Accelerated Aging Process of Carbon Black-Reinforced PVC (CB-PVC) Insulation by UVB-Induced Chemical Degradation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Photodegradation of PVC
2.2. Material Details
2.3. Equipment Used
2.4. UVA—UVB Photodegradation Chamber
3. Results
3.1. Dielectric Breakdown Test
3.2. Surface Morphology of PVC Samples
3.3. Atomic Force Microscopy (AFM) of PVC Samples
4. Discussion
5. Conclusions
- The observed ~30% decline in dielectric strength aligns closely with the findings of [55] who reported 25–35% losses under similar UV stress conditions, emphasizing the susceptibility of electrical performance to environmental exposure.
- Moreover, the triphasic degradation behavior—comprising an induction phase, autocatalytic acceleration, and eventual stabilization—confirms a pattern well-documented by [56] halogenated polymers, indicating a universal sequence of degradation stages driven by radical formation and photo-oxidation.
- Importantly, the magnitude of surface roughening and pit development in CB-PVC exceeds that of unfilled PVC reported in prior studies, such as those by [46], suggesting that the incorporation of carbon black, while traditionally serving as a UV stabilizer, may also introduce heterogeneous degradation pathways through localized thermal effects or radical propagation sites.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Czapp, S.; Szultka, S.; Tomaszewski, A. Design of Power Cable Lines Partially Exposed to Direct Solar Radiation—Special Aspects. Energies 2020, 13, 2650. [Google Scholar] [CrossRef]
- Patrick, S.G. Practical Guide to Polyvinyl Chloride; Rapra Technology Limited: Shrewsbury, UK, 2005. [Google Scholar]
- Hadi, A.G.; Yousif, E.; El-Hiti, G.A.; Ahmed, D.S.; Jawad, K.; Alotaibi, M.H.; Hashim, H. Long-Term Effect of Ultraviolet Irradiation on Poly(vinyl chloride) Films Containing Naproxen Diorganotin(IV) Complexes. Molecules 2019, 24, 2396. [Google Scholar] [CrossRef] [PubMed]
- Hedir, A.; Moudoud, M. Effect of Ultraviolet Radiations on Medium and High Voltage Cables Insulation Properties. Int. J. Eng. Technol. 2016, 8, 2308–2317. [Google Scholar] [CrossRef]
- Islam, I.; Sultana, S.; Ray, S.K.; Nur, H.P.; Hossain, M.T.; Ajmotgir, W.M. Electrical and Tensile Properties of Carbon Black Reinforced Polyvinyl Chloride Conductive Composites. C 2018, 4, 15. [Google Scholar] [CrossRef]
- Herman, J.R. Global Increase in UV Irradiance During the Past 30 Years (1979–2008) Estimated from Satellite Data. Geophys. Res. Lett. 2009, 36, L05805. [Google Scholar] [CrossRef]
- Yamamoto, A.L.C.; Corrêa, M.P.; Torres, R.R.; Martins, F.B.; Godin-Beekmann, S. Projected Changes in Ultraviolet Index and UV Doses Over the Twenty-First Century: Impacts of Ozone and Aerosols from CMIP6. Photochem. Photobiol. Sci. 2024, 23, 1234–1245. [Google Scholar] [CrossRef]
- Bais, A.F.; Tourpali, K.; Kazantzidis, A.; Akiyoshi, H.; Bekki, S.; Braesicke, P.; Chipperfield, M.P.; Dameris, M.; Eyring, V.; Garny, H.; et al. Projections of UV Radiation Changes in the 21st Century: Impact of Ozone Recovery and Cloud Effects. Atmos. Chem. Phys. 2011, 11, 7533–7545. [Google Scholar] [CrossRef]
