Industrial Conditions
2.11.1. Storage Stability
2.11.2. pH Stability
2.11.3. Ionic Strength Stability
2.11.4. Temperature Stability
2.12. Thermal Stability of the Emulsion
2.13. Statistical Analysis
3. Results and Discussion
3.1. Modeling and Optimization of UAEm Parameters
3.1.1. Influence of Variables on Polydispersity Index
3.1.2. Influence of Variables on Particle Size
3.1.3. Response Surface Methodology
3.1.4. Validation of the Predicted Optimal UAEm Conditions
3.2. Photoprotective Effect of the Optimal Emulsion Under Ultraviolet (UV) Radiation
3.3. Optimal Emulsion Stability
3.3.1. Storage Stability of the Optimal Emulsion
3.3.2. pH Stability Evaluation
3.3.3. Ionic Strength Stability Study
3.3.4. Temperature Stability Determination
3.4. Thermal Stability of the Optimal Emulsion
3.4.1. Thermogravimetric Analysis
3.4.2. Differential Scanning Calorimetry Analysis
3.5. Efficiency of Extract Entrapment by Emulsification (EEE)
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
Δh | Enthalpy |
CUSP | Coccoloba uvifera seed protein |
D[3,2] | Surface-weighted mean diameter |
D[4,3] | Volume-weighted mean diameter |
DSC | Differential Scanning Calorimetry |
DTG | Derivative Thermogravimetry |
EEE | Entrapment efficiency of the emulsion |
HIU | High-Intensity Ultrasound |
HVBC | High-value biological compound |
PDI | Polydispersity index |
RSM | Response surface methodology |
Tg | Glass transition temperature |
TGA | Thermogravimetric analysis |
UAEm | Ultrasound-assisted emulsification |
References
- Son, C.-G.; Hong, G.-P.; Jo, Y.-J. Fabrication and Stability of Oil-in-Water Emulsions with Mung Bean Protein Aggregates and Soy Lecithin. Colloids Surf. A Physicochem. Eng. Asp. 2025, 705, 135661. [Google Scholar] [CrossRef]
- Tian, Y.; Zhou, J.; He, C.; He, L.; Li, X.; Sui, H. The Formation, Stabilization and Separation of Oil–Water Emulsions: A Review. Processes 2022, 10, 738. [Google Scholar] [CrossRef]
- Wozniak, M.; Kowalska, M.K.; Ludwiński, P. Emulsions, Their Quality and Importance in Food, Cosmetic, and Pharmaceutical Industries. Acta Pol. Pharm. Drug Res. 2024, 80, 863–877. [Google Scholar] [CrossRef]
- Dursun Capar, T.; Iscimen, E.M.; McClements, D.J.; Yalcin, H.; Hayta, M. Preparation of Oil-in-water Emulsions Stabilized by Faba Bean Protein—Grape Leaf Polyphenol Conjugates: pH-, Salt-, Heat-, and Freeze—Thaw-stability. J. Sci. Food Agric. 2024, 104, 6483–6493. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Wang, Q.; Liu, Z.; Zhi, L.; Jiao, B.; Hu, H.; Ma, X.; Agyei, D.; Shi, A. Plant Protein-Based Emulsifiers: Mechanisms, Techniques for Emulsification Enhancement and Applications. Food Hydrocoll. 2023, 144, 109008. [Google Scholar] [CrossRef]
- Abdel-Hakim, F.; Gad, H.; Radwan, R.; Ayoub, N.; El-Shazly, M. Biological and Phytochemical Review on the Genus Coccoloba (Polygonaceae). Arch. Pharm. Sci. Ain Shams Univ. 2019, 3, 180–194. [Google Scholar] [CrossRef]
