Numerical Study on the Effect of Baffle Structures on the Diesel Conditioning Process
Abstract
1. Introduction
2. 3D Modeling Methods
2.1. Physical Model and Boundary Conditions
2.2. Numerical Methods
2.3. Simulation Validation
3. Results and Discussion
3.1. Effect of Different Baffle Structures on Diesel Conditioning Process
3.2. Effect of Different Baffle Numbers on Diesel Conditioning Process
4. Conclusions
- (1)
- Because conditioning oil is denser than diesel, high-concentration regions form near the inlet and central areas in the single-flow configuration. Openings at the bottom of the baffles in double-flow and triple-flow configurations significantly mitigate this phenomenon. As the baffle flow area increases, mixing time and relative wastage of conditioning oil gradually increase. However, species cycling time steadily decreases as baffle flow area increases.
- (2)
- Increasing the number of baffles reduces tank volume and enlarges the conditioning oil concentration gradient across the baffles, significantly shortening mixing time. Meanwhile, the larger concentration difference between inlet and outlet accelerates dilution of high-concentration conditioning oil at the inlet once species cycling begins, resulting in a marked reduction in cycling time. However, rates of decrease in mixing and cycling times diminish as baffle count increases. Therefore, choosing an appropriate number of baffles is critical for achieving rapid tempering.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
3D | Three-dimensional |
CFD | Computational fluid dynamics |
UDF | User-defined function |
VF | Volume fraction |
VOF | Volume of fluid |
References
- Sovacool, B.K.; Schmid, P.; Stirling, A.; Walter, G.; MacKerron, G. Differences in carbon emissions reduction between countries pursuing renewable electricity versus nuclear power. Nat. Energy 2020, 5, 928–935. [Google Scholar] [CrossRef]
- Papazis, S.A. Nuclear–Thermal Power Generation: Multicriteria Optimization of the Economic Sustainability. Sustainability 2025, 17, 4781. [Google Scholar] [CrossRef]
- Steinhauser, G.; Brandl, A.; Johnson, T.E. Comparison of the Chernobyl and Fukushima nuclear accidents: A review of the environmental impacts. Sci. Total Environ. 2014, 470, 800–817. [Google Scholar] [CrossRef]
- Onda, Y.; Taniguchi, K.; Yoshimura, K.; Kato, H.; Takahashi, J.; Wakiyama, Y.; Coppin, F.; Smith, H. Radionuclides from the Fukushima Daiichi nuclear power plant in terrestrial systems. Nat. Rev. Earth Environ. 2020, 1, 644–660. [Google Scholar] [CrossRef]
- Ohba, T.; Tanigawa, K.; Liutsko, L. Evacuation after a nuclear accident: Critical reviews of past nuclear accidents and proposal for future planning. Environ. Int. 2021, 148, 106379. [Google Scholar] [CrossRef]
- Nagatani, K.; Kiribayashi, S.; Okada, Y.; Otake, K.; Yoshida, K.; Tadokoro, S.; Nishimura, T.; Yoshida, T.; Koyanagi, E.; Fukushima, M. Emergency response to the nuclear accident at the Fukushima Daiichi Nuclear Power Plants using mobile rescue robots. J. Field Robot. 2013, 30, 44–63. [Google Scholar] [CrossRef]
- Marqusee, J.; Don, D.J., II. Reliability of emergency and standby diesel generators: Impact on energy resiliency solutions. Appl. Energy 2020, 268, 114918. [Google Scholar] [CrossRef]
- Jeong, Y.-S.; Baek, E.-R.; Jeon, B.-G.; Chang, S.-J.; Park, D.-U. Seismic performance of emergency diesel generator for high frequency motions. Nucl. Eng. Technol. 2019, 51, 1470–1476. [Google Scholar] [CrossRef]
- Zhang, L.; He, Y.; Zhou, Y.; Jiang, G.; Chu, X.; Ma, Q.; Liu, F.; Ye, H. A Comprehensive Optimization Framework for Diesel Filtration in Nuclear Emergency Systems: Integrating Genetic Algorithms, State-Space Networks, and Computational Fluid Dynamics. Processes 2025, 13, 648. [Google Scholar] [CrossRef]
- Kumar, N. Oxidative stability of biodiesel: Causes, effects and prevention. Fuel 2017, 190, 328–350. [Google Scholar] [CrossRef]
- Longanesi, L.; Pereira, A.P.; Johnston, N.; Chuck, C.J. Oxidative stability of biodiesel: Recent insights. Biofuel. Bioprod. Bior. 2022, 16, 265–289. [Google Scholar] [CrossRef]
- Hosseinzadeh-Bandbafha, H.; Kumar, D.; Singh, B.; Shahbeig, H.; Lam, S.S.; Aghbashlo, M.; Tabatabaei, M. Biodiesel antioxidants and their impact on the behavior of diesel engines: A comprehensive review. Fuel Process. Technol. 2022, 232, 107264. [Google Scholar] [CrossRef]
- Pullen, J.; Saeed, K. An overview of biodiesel oxidation stability. Renew. Sustain. Energ. Rev. 2012, 16, 5924–5950. [Google Scholar] [CrossRef]