- Lorenz, S.; Heinzl, F.; Bauer, S.; Janßen, M.; De Bock, V.; Mangold, A.; Scholz-Kreisel, P.; Weiskopf, D. Increasing Solar UV Radiation in Dortmund, Germany: Data and Trend Analyses and Comparison to Uccle, Belgium. Photochem. Photobiol. Sci. 2024, 23, 2173–2199. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Lozano, J.A.; Utrillas, M.P.; Núñez, J.A.; Esteve, A.R.; Gómez-Amo, J.L.; Estellés, V.; Pedrós, R. Measurement and Analysis of Broadband UVB Solar Radiation in Spain. Photochem. Photobiol. 2012, 88, 1489–1496. [Google Scholar] [CrossRef]
- Schmucki, D.A.; Philipona, R. UV Radiation in the Alps: The Altitude Effect. Atmosphere 2002, 13, 15. [Google Scholar] [CrossRef]
- Waqas, H.; Naz, S.; Khan, T.; Ahmed, M.; Khan, F. Case Study of PVC Cables Exposed in Accelerated Thermal and Radiation Environment. Defect Diffus. Forum 2022, 418, 161–168. [Google Scholar] [CrossRef]
- Brebu, M.; Vasile, C.; Antonie, S.R.; Chiriac, M.; Precup, M.; Yang, J.; Roy, C. Study of the Natural Ageing of PVC Insulation for Electrical Cables. Polym. Eng. Sci. 2000, 67, 209–221. [Google Scholar] [CrossRef]
- Hoseini, M.; Stead, J.; Bond, T. Ranking the Accelerated Weathering of Plastic Polymers. Environ. Sci. Process. Impacts 2023, 25, 2081–2091. [Google Scholar] [CrossRef]
- Andrady, A.L.; Hamid, S.H.; Hu, X.; Torikai, A. Effects of Increased Solar Ultraviolet Radiation on Materials. J. Photochem. Photobiol. B Biol. 1998, 46, 96–103. [Google Scholar] [CrossRef] [PubMed]
- Kushwaha, O.; Avadhani, C.V.; Singh, R. Effect of UV Rays on Degradation and Stability of High Performance Polymer Membranes. Adv. Mater. Lett. 2014, 5, 272–279. [Google Scholar] [CrossRef]
- Briassoulis, D. Mechanical Behaviour of Biodegradable Agricultural Films under Real Field Conditions. Polym. Degrad. Stab. 2006, 91, 1256–1272. [Google Scholar] [CrossRef]
- Diepens, M.; Gijsman, P. Outdoor and Accelerated Weathering Studies of Bisphenol A Polycarbonate. Polym. Degrad. Stab. 2011, 96, 649–652. [Google Scholar] [CrossRef]
- Frigione, M. Assessment of the Ageing and Durability of Polymers. Polymers 2022, 14, 1934. [Google Scholar] [CrossRef]
- Torikai, A.; Hasegawa, H. Accelerated Photodegradation of Poly(vinyl chloride). Polym. Degrad. Stab. 1999, 63, 441–445. [Google Scholar] [CrossRef]
- Hedir, A.; Bechouche, A.; Moudoud, M.; Teguar, M.; Lamrous, O.; Rondot, S. Experimental and Predicted XLPE Cable Insulation Properties under UV Radiation. Turk. J. Electr. Eng. Comput. Sci. 2020, 28, 1763–1775. [Google Scholar] [CrossRef]
- Zaharescu, T.; Marinescu, M.; Lungulescu, E.M.; Scagliusi, S.R.; Lugão, A.B. Characterization of Ethylene-Propylene-Diene Terpolymer Based Electrical Insulation. IEEE Trans. Dielectr. Electr. Insul. 2006, 13, 1061–1067. [Google Scholar] [CrossRef]
- Nóbrega, A.M.; Martinez, M.L.B.; de Queiroz, A.A.A. Investigation and Analysis of Electrical Aging of XLPE Insulation for Medium Voltage Covered Conductors Manufactured in Brazil. IEEE Trans. Dielectr. Electr. Insul. 2014, 21, 628–635. [Google Scholar] [CrossRef]