- Segura-Campos, M.R.; Ruiz-Ruiz, J.; Chel-Guerrero, L.; Betancur-Ancona, D. Coccoloba uvifera (L.) (Polygonaceae) Fruit: Phytochemical Screening and Potential Antioxidant Activity. J. Chem. 2015, 2015, 534954. [Google Scholar] [CrossRef]
- Campos, M.S.; Ruiz, J.R.; Guerrero, L.C.; Ancona, D.B. Coccoloba uvifera as a Source of Components with Antioxidant Activity. In Biotechnology of Bioactive Compounds: Sources and Applications; John Wiley & Sons, Ltd.: Chichester, UK, 2015; pp. 151–161. ISBN 9781118733103. [Google Scholar]
- Ragazzo-Calderón, F.Z.; Calderón-Chiu, C.; Calderón-Santoyo, M.; Hernández-Molina, D.S.; Martinez-Ramos, K.E.; Ragazzo-Sanchez, J.A. Application of High-Intensity Ultrasound to Coccoloba uvifera Seed Proteins and Its Effect on the Amino Acid Profile, Techno-Functional Properties and Antioxidant Capacity. Rev. Bio Cienc. 2025, 12. [Google Scholar] [CrossRef]
- Calderón-Santoyo, M.; Calderón-Chiu, C.; Ragazzo-Sánchez, J.A. Characterisation of Hydrophilic Bioactive Extracts of Fruits from Mexico: Phenolic Content, Thermal and Kinetic and Thermodynamic Analysis. Plant Foods Hum. Nutr. 2025, 80, 83. [Google Scholar] [CrossRef]
- Vilchis-Gómez, D.S.; Calderón-Santoyo, M.; Ragazzo-Sánchez, J.A. Double Emulsion (W/O/W) Added with Hydro-Ethanolic Extract of Randia Monantha Stabilized with Jackfruit Leaf Protein Fraction: Optimization, Characterization, and Antifungal Activity. J. Dispers. Sci. Technol. 2025, 1–14. [Google Scholar] [CrossRef]
- Ruiz-Montañez, G.; Calderón-Santoyo, M.; Chevalier-Lucia, D.; Picart-Palmade, L.; Jimenez-Sánchez, D.E.; Ragazzo-Sánchez, J.A. Ultrasound-Assisted Microencapsulation of Jackfruit Extract in Eco-Friendly Powder Particles: Characterization and Antiproliferative Activity. J. Dispers. Sci. Technol. 2019, 40, 1507–1515. [Google Scholar] [CrossRef]
- Jiang, Y.S.; Zhang, S.B.; Zhang, S.Y.; Peng, Y.X. Comparative Study of High-intensity Ultrasound and High-pressure Homogenization on Physicochemical Properties of Peanut Protein-stabilized Emulsions and Emulsion Gels. J. Food Process Eng. 2021, 44, e13710. [Google Scholar] [CrossRef]
- Ramisetty, K.A.; Pandit, A.B.; Gogate, P.R. Ultrasound Assisted Preparation of Emulsion of Coconut Oil in Water: Understanding the Effect of Operating Parameters and Comparison of Reactor Designs. Chem. Eng. Process. Process Intensif. 2015, 88, 70–77. [Google Scholar] [CrossRef]
- McClements, D.J. Protein-Stabilized Emulsions. Curr. Opin. Colloid Interface Sci. 2004, 9, 305–313. [Google Scholar] [CrossRef]
- Stepišnik Perdih, T.; Zupanc, M.; Dular, M. Revision of the Mechanisms behind Oil-Water (O/W) Emulsion Preparation by Ultrasound and Cavitation. Ultrason. Sonochem. 2019, 51, 298–304. [Google Scholar] [CrossRef]