- Bello, U.; Adamu, H.; Samsuri, S.; Ibrahim, H.; Qamar, M. Improving biodiesel oxidative stability using antioxidants: An insight into the research trends and future prospects from a bibliometric approach. Results Eng. 2025, 26, 105185. [Google Scholar] [CrossRef]
- Karavalakis, G.; Stournas, S. Impact of antioxidant additives on the oxidation stability of diesel/biodiesel blends. Energy Fuels 2010, 24, 3682–3686. [Google Scholar] [CrossRef]
- Malik, M.A.I.; Kalam, M.; Abbas, M.M.; Silitonga, A.S.; Ikram, A. Recent advancements, applications, and technical challenges in fuel additives-assisted engine operations. Energy Conv. Manag. 2024, 313, 118643. [Google Scholar] [CrossRef]
- Rodrigues, J.S.; do Valle, C.P.; Uchoa, A.F.J.; Ramos, D.M.; da Ponte, F.A.F.; Rios, M.A.d.S.; de Queiroz Malveira, J.; Pontes Silva Ricardo, N.M. Comparative study of synthetic and natural antioxidants on the oxidative stability of biodiesel from Tilapia oil. Renew. Energy 2020, 156, 1100–1106. [Google Scholar] [CrossRef]
- Elkelawy, M.; Aly Farag, M.; Seleem, H.E. Enhancing Diesel Engine Power Plant Efficiency and Cutting Emissions with Commercial Fuel Additives in Generator Systems. Pharos Eng. Sci. J. 2025, 2, 37–46. [Google Scholar] [CrossRef]
- Muhyi, A.; Silitonga, D.; Alfian, D.C.; Supriyadi, D.; Prahmana, R. Performance Characterization of Diesel Engine Generator Set with the Addition of Clove Oil as Bio-Additives for Diesel Fuel; IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2019; p. 012009. [Google Scholar] [CrossRef]
- Işık, M.Z.; Bayındır, H.; İscan, B.; Aydın, H. The effect of n-butanol additive on low load combustion, performance and emissions of biodiesel-diesel blend in a heavy duty diesel power generator. J. Energy Inst. 2017, 90, 174–184. [Google Scholar] [CrossRef]
- Nagappan, M.; Devaraj, A.; Babu, J.M.; Vibhav Saxena, N.; Prakash, O.; Kumar, P.; Sharma, A. Impact of additives on Combustion, performance and exhaust emission of biodiesel fueled direct injection diesel engine. Mater. Today Proc. 2022, 62, 2326–2331. [Google Scholar] [CrossRef]
- Chen, B.-Y.; Chen, Y.-S. Heat transfer analysis for the temporary spent fuel storage of the Chinshan nuclear plant. Nucl. Eng. Des. 2024, 428, 113535. [Google Scholar] [CrossRef]
- Bae, J.-W.; Noh, B.-S.; Lee, J.-W.; Choe, S.-J.; Park, K.-H.; Kim, J.-D.; Choi, J.-H. Quantitative Analysis of Explosion Characteristics Based on Ignition Location in an Ammonia Fuel Preparation Room Using CFD Simulation. Appl. Sci. 2025, 15, 6554. [Google Scholar] [CrossRef]
- Calabrese, M.; Portarapillo, M.; Di Nardo, A.; Venezia, V.; Turco, M.; Luciani, G.; Di Benedetto, A. Hydrogen safety challenges: A comprehensive review on production, storage, transport, utilization, and CFD-based consequence and risk assessment. Energies 2024, 17, 1350. [Google Scholar] [CrossRef]
- Zhu, W.; Meng, X.; Zhang, M.; Zhang, X.; Cui, Z.; Tian, J.; Long, W.; Bi, M. Synergistic effects of CO2 dilution and H2 addition on the laminar combustion characteristics of NH3/CH4 blends at high temperature and pressure. Energy 2025, 320, 135267. [Google Scholar] [CrossRef]
- Jiang, S.; Zhao, Y.; Zhao, X.; Chen, C.; Tu, W.; Chi, Y.; Wang, J. Dense Phase Mixing in a Solid-Liquid Stirred Tank by Computational Fluid Dynamics Simulation. Processes 2025, 13, 1876. [Google Scholar] [CrossRef]
- Feng, P.; Tan, L.; Cao, Y.; Chen, D. Numerical investigations of two-phase flow coupled with species transport in proton exchange membrane fuel cells. Energy 2023, 278, 127918. [Google Scholar] [CrossRef]
- Mohd Laziz, A.; Chuah, C.Y.; Denecke, J.; Bilad, M.R.; Ku Shaari, K.Z. Investigation of Mass-Transfer Performance for Biodiesel Reaction in Microchannel Reactor using Volume-of-Fluid with Species-Transport Model. Sustainability 2023, 15, 6148. [Google Scholar] [CrossRef]
- Al-rifai, S.; Cao, Y. Multiphase modeling of heat and mass transfer inside transport membrane condenser (TMC) tube bundle. Int. J. Heat Mass Transf. 2023, 214, 124429. [Google Scholar] [CrossRef]
- Satish, R.; B. T, R.; Raju, S.S.K.; Al Mukahal, F.H.H.; Souayeh, B.; Varma, S.V.K. Radiated Free Convection of Dissipative and Chemically Reacting Flow Suspension of Ternary Nanoparticles. Processes 2025, 13, 1030. [Google Scholar] [CrossRef]
- GB19147-2016; Standardization Administration: Automobile Diesel Fuels. General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China: Beijing, China, 2016. Available online: https://std.samr.gov.cn/ (accessed on 15 March 2025).