- Yousif, E.; Ahmed, D.S.; Ahmed, A.A.; Hameed, A.; Al-Amiery, A.; Kadhum, A.A.H.; Mohamad, A.B. The Effect of High UV Radiation Exposure Environment on the Novel PVC Polymers. Environ. Sci. Pollut. Res. 2019, 26, 10345–10354. [Google Scholar] [CrossRef]
- Nasrat, L.S.; Ibrahim, A.A.A.; El-Shazly, A.A.H. Carbon Black Effect on Electrical Performance of Semi-Conducting Layers for Power Cables. Int. J. Sci. Eng. Sci. 2017, 1, 47–50. [Google Scholar]
- Tang, C.-C.; Chen, H.-I.; Brimblecombe, P.; Lee, C.-L. Textural, Surface and Chemical Properties of Polyvinyl Chloride Particles Degraded in a Simulated Environment. Mar. Pollut. Bull. 2018, 133, 392–401. [Google Scholar] [CrossRef]
- Lacoste, J.; Carlsson, D.J.; Falicki, S.; Wiles, D.M. Polyethylene Hydroperoxide Decomposition Products. Polym. Degrad. Stab. 1991, 309–323. [Google Scholar] [CrossRef]
- Arias, G.; Benavides, R.; Garza, E.; Téllez-Rosas, M. Crosslinking of PVC Formulations Treated with UV Light. J. Vinyl Addit. Technol. 2006, 49–54. [Google Scholar] [CrossRef]
- Lipik, V.T.; Martsul, V.N.; Abadie, M.J.M. Dehydrochlorination of PVC Compositions During Thermal Degradation. Eurasian Chem.-Technol. J. 2002, 4, 25–29. [Google Scholar] [CrossRef]
- Yousif, E.; Haddad, R. Ultra-Violet Spectra Studies of Photodegradation of PVC Films in Presence of Fe(III) Chelate Complex. Eur. J. Chem. 2013, 4, 178–182. [Google Scholar] [CrossRef]
- Wypych, G. Chapter 7, Corrosion of Adjacent Materials. In PVC Degradation and Stabilization; ChemTec Publishing: Toronto, ON, Canada, 2008; pp. 210–230. [Google Scholar]
- IEC 60502-1; Power Cables with Extruded Insulation and Their Accessories for Rated Voltages from 1 kV (Um = 1.2 kV) up to 30 kV (Um = 36 kV)—Part 1: Cables for Rated Voltages of 1 kV (Um = 1.2 kV) and 3 kV (Um = 3.6 kV). International Electrotechnical Commission (IEC): Geneva, Switzerland, 2009.
- EN 50525-1; Electric Cables—Low Voltage Energy Cables of Rated Voltages up to and Including 450/750 V (U0/U)—Part 1: General Requirements. European Committee for Electrotechnical Standardization (CENELEC): Brussels, Belgium, 2011.
- IEC 60243-1; Electrical Strength of Insulating Materials—Test Methods—Part 1: Tests at Power Frequencies. International Electrotechnical Commission (IEC): Geneva, Switzerland, 2013.
- Mergos, J.A.; Athanassopoulou, M.D.; Argyropoulos, T.G.; Dervos, C.T.; Vassiliou, P. The Effect of Accelerated UV-Ageing on the Dielectric Properties of PVC, PTFE and HDPE. In Proceedings of the 10th IEEE International Conference on Solid Dielectrics (ICSD), Potsdam, Germany, 4–9 July 2010; pp. 1–4. [Google Scholar] [CrossRef]
- Yang, X.; Jiang, X.; Hu, J.; Wang, F.; Hu, C. Relationship between physical and mechanical properties of accelerated weathering and outdoor weathering of PVC-coated membrane material under tensile stress. J. Ind. Text. 2017, 47, 417–429. [Google Scholar] [CrossRef]
- ASTM D3826-18; Standard Practice for Determining Degradation End Point in Degradable Polyethylene and Polypropylene Using a Tensile Test. ASTM International: West Conshohocken, PA, USA, 2018. Available online: https://www.astm.org/d3826-18.html (accessed on 12 February 2025).