- Teng, F.; He, M.; Xu, J.; Chen, F.; Wu, C.; Wang, Z.; Li, Y. Effect of Ultrasonication on the Stability and Storage of a Soy Protein Isolate-Phosphatidylcholine Nanoemulsions. Sci. Rep. 2020, 10, 14010. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Z.; Zhao, C.; Yi, J.; Cui, L.; Liu, N.; Cao, Y.; Decker, E.A. Ultrasound Improving the Physical Stability of Oil-in-Water Emulsions Stabilized by Almond Proteins. J. Sci. Food Agric. 2018, 98, 4323–4330. [Google Scholar] [CrossRef]
- McClements, D.J. Food Emulsions Principles, Practices, and Techniques; CRC Press: Boca Raton, FL, USA, 2005. [Google Scholar]
- McClements, D.J.; Lu, J.; Grossmann, L. Proposed Methods for Testing and Comparing the Emulsifying Properties of Proteins from Animal, Plant, and Alternative Sources. Colloids Interfaces 2022, 6, 19. [Google Scholar] [CrossRef]
- Al-Sakkaf, M.K.; Onaizi, S.A. Effects of Emulsification Factors on the Characteristics of Crude Oil Emulsions Stabilized by Chemical and Biosurfactants: A Review. Fuel 2024, 361, 130604. [Google Scholar] [CrossRef]
- Kasprzak, M.M.; Jarzębski, M.; Smułek, W.; Berski, W.; Zając, M.; Östbring, K.; Ahlström, C.; Ptasznik, S.; Domagała, J. Effects of Concentration and Type of Lipids on the Droplet Size, Encapsulation, Colour and Viscosity in the Oil-in-Water Emulsions Stabilised by Rapeseed Protein. Foods 2023, 12, 2288. [Google Scholar] [CrossRef]
- Jadhav, A.J.; Holkar, C.R.; Karekar, S.E.; Pinjari, D.V.; Pandit, A.B. Ultrasound Assisted Manufacturing of Paraffin Wax Nanoemulsions: Process Optimization. Ultrason. Sonochem. 2015, 23, 201–207. [Google Scholar] [CrossRef]
- Li, W.; Leong, T.S.H.; Ashokkumar, M.; Martin, G.J.O. A Study of the Effectiveness and Energy Efficiency of Ultrasonic Emulsification. Phys. Chem. Chem. Phys. 2018, 20, 86–96. [Google Scholar] [CrossRef]
- de Figueiredo Furtado, G.; Mantovani, R.A.; Consoli, L.; Hubinger, M.D.; da Cunha, R.L. Structural and Emulsifying Properties of Sodium Caseinate and Lactoferrin Influenced by Ultrasound Process. Food Hydrocoll. 2017, 63, 178–188. [Google Scholar] [CrossRef]
- Zhang, H.; Zhao, X.; Chen, X.; Xu, X. Thoroughly Review the Recent Progresses in Improving O/W Interfacial Properties of Proteins through Various Strategies. Front. Nutr. 2022, 9, 1043809. [Google Scholar] [CrossRef]
- Tcholakova, S.; Denkov, N.D.; Sidzhakova, D.; Ivanov, I.B.; Campbell, B. Interrelation between Drop Size and Protein Adsorption at Various Emulsification Conditions. Langmuir 2003, 19, 5640–5649. [Google Scholar] [CrossRef]
- Ji, C.; Luo, Y. Plant Protein-Based High Internal Phase Pickering Emulsions: Functional Properties and Potential Food Applications. J. Agric. Food Res. 2023, 12, 100604. [Google Scholar] [CrossRef]
- Chang, C.; Li, X.; Zhai, J.; Su, Y.; Gu, L.; Li, J.; Yang, Y. Stability of Protein Particle Based Pickering Emulsions in Various Environments: Review on Strategies to Inhibit Coalescence and Oxidation. Food Chem. X 2023, 18, 100651. [Google Scholar] [CrossRef]