- Song, Z.; Chen, Y.; Yu, T.; Wang, X.; Cao, H.; Li, Z.; Lang, X.; Xu, S.; Lu, S.; Jiang, C. Influence of the Trailing Edge Shape of Impeller Blades on Centrifugal Pumps with Unsteady Characteristics. Processes 2024, 12, 508. [Google Scholar] [CrossRef]
- Soloveva, O.V.; Solovev, S.A.; Shakurova, R.Z. Numerical Study of the Thermal and Hydraulic Characteristics of Plate-Fin Heat Sinks. Processes 2024, 12, 744. [Google Scholar] [CrossRef]
- Zhu, W.; Wang, Y.; Wang, J. Flow field of a rotating detonation engine fueled by carbon. Phys. Fluids 2022, 34, 073311. [Google Scholar] [CrossRef]
- Wang, J.; Wang, M.; Yu, X.; Zong, R.; Lu, S. Experimental and numerical study of the fire behavior of a tank with oil leaking and burning. Process Saf. Environ. Protect. 2022, 159, 1203–1214. [Google Scholar] [CrossRef]
- Rybak, I.; Gray, W.; Miller, C. Modeling two-fluid-phase flow and species transport in porous media. J. Hydrol. 2015, 521, 565–581. [Google Scholar] [CrossRef]
- Bothe, D.; Fleckenstein, S. A volume-of-fluid-based method for mass transfer processes at fluid particles. Chem. Eng. Sci. 2013, 101, 283–302. [Google Scholar] [CrossRef]
Materials | Density, kg·m−3 | Kinematic Viscosity, mm2/s |
---|---|---|
Conditioning oil | 845 | 5.81 |
Degraded diesel | 815.6 | 4.215 |
Air | 1.204 | 15.1 |
Baffle Structures | Mixing Efficiency | Cycling Efficiency |
---|---|---|
single-flow | 11.7% | 0% |
double-flow | 8.51% | 38.56% |
triple-flow | 0% | 56.43% |
Baffle Number | Mixing Efficiency | Cycling Efficiency |
---|---|---|
single-baffle | 0% | 0% |
double-baffle | 6.06% | 14.66% |
triple-baffle | 7.54% | 24.06% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, L.; Wu, C.; Sun, T.; Yu, B.; Chu, X.; Ma, Q.; Yin, Y.; Ye, H.; Meng, X. Numerical Study on the Effect of Baffle Structures on the Diesel Conditioning Process. Processes 2025, 13, 2580. https://doi.org/10.3390/pr13082580
Zhang L, Wu C, Sun T, Yu B, Chu X, Ma Q, Yin Y, Ye H, Meng X. Numerical Study on the Effect of Baffle Structures on the Diesel Conditioning Process. Processes. 2025; 13(8):2580. https://doi.org/10.3390/pr13082580
Chicago/Turabian StyleZhang, Lanqi, Chenping Wu, Tianyi Sun, Botao Yu, Xiangnan Chu, Qi Ma, Yulong Yin, Haotian Ye, and Xiangyu Meng. 2025. "Numerical Study on the Effect of Baffle Structures on the Diesel Conditioning Process" Processes 13, no. 8: 2580. https://doi.org/10.3390/pr13082580
APA StyleZhang, L., Wu, C., Sun, T., Yu, B., Chu, X., Ma, Q., Yin, Y., Ye, H., & Meng, X. (2025). Numerical Study on the Effect of Baffle Structures on the Diesel Conditioning Process. Processes, 13(8), 2580. https://doi.org/10.3390/pr13082580