- Rabie, S.; Nada, A. Glucoside/(UV Absorber) Mixtures as Photostabilizers for Rigid PVC. J. Vinyl Addit. Technol. 2008, 79–83. [Google Scholar] [CrossRef]
- Al-Ali, M.; Madi, N.K.; Thani, N.A.; El-Muraikhi, M.; Turos, A. Mechanical and thermal properties of gamma-ray irradiated polyethylene blends. Vacuum 2003, 227–236. [Google Scholar] [CrossRef]
- Domingos, A.; Duarte, L.; Pinheiro, A.; Moura, F.; Vasconcelos, L.; Carvalho, D.; Fadel, F.; Sakai, P. Comparative Analysis of Insulation Aging in Cross-Linked Polyethylene and Ethylene-Propylene Rubber Cables Through the Progression Rate of Partial Discharge. Energies 2025, 18, 2653. [Google Scholar] [CrossRef]
- Lambert, S.; Sinclair, C.J.; Boxall, A.B.A. Occurrence, Degradation, and Effect of Polymer-Based Materials in the Environment. In Reviews of Environmental Contamination and Toxicology; Springer: Cham, Switzerland, 2014. [Google Scholar] [CrossRef]
- Ieda, M. Dielectric Breakdown Process of Polymers. IEEE Trans. Electr. Insul. 1980, EI-15, 206–224. [Google Scholar] [CrossRef]
- Al-Malaika, S.; Sheena, H. Stabilization of Polymers. In Encyclopedia of Polymer Science and Technology; John Wiley & Sons: Hoboken, NJ, USA, 2017. [Google Scholar] [CrossRef]
- Winslow, F.H. Photooxidation of High Polymers. Pure Appl. Chem. 1977, 49, 495–502. [Google Scholar] [CrossRef]
- Wiles, D.M.; Scott, J.R. Polyolefins with controlled environmental degradability. Polym. Degrad. Stab. 2006, 91, 1220–1230. [Google Scholar] [CrossRef]
- Yousif, E.; Haddad, R. Photodegradation and Photostabilization of Polymers, Especially Polystyrene: Review. SpringerPlus 2013, 2, 398. [Google Scholar] [CrossRef]
- Pinto, J.J.C.; Carvalho, M.E.S.; Ferreira, J.F.A. The kinetics and mechanism of polyethylene photo-oxidation. Angew. Makromol. Chem. 2003, 216, 113–133. [Google Scholar] [CrossRef]
- Mehmandoust, S.; Alizadeh, R.; Babaluo, A.A. Kinetic Study of the Poly(vinyl chloride)/Titanium Dioxide Nanocomposites Photodegradation under Accelerated Ultraviolet and Visible Light Exposure. Polym. Adv. Technol. 2014, 25, 1000–1008. [Google Scholar] [CrossRef]
- Yousif, E.; Hasan, A. Photostabilization of poly(vinyl chloride)—Still on the run. J. Taibah Univ. Sci. 2015, 9, 421–448. [Google Scholar] [CrossRef]
- Smith, L.M.; Aitken, H.M.; Coote, M.L. The Fate of the Peroxyl Radical in Autoxidation: How Does Polymer Degradation Really Occur? Acc. Chem. Res. 2018, 51, 2006–2013. [Google Scholar] [CrossRef] [PubMed]
- Maia, D.R.J.; Balbinot, L.; Poppi, R.J.; De Paoli, M.-A. Effect of Conducting Carbon Black on the Photostabilization of Injection Molded Poly(propylene-co-ethylene) Containing TiO2. Polym. Degrad. Stab. 2003, 82, 89–98. [Google Scholar] [CrossRef]
- Gugumus, F. Mechanisms of Photooxidation of Polyolefins. J. Appl. Polym. Sci. 1990, 51, 1387–1397. [Google Scholar] [CrossRef]
