Numerical Simulation and Influence Analysis of Geometrical Parameters in Gas–Solid Separation Process for a Cyclone Separator
Abstract
1. Introduction
2. Physical and Mathematical Models
2.1. Physical Model
2.2. Mathematical Model
2.2.1. Fluid Flow
2.2.2. Particle Motion
3. Description and Validation of Numerical Method
3.1. Numerical Method
3.2. Validation of Numerical Method
4. Results
4.1. Flue Gas Flow and Particle Separation
4.1.1. Flue Gas Flow in Cyclone Separator
4.1.2. Solid Particle Deposition in Cyclone Separator
4.2. Influences of Structural Parameters
4.2.1. Ratio of Cylinder Height to Diameter (L/D)
4.2.2. Ratio of Cone Height to Cylinder Diameter (H/D Ratio)
4.2.3. Ratio of Vortex Finder Diameter to Cylinder Diameter (de/D Ratio)
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Du, Q.; Su, L.; Dong, H.; Gao, J.; Zhao, Z.; Lv, D.; Wu, S. The experimental study of a water-saving wet electrostatic precipitator for removing fine particles. J. Electrost. 2016, 81, 42–47. [Google Scholar] [CrossRef]
- Qi, L.Q.; Liu, J. Study of Metallurgical industry smoke characteristics and the affect to the performance of electrical precipitator. Adv. Mater. Res. 2012, 402, 371–373. [Google Scholar] [CrossRef]
- Trakumas, S.; Willeke, K.; Reponen, T.; Grinshpun, S.A.; Friedman, W. Comparison of filter bag, cyclonic, and wet dust collection methods in vacuum cleaners. AIHAJ-Am. Ind. Hyg. Assoc. 2001, 62, 573–583. [Google Scholar] [CrossRef]
- Hoffmann, A.C.; Stein, L.E.; Bradshaw, P. Gas cyclones and swirl tubes: Principles, design and operation. Appl. Mech. Rev. 2003, 56, B28–B29. [Google Scholar] [CrossRef]
- Hughs, S.; Baker, R. Effectiveness of model cyclone designs in collecting gin trash particulate emissions. Appl. Eng. Agric. 1998, 14, 317–322. [Google Scholar] [CrossRef]
- Misiulia, D.; Andersson, A.G.; Lundström, T.S. Effects of the inlet angle on the collection efficiency of a cyclone with helical-roof inlet. Powder Technol. 2017, 305, 48–55. [Google Scholar] [CrossRef]
- Bogodage, S.G.; Leung, A. Improvements of the cyclone separator performance by down-comer tubes. J. Hazard. Mater. 2016, 311, 100–114. [Google Scholar] [CrossRef]
- Kim, J.; Lee, K. Experimental study of particle collection by small cyclones. Aerosol Sci. Technol. 1990, 12, 1003–1015. [Google Scholar] [CrossRef]
- El-Batsh, H.M. Improving cyclone performance by proper selection of the exit pipe. Appl. Math. Model. 2013, 37, 5286–5303. [Google Scholar] [CrossRef]
- Ficici, F.; Ari, V.; Kapsiz, M. The effects of vortex finder on the pressure drop in cyclone separators. Int. J. Phys. Sci. 2010, 5, 804–813. [Google Scholar]
- Gimbun, J.; Chuah, T.; Choong, T.S.; Fakhru’l-Razi, A. Prediction of the effects of cone tip diameter on the cyclone performance. J. Aerosol Sci. 2005, 36, 1056–1065. [Google Scholar] [CrossRef]
- Pandey, S.; Saha, I.; Prakash, O.; Mukherjee, T.; Iqbal, J.; Roy, A.K.; Wasilewski, M.; Brar, L.S. CFD investigations of cyclone separators with different cone heights and shapes. Appl. Sci. 2022, 12, 4904. [Google Scholar] [CrossRef]