- Delahaije, R.J.B.M.; Hilgers, R.J.; Wierenga, P.A.; Gruppen, H. Relative Contributions of Charge and Surface Coverage on PH-Induced Flocculation of Protein-Stabilized Emulsions. Colloids Surf. A Physicochem. Eng. Asp. 2017, 521, 153–160. [Google Scholar] [CrossRef]
- Jang, Y.J.; Kim, H.D.; Ye, Y.J.; Kong, M.; Lim, W.S.; Lee, M.H. Effects of Ultrasound-Induced Structural Modifications on the Emulsifying Properties of Tenebrio Molitor Proteins. Ultrason. Sonochem. 2025, 117, 107354. [Google Scholar] [CrossRef] [PubMed]
- Amal Sudaraka Samarasinghe, H.G.; Dharmaprema, S.; Manodya, U.; Kariyawasam, K.P.; Samaranayake, U.C. Exploring Impact of the Ultrasound and Combined Treatments on Food Quality: A Comprehensive Review. Turk. J. Agric. Food Sci. Technol. 2024, 12, 349–365. [Google Scholar] [CrossRef]
- Sharma, V.; Srivastava, A.; Vashistha, V.K. The Effect of Ultraviolet Light Exposure on Proximate Composition, Amino Acid, Fatty Acid, and Micronutrients of Cold Water Fish, “Barilius Vagra”. Orient. J. Chem. 2019, 35, 1220–1226. [Google Scholar] [CrossRef]
- Figueroa, F.L.; Castro-Varela, P.; Vega, J.; Losantos, R.; Peñín, B.; López-Cóndor, L.; Pacheco, M.J.; Redoli, S.L.; Marí-Beffa, M.; Abdala-Díaz, R.; et al. Novel Synthetic UV Screen Compounds Inspired in Mycosporine-like Amino Acids (MAAs): Antioxidant Capacity, Photoprotective Properties and Toxicity. J. Photochem. Photobiol. B Biol. 2024, 261, 113050. [Google Scholar] [CrossRef]
- Jiang, S.; Yildiz, G.; Ding, J.; Andrade, J.; Rababahb, T.M.; Almajwalc, A.; Abulmeatyc, M.M.; Feng, H. Pea Protein Nanoemulsion and Nanocomplex as Carriers for Protection of Cholecalciferol (Vitamin D3). Food Bioprocess Technol. 2019, 12, 1031–1040. [Google Scholar] [CrossRef]
- Mollakhalili Meybodi, N.; Mohammadifar, M.A.; Abdolmaleki, K.H. Effect of Dispersed Phase Volume Fraction on Physical Stability of Oil-in-Water Emulsion in the Presence of Gum Tragacanth. J. Food Qual. Hazards Control 2014, 1, 102–107. [Google Scholar]
- Li, P.H.; Chiang, B.H. Process Optimization and Stability of D-Limonene-in-Water Nanoemulsions Prepared by Ultrasonic Emulsification Using Response Surface Methodology. Ultrason. Sonochem. 2012, 19, 192–197. [Google Scholar] [CrossRef]
- Lam, R.S.H.; Nickerson, M.T. Food Proteins: A Review on Their Emulsifying Properties Using a Structure–Function Approach. Food Chem. 2013, 141, 975–984. [Google Scholar] [CrossRef]
- Yang, L.; Fan, C.; Gao, Q.; Xie, Q.; Jiang, C.; Wang, S.; Jiang, S.; Li, B. Physicochemical Characterization, Sensory Quality Analysis, and Shelf-Life Prediction during the Storage of a Total Nutrient Formula Emulsion. LWT 2024, 204, 116427. [Google Scholar] [CrossRef]
- Sobhaninia, M.; Nasirpour, A.; Shahedi, M.; Golkar, A. Oil-in-Water Emulsions Stabilized by Whey Protein Aggregates: Effect of Aggregate Size, PH of Aggregation and Emulsion PH. J. Dispers. Sci. Technol. 2017, 38, 1366–1373. [Google Scholar] [CrossRef]
