Defect Detection Algorithm for Photovoltaic Cells Based on SEC-YOLOv8
Abstract
1. Introduction
2. YOLOv8 Algorithm
2.1. Proposed Algorithm Improvements
2.2. SPPELAN Pooling Module
2.3. ECA Module
2.4. CARAFE Module
3. Experimental Results and Analysis
3.1. Experimental Environment and Parameter Configuration
3.2. Dataset Introduction
3.3. Evaluation Index
3.4. Experimentals and Results
3.4.1. Comparative Experiments
3.4.2. Ablation Experiments
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Han, F.; Wang, L.L.; Lin, Y. Research Progress of hole dopants for perovskite solar cells. J. Ceram. 2023, 44, 417–433. [Google Scholar]
- Zhang, W.B.; Ma, Y.H.; Bai, X.J.; Tan, Y.P.; Pi, Y.X. Defect identification of solar panels using improved faster R-CNN. Power Syst. Technol. 2022, 46, 2593–2600. [Google Scholar]
- Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards real-time object detection with region proposal networks. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 1137–1149. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Zhao, M.; Shi, P.; Ren, R.; He, X.; Wei, X.; Yang, H. Crack detection and comparison study based on faster R-CNN and mask R-CNN. Sensors 2022, 22, 1215. [Google Scholar] [CrossRef] [PubMed]
- Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You only look once: Unified, real-time object detection. In Proceedings of the Computer Vision & Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016. [Google Scholar]
- Cheng, S.; Dai, J.T.; Yang, H.G.; Chen, Y.X. Weld Image Detection and Recognition Based on Improved YOLOv4. Laser Optoelectron. Prog. 2022, 59, 1610002. [Google Scholar]
- Chu, Z.; Zhang, X.L.; Yin, G.F.; Jia, R.Q.; Qi, Y.J.; Xu, M.; Hu, X.; Huang, P.; Ma, M.J.; Yang, R.F. Detection algorithm of planktonic algae based on improved YOYOv3. Laser Optoelectron Prog. 2023, 60, 257–264. [Google Scholar]
- Li, X.; He, M.; Luo, H.B. Occluded pedestrian detection algorithm based on improved YOLOv3. Acta. Opt. Sin. 2022, 42, 160–169. [Google Scholar]
- Shi, T.; Ding, Y.; Zhu, W. YOLOv5s_2E: Improved YOLOv5s for Aerial Small Target Detection. IEEE Access 2023, 11, 80479–80490. [Google Scholar] [CrossRef]
- Terven, J.; Córdova-Esparza, D.-M.; Romero-González, J.-A. A Comprehensive Review of YOLO Architectures in Computer Vision: From YOLOv1 to YOLOv8 and YOLO-NAS. Mach. Learn. Knowl. Extr. 2023, 5, 1680–1716. [Google Scholar] [CrossRef]
- Liao, K.-C.; Lau, J.; Hidayat, M. An Innovative Aircraft Skin Damage Assessment Using You Only Look Once-Version9: A Real-Time Material Evaluation System for Remote Inspection. Aerospace 2025, 12, 31. [Google Scholar] [CrossRef]
- Zong, Z.; Song, G.; Liu, Y. DETRs with Collaborative Hybrid Assignments Training. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Paris, France, 2–6 October 2023; pp. 6748–6758. [Google Scholar]
- Akram, M.W.; Li, G.; Jin, Y.; Chen, X.; Zhu, C.; Zhao, X.; Khaliq, A.; Faheem, M.; Ahmad, A. CNN based automatic detection of photovoltaic cell defects in electroluminescence images. Energy 2019, 189, 116319. [Google Scholar] [CrossRef]
- Zhang, P.F.; Wang, S.Q.; Huang, J.F.; Liu, Y.F.; Zhang, Z.Y. Surface defect detection method of solar cell based on vision. Modul. Mach. Tool Autom. Manuf. Tech. 2022, 8, 144–147+151. [Google Scholar]
- Teng, S.; Liu, Z.; Luo, Y.; Zhang, P. Improved Solar Photovoltaic Panel Defect Detection Technology Based on YOLOv5. In Proceedings of the International Conference on 6GN for Future Wireless Networks; Springer Nature: Cham, Switzerland, 2023; pp. 199–213. [Google Scholar]
- Li, T.; Sun, Y. Defect Detection of Solar Panels Based on Improved Lightweight YOLOv5. Modul. Mach. Tool Autom. Manuf. Tech. 2023, 4, 95–99+106. [Google Scholar]
- Chen, H.Y.; Zhao, P.; Yan, H.W. Crack detection based on multi-scale Faster RCNN with attention. Opto-Electron. Eng. 2021, 48, 64–74. [Google Scholar]
- Zhou, Y.; Yan, M.Z.; Chen, H.Y.; Fei, S.H. Defect Detection of Photovoltaic Cells Based on Improved YOLOv8. Laser Optoelectron. Prog. 2024, 61, 245–255. [Google Scholar]
- Liu, C.Y.; Dong, X.J.; Liu, S.J.; Zhou, Y.L. Detection of small defects on photovoltaic panel surfaces based on improved Dn-YOLOv7 algorithm. J. Hubei MinZu Univ. 2024, 42, 212–218. [Google Scholar]
- Phan, Q.B.; Nguyen, T.T. A Novel Approach for PV Cell Fault Detection Using YOLOv8 and Particle Swarm Optimization. In Proceedings of the Midwest Symposium on Circuits and Systems (MWSCAS), Tempe, AZ, USA, 6–9 August 2023. [Google Scholar]
- Jiao, S.T.; Wang, K.Q.; Zhou, Q.; Li, L.Y. Research on Surface Defect Detection of Photovoltaic Panel Based on Improved SSD Algorithm. Comput. Eng. Softw. 2023, 44, 47–52. [Google Scholar]
- Li, D.; Hu, J.; Wang, C.; Li, X.; She, Q.; Zhu, L.; Zhang, T.; Chen, Q. Involution: Inverting the Inherence of Convolution for Visual Recognition. In Proceedings of the Conference on Computer Vision and Pattern Recognition (CVPR), Nashville, TN, USA, 20–25 June 2021. [Google Scholar]
- Lin, T.; Goyal, P.; Girshick, R.; He, K.; Dollar, P. Focal Loss for Dense Object Detection. IEEE Trans. Pattern Anal. Mach. Intell. 2020, 42, 318–327. [Google Scholar] [CrossRef]
- Wang, Q.; Wu, B.; Zhu, P.; Li, P.; Hu, Q. ECA-Net: Efficient Channel Attention for Deep Convolutional Neural Networks. In Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 13–19 June 2020. [Google Scholar]
- Mi, Z.; Lian, Z. Review of YOLO Methods for Universal Object Detection. Comput. Eng. Appl. 2024, 60, 38–54. [Google Scholar]
- Chen, X.X.; Guo, X.Y.; Li, Y.M.; Liu, C. A lightweight automatic measurement method for cattle body scale based on improved YOLOv8n-pose. J. Nanjing Agr. Univ. 2025, 1–14. Available online: https://link.cnki.net/urlid/32.1148.S.20250313.1339.006 (accessed on 8 June 2025).