- Elsayed, K.; Lacor, C. Numerical modeling of the flow field and performance in cyclones of different cone-tip diameters. Comput. Fluids 2011, 51, 48–59. [Google Scholar] [CrossRef]
- Xiang, R.; Park, S.; Lee, K. Effects of cone dimension on cyclone performance. J. Aerosol Sci. 2001, 32, 549–561. [Google Scholar] [CrossRef]
- Ter Linden, A. Investigations into cyclone dust collectors. Proc. Inst. Mech. Eng. 1949, 160, 233–251. [Google Scholar] [CrossRef]
- Fan, Y.; Wang, J.; Bai, Z.; Wang, J.; Wang, H. Experimental investigation of various inlet section angles in mini-hydrocyclones using particle imaging velocimetry. Sep. Purif. Technol. 2015, 149, 156–164. [Google Scholar] [CrossRef]
- Zhao, W.; Li, J.-p.; Zhang, T.; Wei, A.-s.; Li, S.-y.; Yang, D.-h.; Yang, X.-j.; Jiang, X.; Wang, H. Separation characters of dewatering hydrocyclone with annular vortex finder based on particle image velocimetry and experiments. Sep. Purif. Technol. 2025, 353, 128619. [Google Scholar] [CrossRef]
- Gao, Z.; Wang, J.; Wang, J.; Mao, Y. Time-frequency analysis of the vortex motion in a cylindrical cyclone separator. Chem. Eng. J. 2019, 373, 1120–1131. [Google Scholar] [CrossRef]
- Jia, M.; Wang, D.; Yan, C.; Song, J.; Han, Q.; Chen, F.; Wei, Y. Analysis of the pressure fluctuation in the flow field of a large-scale cyclone separator. Powder Technol. 2019, 343, 49–57. [Google Scholar] [CrossRef]
- Derksen, J.; Van den Akker, H. Simulation of vortex core precession in a reverse-flow cyclone. AIChE J. 2000, 46, 1317–1331. [Google Scholar] [CrossRef]
- Elsayed, K.; Lacor, C. The effect of cyclone inlet dimensions on the flow pattern and performance. Appl. Math. Model. 2011, 35, 1952–1968. [Google Scholar] [CrossRef]
- Azadi, M.; Azadi, M.; Mohebbi, A. A CFD study of the effect of cyclone size on its performance parameters. J. Hazard. Mater. 2010, 182, 835–841. [Google Scholar] [CrossRef]
- Wang, L.; Chen, E.; Ma, L.; Yang, Z.; Li, Z.; Yang, W.; Wang, H.; Chang, Y. Numerical simulation and experimental study of gas cyclone–liquid jet separator for fine particle separation. Chin. J. Chem. Eng. 2022, 51, 43–52. [Google Scholar] [CrossRef]
- Chen, J.; Chen, Y.; Zhang, L.; Zhao, B.; Li, Y. Numerical Simulation of a Novel Secondary Separation Cyclone. Processes 2025, 13, 1874. [Google Scholar] [CrossRef]
- Zhang, D.Y.; Wang, C. Handbook of Dust Removal Engineering Design, 3rd ed.; Chemical Industry Press: Beijing, China, 2021. [Google Scholar]
- Spurk, H.J.; Aksel, N. Fluid Mechanics; Springer: Berlin/Heidelberg, Germany, 2008. [Google Scholar]
- Lumley, J.L. Computational modeling of turbulent flows. Adv. Appl. Mech. 1979, 18, 123–176. [Google Scholar]
- Argyropoulos, C.D.; Markatos, N. Recent advances on the numerical modelling of turbulent flows. Appl. Math. Model. 2015, 39, 693–732. [Google Scholar] [CrossRef]
- Vegini, A.A.; Meier, H.F.; Iess, J.J.; Mori, M. Computational fluid dynamics (CFD) analysis of cyclone separators connected in series. Ind. Eng. Chem. Res. 2008, 47, 192–200. [Google Scholar] [CrossRef]