- Ronningsen, H. Correlations for Predicting Viscosity of W/O-Emulsions Based on North Sea Crude Oils. In Proceedings of the SPE International Symposium on Oilfield Chemistry, San Antonio, TX, USA, 14 February 1995. [Google Scholar]
- Wang, J.; Zheng, H.; Zhang, S.; Li, J.; Zhu, X.; Jin, H.; Xu, J. Improvement of Protein Emulsion Stability through Glycosylated Black Bean Protein Covalent Interaction with (-)-Epigallocatechin-3-Gallate. RSC Adv. 2021, 11, 2546–2555. [Google Scholar] [CrossRef] [PubMed]
- Laosinwattana, C.; Somala, N.; Dimak, J.; Teerarak, M.; Chotsaeng, N. Ultrasonic Emulsification of Cananga Odorata Nanoemulsion Formulation for Enhancement of Herbicidal Potential. Sci. Rep. 2025, 15, 3263. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Qi, B.; Xie, F.; Hu, M.; Sun, Y.; Han, L.; Li, L.; Zhang, S.; Li, Y. Emulsion Stability and Dilatational Rheological Properties of Soy/Whey Protein Isolate Complexes at the Oil-Water Interface: Influence of PH. Food Hydrocoll. 2021, 113, 106391. [Google Scholar] [CrossRef]
- Wang, Y.; Vardhanabhuti, B. The Influence of PH on the Emulsification Properties of Heated Whey Protein–Pectin Complexes. Foods 2024, 13, 2295. [Google Scholar] [CrossRef] [PubMed]
- Östbring, K.; Matos, M.; Marefati, A.; Ahlström, C.; Gutiérrez, G. The Effect of Ph and Storage Temperature on the Stability of Emulsions Stabilized by Rapeseed Proteins. Foods 2021, 10, 1657. [Google Scholar] [CrossRef]
- Cao, C.; Li, X.; Yin, Y.; Kong, B.; Sun, F.; Liu, Q. Effects of Sodium Chloride on the Physical and Oxidative Stability of Filled Hydrogel Particles Fabricated with Phase Separation Behavior. Foods 2021, 10, 1027. [Google Scholar] [CrossRef] [PubMed]
- Tan, Y.; Deng, X.; Liu, T.; Yang, B.; Zhao, M.; Zhao, Q. Influence of NaCl on the Oil/Water Interfacial and Emulsifying Properties of Walnut Protein-Xanthan Gum. Food Hydrocoll. 2017, 72, 73–80. [Google Scholar] [CrossRef]
- Narukulla, R.; Ojha, U.; Sharma, T. Effect of NaCl Concentration on Stability of a Polymer–Ag Nanocomposite Based Pickering Emulsion: Validation via Rheological Analysis with Varying Temperature. RSC Adv. 2020, 10, 21545–21560. [Google Scholar] [CrossRef] [PubMed]
- Liu, N.; Chen, Q.; Li, G.; Zhu, Z.; Yi, J.; Li, C.; Chen, X.; Wang, Y. Properties and Stability of Perilla Seed Protein-Stabilized Oil-in-Water Emulsions: Influence of Protein Concentration, PH, NaCl Concentration and Thermal Treatment. Molecules 2018, 23, 1533. [Google Scholar] [CrossRef]
- Cabra, V.; Arreguin, R.; Vazquez-Duhalt, R.; Farres, A. Effect of Temperature and PH on the Secondary Structure and Processes of Oligomerization of 19 KDa Alpha-Zein. Biochim. Biophys. Acta-Proteins Proteom. 2006, 1764, 1110–1118. [Google Scholar] [CrossRef]
- Cenci, D.F.; Kilian, J.; Janeczko, M.U.; Manzoli, A.; Rigo, E.; Soares, M.B.A. Effect of Meat and Water Temperature and Emulsion Speed on the Industrial Process for Chicken Mortadella. J. Food Process Eng. 2018, 41, e12918. [Google Scholar] [CrossRef]