- He, K.; Zhang, X.; Ren, S.; Sun, J. Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition. IEEE Trans. Pattern Anal. Mach. Intell. 2015, 37, 1904–1916. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Liao, H.M.; Yeh, I. Designing Network Design Strategies Through Gradient Path Analysis. J. Inf. Sci. Eng. 2023, 39, 975–995. [Google Scholar]
- Wang, J.; Chen, K.; Xu, R.; Liu, Z.; Loy, C.C.; Lin, D. CARAFE: Content-Aware ReAssembly of FEatures. In Proceedings of the International Conference on Computer Vision (ICCV), Seoul, Republic of Korea, 27 October–2 November 2019. [Google Scholar]
Improved Component | Baseline Model (YOLOv8) | Proposed Model (SEC-YOLOv8) | Core Task-Specific Rationale |
---|---|---|---|
Backbone Pooling | SPPF | SPPELAN | To ensure efficiency for drone-based processing. a |
Feature Enhancement | No attention mechanism | ECA | To enhance focus on defects by filtering PV-specific noise. b |
Neck Upsampling | Nearest-Neighbor Interpolation | CARAFE | To preserve the fidelity of fine-grained defect details. c |
Overall Synergistic Effect | Independent Module Stacking | Task-Specific Integrated Pipeline | A synergistic pipeline of Efficiency → Focus → Fidelity. d |
Item | Environment |
---|---|
Operating system | Windows11 |
RAM | 16GB |
GPU | NVIDIA GeForce RTX 4060 |
Python | Python 3.9 |
Deep learning framework | PyTorch |
Hyperparameters | Parameter Set |
---|---|
Batch-size | 32 |
Epochs | 200 |
Learning rate | 0.01 |
Momentum | 0.937 |
Optimizer | SGD |
Models | P (%) | R (%) | mAP@0.5 (%) | Parameters (MB) |
---|---|---|---|---|
YOLOv3-tiny | 65.7 | 54.5 | 56.4 | 8.68 |
YOLOv5 | 70.1 | 64.7 | 64.6 | 7.02 |
YOLOv5s | 78 | 68.1 | 69.2 | 7.04 |
YOLOv8 | 72.6 | 63.8 | 67.4 | 3.0 |
YOLOv8s | 75 | 65.2 | 69 | 11.13 |
SEC-YOLOv8 | 72.3 | 65.7 | 69.2 | 3.6 |
Models | YOLOv8 | SPPELAN | ECA | CARAFE | P (%) | R (%) | mAP@0.5(%) | Parameters (MB) | FPS |
---|---|---|---|---|---|---|---|---|---|
1 | √ | 72.6 | 63.8 | 67.4 | 3.0 | 434.78 | |||
2 | √ | √ | 74 | 63.9 | 68.4 | 3.4 | 384.61 | ||
3 | √ | √ | 75.8 | 64.2 | 68.9 | 3.0 | 476.19 | ||
4 | √ | √ | √ | 70.9 | 63.3 | 67 | 3.63 | 400 | |
5 | √ | √ | √ | 71.8 | 66.2 | 68.6 | 3.49 | 454 | |
6 | √ | √ | √ | √ | 72.3 | 65.7 | 69.2 | 3.6 | 416.67 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xue, H.; Liu, L.; Wu, Q.; He, J.; Fan, Y. Defect Detection Algorithm for Photovoltaic Cells Based on SEC-YOLOv8. Processes 2025, 13, 2425. https://doi.org/10.3390/pr13082425
Xue H, Liu L, Wu Q, He J, Fan Y. Defect Detection Algorithm for Photovoltaic Cells Based on SEC-YOLOv8. Processes. 2025; 13(8):2425. https://doi.org/10.3390/pr13082425
Chicago/Turabian StyleXue, Haoyu, Liqun Liu, Qingfeng Wu, Junqiang He, and Yamin Fan. 2025. "Defect Detection Algorithm for Photovoltaic Cells Based on SEC-YOLOv8" Processes 13, no. 8: 2425. https://doi.org/10.3390/pr13082425
APA StyleXue, H., Liu, L., Wu, Q., He, J., & Fan, Y. (2025). Defect Detection Algorithm for Photovoltaic Cells Based on SEC-YOLOv8. Processes, 13(8), 2425. https://doi.org/10.3390/pr13082425