- Shin, M.-S.; Kim, H.-S.; Jang, D.-S.; Chung, J.-D.; Bohnet, M. A numerical and experimental study on a high efficiency cyclone dust separator for high temperature and pressurized environments. Appl. Therm. Eng. 2005, 25, 1821–1835. [Google Scholar] [CrossRef]
- Li, A.; Ahmadi, G. Dispersion and deposition of spherical particles from point sources in a turbulent channel flow. Aerosol Sci. Technol. 1992, 16, 209–226. [Google Scholar] [CrossRef]
- Saffman, P.G. The lift on a small sphere in a slow shear flow. J. Fluid Mech. 1965, 22, 385–400. [Google Scholar] [CrossRef]
- Li, W.; Shi, H.; Yu, X. An improvement to continuous random walk model for sediment diffusion in inhomogeneous turbulent flows. Environ. Fluid Mech. 2023, 23, 779–797. [Google Scholar] [CrossRef]
- Gosman, A.; Loannides, E. Aspects of computer simulation of liquid-fueled combustors. J. Energy 1983, 7, 482–490. [Google Scholar] [CrossRef]
- ANSYS, Inc. ANSYS FLUENT 12.0. Theory Guide; ANSYS, Inc.: Canonsburg, PA, USA, 2009. [Google Scholar]
- Zhao, B.; Su, Y. Particle size cut performance of aerodynamic cyclone separators: Generalized modeling and characterization by correlating global cyclone dimensions. J. Aerosol Sci. 2018, 120, 1–11. [Google Scholar] [CrossRef]
Structure Parameters | Inlet Cross-Section Width | Inlet Cross-Section Height | Vortex Finder Depth | Vortex Finder Diameter | Cylinder Diameter | Cylinder Height | Cone Height | Discharge Diameter |
---|---|---|---|---|---|---|---|---|
Symbol | b | h | m | de | D | L | H | d1 |
Dimension (mm) | 350 | 700 | 1000 | 702 | 1170 | 1872 | 2690 | 503 |
Mesh Spacing (mm) | Total Number of Meshes | Maximal Skewness for Meshes | Maximal Aspect Ratio for Meshes | Separation Efficiency | Pressure Drop | |
---|---|---|---|---|---|---|
1 | 60 | 24,257 | 0.48 | 5.83 | 0.9921 | 1208 |
2 | 50 | 42,800 | 0.42 | 5.02 | 0.9899 | 1405 |
3 | 40 | 96,399 | 0.41 | 4.91 | 0.9679 | 1426 |
4 | 30 | 219,514 | 0.41 | 4.93 | 0.9678 | 1423 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, C.; Dai, X.; Zhou, M.; Zeng, Y. Numerical Simulation and Influence Analysis of Geometrical Parameters in Gas–Solid Separation Process for a Cyclone Separator. Processes 2025, 13, 2723. https://doi.org/10.3390/pr13092723
Zhou C, Dai X, Zhou M, Zeng Y. Numerical Simulation and Influence Analysis of Geometrical Parameters in Gas–Solid Separation Process for a Cyclone Separator. Processes. 2025; 13(9):2723. https://doi.org/10.3390/pr13092723
Chicago/Turabian StyleZhou, Chuan, Xianling Dai, Mingluo Zhou, and Yunmin Zeng. 2025. "Numerical Simulation and Influence Analysis of Geometrical Parameters in Gas–Solid Separation Process for a Cyclone Separator" Processes 13, no. 9: 2723. https://doi.org/10.3390/pr13092723
APA StyleZhou, C., Dai, X., Zhou, M., & Zeng, Y. (2025). Numerical Simulation and Influence Analysis of Geometrical Parameters in Gas–Solid Separation Process for a Cyclone Separator. Processes, 13(9), 2723. https://doi.org/10.3390/pr13092723