- Chen, J.; He, J.; Zhao, Z.; Li, X.; Tang, J.; Liu, Q.; Wang, H. Effect of Heat Treatment on the Physical Stability, Interfacial Composition and Protein-Lipid Co-Oxidation of Whey Protein Isolate-Stabilised O/W Emulsions. Food Res. Int. 2023, 172, 113126. [Google Scholar] [CrossRef]
- Pantoja-Castro, M.A.; González-Rodríguez, H. Study by Infrared Spectroscopy and Thermogravimetric Analysis of Tannins and Tannic Acid. Rev. Latinoam. Química 2011, 39, 107–112. [Google Scholar]
- Cheng, Y.; Xu, Q.; Liu, J.; Zhao, C.; Xue, F.; Zhao, Y. Decomposition of Five Phenolic Compounds in High Temperature Water. J. Braz. Chem. Soc. 2014, 25, 2102–2107. [Google Scholar] [CrossRef]
- Fernandes, A.F.C.; Rocha, W.R.V.; de Santana, C.P.; Alves, H.d.S. Use of Thermoanalytical Analysis for the Evaluation of a New Raw Material from Cnidoscolus Quercifolius Pohl. (Euphorbiaceae). J. Therm. Anal. Calorim. 2018, 134, 2409–2416. [Google Scholar] [CrossRef]
- Calderón-Chiu, C.; Calderón-Santoyo, M.; Damasceno-Gomes, S.; Ragazzo-Sánchez, J.A. Use of Jackfruit Leaf (Artocarpus heterophyllus L.) Protein Hydrolysates as a Stabilizer of the Nanoemulsions Loaded with Extract-Rich in Pentacyclic Triterpenes Obtained from Coccoloba uvifera L. Leaf. Food Chem. X 2021, 12, 100138. [Google Scholar] [CrossRef]
- Hu, F.; Zou, P.-R.; Zhang, F.; Thakur, K.; Khan, M.R.; Busquets, R.; Zhang, J.-G.; Wei, Z.-J. Wheat Gluten Proteins Phosphorylated with Sodium Tripolyphosphate: Changes in Structure to Improve Functional Properties for Expanding Applications. Curr. Res. Food Sci. 2022, 5, 1342–1351. [Google Scholar] [CrossRef]
- Cano-Gonzalez, C.N.; Contreras-Esquivel, J.C.; Rodríguez-Herrera, R.; Aguirre-Loredo, R.Y.; Soriano-Melgar, L.d.A.A. Transformation of Agricultural Wastes into Functional Oligosaccharides Using Enzymes and Emerging Technologies. Phytochem. Anal. 2024, 35, 1771–1780. [Google Scholar] [CrossRef] [PubMed]
- Veras, K.S.; Fachel, F.N.S.; Pittol, V.; Garcia, K.R.; Bassani, V.L.; dos Santos, V.; Henriques, A.T.; Teixeira, H.F.; Koester, L.S. Compatibility Study of Rosmarinic Acid with Excipients Used in Pharmaceutical Solid Dosage Forms Using Thermal and Non-Thermal Techniques. Saudi Pharm. J. 2019, 27, 1138–1145. [Google Scholar] [CrossRef] [PubMed]
- Malucelli, L.C.; Massulo, T.; Magalhães, W.L.E.; Stofella, N.C.F.; Vasconcelos, E.C.; Filho, M.A.S.C.; Murakami, F.S. Thermal and Chemical Characterization of Dicksonia Sellowiana Extract by Means of Thermal Analysis. Rev. Bras. Farmacogn. 2018, 28, 626–630. [Google Scholar] [CrossRef]
- Favaro, L.; Balcão, V.; Rocha, L.; Silva, E.; Oliveira, J., Jr.; Vila, M.; Tubino, M. Physicochemical Characterization of a Crude Anthocyanin Extract from the Fruits of Jussara (Euterpe edulis Martius): Potential for Food and Pharmaceutical Applications. J. Braz. Chem. Soc. 2018, 29, 2072–2088. [Google Scholar] [CrossRef]