- Liu, M.; Horrocks, A.R. Effect of Carbon Black on UV Stability of LLDPE Films under Artificial Weathering Conditions. Polym. Degrad. Stab. 2002, 77, 485–499. [Google Scholar] [CrossRef]
- Horrocks, A.R.; Mwila, J.; Miraftab, M.; Liu, M.; Chohan, S.S. The Influence of Carbon Black on Properties of Oriented Polypropylene 2. Thermal and Photodegradation. Polym. Degrad. Stab. 1999, 97, 430–438. [Google Scholar] [CrossRef]
- Zhao, X.; Zhang, Y.; Liu, X.; Li, Y.; Tang, S.; Liu, J.; Xu, Z.; Zhang, C. Synergistic Effect of TNPP and Carbon Black in Weathered XLPE Materials. Polymers 2009, 1, 56–65. [Google Scholar] [CrossRef]
- Celina, M.; Gillen, K.T.; Assink, R.A. Accelerated Aging and Lifetime Prediction: Review of Non-Arrhenius Behavior Due to Two Competing Processes. Polym. Degrad. Stab. 2005, 90, 395–404. [Google Scholar] [CrossRef]
Ingredient | % |
---|---|
PVC (K-70) | 55 |
DIDP Plasticizer | 20 |
Carbon Black | 2–3% |
Epoxidized Oil | 5 |
ATH Flame Retardant | 10 |
Lubricant | 1–2 |
Other | 4–5 |
Time of Exposure | Measured Dielectric Breakdown After UVB | Worst Dielectric Breakdown of CB-PVC According to ASTM G154 | Best Dielectric Breakdown of CB-PVC According to ASTM G154 |
---|---|---|---|
No UV exposure | 15.6 | 15.6 | 15.6 |
After 100 h | 14.3 | 15.4 | 14.8 |
After 250 h | 12.7 | 15.1 | 13.6 |
After 500 h | 10.9 | 14.6 | 12.1 |
UV Exposure (h) | Avg. Pit Size (µm) | Std. Dev. | Max (µm) | Min (µm) |
---|---|---|---|---|
0 | 0.289 | ±0.11 | 0.5 | 0.08 |
100 | 0.399 | ±0.10 | 0.6 | 0.2 |
250 | 0.582 | ±0.24 | 1.1 | 0.3 |
500 | 0.857 | ±0.33 | 1.6 | 0.2 |
PVC Samples | Surface Roughness (nm) |
---|---|
No UV exposure | 89.7 |
After 100 | 104.5 |
After 250 | 110.9 |
After 500 | 114.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stasac, C.-O.; Tomșe, A.-D.; Costea, T.O.; Bandici, L.; Arion, M.-N.; Hathazi, F.-I. Accelerated Aging Process of Carbon Black-Reinforced PVC (CB-PVC) Insulation by UVB-Induced Chemical Degradation. Processes 2025, 13, 1844. https://doi.org/10.3390/pr13061844
Stasac C-O, Tomșe A-D, Costea TO, Bandici L, Arion M-N, Hathazi F-I. Accelerated Aging Process of Carbon Black-Reinforced PVC (CB-PVC) Insulation by UVB-Induced Chemical Degradation. Processes. 2025; 13(6):1844. https://doi.org/10.3390/pr13061844
Chicago/Turabian StyleStasac, Claudia-Olimpia, Andrei-Dan Tomșe, Traian Octavian Costea, Livia Bandici, Mircea-Nicolae Arion, and Francisc-Ioan Hathazi. 2025. "Accelerated Aging Process of Carbon Black-Reinforced PVC (CB-PVC) Insulation by UVB-Induced Chemical Degradation" Processes 13, no. 6: 1844. https://doi.org/10.3390/pr13061844
APA StyleStasac, C.-O., Tomșe, A.-D., Costea, T. O., Bandici, L., Arion, M.-N., & Hathazi, F.-I. (2025). Accelerated Aging Process of Carbon Black-Reinforced PVC (CB-PVC) Insulation by UVB-Induced Chemical Degradation. Processes, 13(6), 1844. https://doi.org/10.3390/pr13061844