- Leyva-Porras, C.; Cruz-Alcantar, P.; Espinosa-Solís, V.; Martínez-Guerra, E.; Piñón-Balderrama, C.I.; Compean Martínez, I.; Saavedra-Leos, M.Z. Application of Differential Scanning Calorimetry (DSC) and Modulated Differential Scanning Calorimetry (MDSC) in Food and Drug Industries. Polymers 2020, 12, 5. [Google Scholar] [CrossRef]
- Schön, A.; Clarkson, B.R.; Jaime, M.; Freire, E. Temperature Stability of Proteins: Analysis of Irreversible Denaturation Using Isothermal Calorimetry. Proteins Struct. Funct. Bioinform. 2017, 85, 2009–2016. [Google Scholar] [CrossRef] [PubMed]
- Fitzsimons, S.M.; Mulvihill, D.M.; Morris, E.R. Denaturation and Aggregation Processes in Thermal Gelation of Whey Proteins Resolved by Differential Scanning Calorimetry. Food Hydrocoll. 2007, 21, 638–644. [Google Scholar] [CrossRef]
- Di Matteo, P.; Luziatelli, F.; Bortolami, M.; Mele, M.L.; Ruzzi, M.; Russo, P. Differential Scanning Calorimetry (DSC) as a Tool for Studying Thermal Properties of a Crude Cellulase Cocktail. Chem. Pap. 2023, 77, 2689–2696. [Google Scholar] [CrossRef]
- Alsaleem, K.A.; Moftah, R.F.; El-Geddawy, M.M.A. New Insights into Red and White Quinoa Protein Isolates: Nutritional, Functional, Thermal Properties. Processes 2024, 12, 2822. [Google Scholar] [CrossRef]
- Souza, A.C.P.; Deyse Gurak, P.; Damasceno Ferreira Marczak, L. Maltodextrin, Pectin and Soy Protein Isolate as Carrier Agents in the Encapsulation of Anthocyanins-Rich Extract from Jaboticaba Pomace. Food Bioprod. Process. 2017, 102, 186–194. [Google Scholar] [CrossRef]
Treatment | Independent Variables | Experimental Response | ||||
---|---|---|---|---|---|---|
Protein Concentration (%) | Oil Concentration (%) | Ultrasound Time (min) | PDI | D[3,2] (μm) | D[4,3] (μm) | |
1 | 2 | 15 | 3 | 2.23 ± 0.06 | 1.33 ± 0.06 | 2.16 ± 0.21 |
2 | 4 | 15 | 3 | 2.12 ± 0.01 | 1.4 ± 0.01 | 2.23 ± 0.03 |
3 | 2 | 15 | 7 | 2.55 ± 0.02 | 1.22 ± 0.02 | 2.3 ± 0.3 |
4 | 4 | 15 | 7 | 2.70 ± 0.06 | 1.32 ± 0.06 | 2.73 ± 0.52 |
5 | 2 | 5 | 5 | 2.87 ± 0.13 | 1.15 ± 0.13 | 2.25 ± 0.31 |
6 | 4 | 5 | 5 | 2.34 ± 0.05 | 1.6 ± 0.05 | 3.1 ± 0.27 |
7 | 2 | 25 | 5 | 2.46 ± 0.35 | 2.04 ± 0.35 | 4.42 ± 1.39 |
8 | 4 | 25 | 5 | 1.86 ± 0.04 | 1.71 ± 0.04 | 2.95 ± 0.72 |
9 | 3 | 5 | 3 | 2.35 ± 0.18 | 1.59 ± 0.18 | 2.82 ± 0.3 |
10 | 3 | 5 | 7 | 2.30 ± 0.08 | 1.14 ± 0.08 | 2.09 ± 0.18 |
11 | 3 | 25 | 3 | 1.66 ± 0.02 | 1.6 ± 0.02 | 2.3 ± 0.01 |
12 | 3 | 25 | 7 | 1.70 ± 0.03 | 1.39 ± 0.03 | 1.98 ± 0.01 |
13 | 3 | 15 | 5 | 2.08 ± 0.00 | 1.21 ± 0 | 1.87 ± 0.04 |
14 | 3 | 15 | 5 | 2.01 ± 0.01 | 1.22 ± 0.01 | 1.84 ± 0.07 |
15 | 3 | 15 | 5 | 1.93 ± 0.03 | 1.2 ± 0.03 | 1.76 ± 0.04 |
Optimal | 3 | 20 | 7 | 1.85 ± 0.18 | 1.10 ± 0.11 | 1.45 ± 0.46 |
Factor | PDI (Y1) | D[3,2] (Y2) | D[4,3] (Y3) | ||||||
---|---|---|---|---|---|---|---|---|---|
SS | F-Value | p-Value | SS | F-Value | p-Value | SS | F-Value | p-Value | |
Linear effect | |||||||||
X1 | 0.4387 ** | 18.0417 | 0.0007 | 0.0002 | 0.0194 | 0.8911 | 0.6943 | 4.4897 | 0.0512 |
X2 | 0.7285 ** | 29.9587 | 6.42 × 10−5 | 0.5736 ** | 69.5838 | 5.12 × 10−7 | 2.2896 ** | 14.8054 | 0.0016 |
X3 | 0.3204 ** | 13.1771 | 0.0025 | 0.1071 ** | 12.9951 | 0.0026 | 0.0051 | 0.0327 | 0.8588 |
Interaction effect | |||||||||
X1X2 | 0.0504 | 2.0728 | 0.1705 | 0.4141 ** | 50.2285 | 3.70 × 10−6 | 3.7128 ** | 24.0081 | 1.92 × 10−4 |
X1X3 | 0.0334 | 1.3741 | 0.2594 | 0.0005 | 0.0546 | 0.8184 | 0.0630 | 0.4075 | 0.5329 |
X2X3 | 0.003613 | 0.1486 | 0.7043 | 0.0300 | 3.6408 | 0.0757 | 0.0861 | 0.5568 | 0.4671 |
Quadratic effect | |||||||||
X12 | 0.9659 ** | 39.7263 | 1.42 × 10−5 | 0.2235 ** | 27.1131 | 1.06 × 10−4 | 4.0641 ** | 26.2794 | 1.24 × 10−4 |
X22 | 0.0003 | 0.0143 | 0.9053 | 0.5784 ** | 70.1661 | 4.86 × 10−7 | 3.4751 ** | 22.4710 | 2.63 × 10−4 |
X32 | 0.0001 | 0.0045 | 0.9475 | 0.0378 ** | 4.5883 | 0.0490 | 0.4182 | 2.7042 | 0.1209 |
Error | 0.3647 | 0.1237 | 2.3197 | ||||||
Total SS | 3.5475 | 2.2849 | 20.2099 | ||||||
R2 | 0.8972 | 0.9458 | 0.8852 | ||||||
Adjusted R2 | 0.8149 | 0.9026 | 0.7934 | ||||||
LOF | 0.6031 | 8.2676 | 0.0018 | 0.2411 | 9.7508 | 8.12 × 10−4 | 4.5387 | 9.7829 | 7.99 × 10−4 |
Quadratic regression equations fitted to the model ** | |||||||||
(4) | |||||||||
(5) | |||||||||
(6) |
Independent Variables | Dependent Variables | |||||
---|---|---|---|---|---|---|
Protein (%) | Oil (%) | Time (%) | Data | PDI | D[3,2] (µm) | D[4,3] (µm) |
3 | 20 | 7 | Predicted | 1.85 ± 0.18 | 1.10 ± 0.11 | 1.45 ± 0.46 |
Experimental | 1.88 ± 0.01 | 1.11 ± 0.09 | 1.60 ± 0.17 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nava de la Cruz, M.; Calderón-Chiu, C.; Vilchis-Gómez, D.S.; Calderón-Santoyo, M.; Jimenez-Sánchez, D.E.; Ragazzo-Sánchez, J.A. Optimization and Characterization of an O/W Emulsion Based on Coccoloba uvifera Seed Protein Loaded with Extract of Randia monantha. Processes 2025, 13, 2724. https://doi.org/10.3390/pr13092724
Nava de la Cruz M, Calderón-Chiu C, Vilchis-Gómez DS, Calderón-Santoyo M, Jimenez-Sánchez DE, Ragazzo-Sánchez JA. Optimization and Characterization of an O/W Emulsion Based on Coccoloba uvifera Seed Protein Loaded with Extract of Randia monantha. Processes. 2025; 13(9):2724. https://doi.org/10.3390/pr13092724
Chicago/Turabian StyleNava de la Cruz, Misael, Carolina Calderón-Chiu, Doane Santalucia Vilchis-Gómez, Montserrat Calderón-Santoyo, Darvin Ervey Jimenez-Sánchez, and Juan Arturo Ragazzo-Sánchez. 2025. "Optimization and Characterization of an O/W Emulsion Based on Coccoloba uvifera Seed Protein Loaded with Extract of Randia monantha" Processes 13, no. 9: 2724. https://doi.org/10.3390/pr13092724
APA StyleNava de la Cruz, M., Calderón-Chiu, C., Vilchis-Gómez, D. S., Calderón-Santoyo, M., Jimenez-Sánchez, D. E., & Ragazzo-Sánchez, J. A. (2025). Optimization and Characterization of an O/W Emulsion Based on Coccoloba uvifera Seed Protein Loaded with Extract of Randia monantha. Processes, 13(9), 2724. https://doi.org/10.3390/pr13092724