Understanding and Resolving 3D Printing Challenges: A Systematic Literature Review
Abstract
1. Introduction
2. Methodology
2.1. Literature Search Strategy
2.2. Literature Selection Process
2.3. Data Extraction and Analysis
3. Analysis of Troubleshooting Problems in 3D Printing Technologies
3.1. Design and Pre-Processing Errors
3.2. Geometric Errors and Dimensional Deviations
3.3. Failures in In-Process Error Detection and Response
3.4. Overall Classification and Solution Approaches
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Gibson, I.; Rosen, D.; Stucker, B.; Khorasani, M. Additive Manufacturing Technologies; Springer International Publishing: Cham, Switzerland, 2021; ISBN 978-3-030-56126-0. [Google Scholar]
- Rinaldi, M.; Caterino, M.; Manco, P.; Fera, M.; Macchiaroli, R. The Impact of Additive Manufacturing on Supply Chain Design: A Simulation Study. Procedia Comput. Sci. 2021, 180, 446–455. [Google Scholar] [CrossRef]
- 3D Printing Market Size and Share|Industry Report, 2030. Available online: https://www.grandviewresearch.com/industry-analysis/3d-printing-industry-analysis (accessed on 31 March 2025).
- Roland Berger. Additive Manufacturing: The Money Story; Roland Berger GmbH: Munich, Germany, 2023. [Google Scholar]
- Ntousia, M.; Fudos, I.; Moschopoulos, S.; Stamati, V. Predicting Geometric Errors and Failures in Additive Manufacturing. Rapid Prototyp. J. 2023, 29, 1843–1861. [Google Scholar] [CrossRef]
- Kwon, N.; Sun, T.S.; Gao, Y.; Zhao, L.; Wang, X.; Kim, J.; Hong, S.R. 3DPFIX: Improving Remote Novices’ 3D Printing Troubleshooting through Human-AI Collaboration Design. Proc. ACM Hum.-Comput. Interact. 2024, 8, 1–33. [Google Scholar] [CrossRef]
- Liberati, A.; Altman, D.G.; Tetzlaff, J.; Mulrow, C.; Gøtzsche, P.C.; Ioannidis, J.P.; Clarke, M.; Devereaux, P.J.; Kleijnen, J.; Moher, D. The PRISMA Statement for Reporting Systematic Reviews and Meta-Analyses of Studies That Evaluate Healthcare Interventions: Explanation and Elaboration. BMJ 2009, 339, b2700. [Google Scholar] [CrossRef] [PubMed]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Moher, D. Updating Guidance for Reporting Systematic Reviews: Development of the PRISMA 2020 Statement. J. Clin. Epidemiol. 2021, 134, 103–112. [Google Scholar] [CrossRef]
- ISO/ASTM 52900:2015; ISO/ASTM International Additive Manufacturing—General Principles—Terminology. ISO: Geneva, Switzerland, 2015.
- Cui, K.; Shang, X.; Luo, C.; Shen, Z.; Gao, H.; Xiong, G. A Kind of Accuracy Improving Method Based on Error Analysis and Feedback for DLP 3D Printing. In Proceedings of the 2019 IEEE international conference on service operations and logistics, and informatics (SOLI), Zhengzhou, China, 6–8 November 2019; pp. 5–9. [Google Scholar]
- Montalti, A.; Ferretti, P.; Santi, G.M. From CAD to G-Code: Strategies to Minimizing Errors in 3D Printing Process. CIRP J. Manuf. Sci. Technol. 2024, 55, 62–70. [Google Scholar] [CrossRef]
- Oh, Y.; Ko, H.; Sprock, T.; Bernstein, W.Z.; Kwon, S. Part Decomposition and Evaluation Based on Standard Design Guidelines for Additive Manufacturability and Assemblability. Addit. Manuf. 2021, 37, 101702. [Google Scholar] [CrossRef]
- Moodleah, S.; Kirimasthong, K. Adaptive Slicing of Point Cloud Directly with Discrete Interpolable-Area Error Profile in Additive Manufacturing. SAE Int. J. Mater. Manuf. 2023, 16, 175–188. [Google Scholar] [CrossRef]
- Qian, S.; Jiang, X.; Liu, Y.; Wang, S.; Sun, X.; Sun, H. Design and Error Compensation of a 3-Degrees-of-Freedom Cable-Driven Hybrid 3D-Printing Mechanism. Mech. Sci. 2023, 14, 371–386. [Google Scholar] [CrossRef]
- Paul, R.; Anand, S. A Combined Energy and Error Optimization Method for Metal Powder Based Additive Manufacturing Processes. Rapid Prototyp. J. 2015, 21, 301–312. [Google Scholar] [CrossRef]
- Zeng, L.; Zou, X. Error Analysis and Experimental Research on 3D Printing. IOP Conf. Ser. Mater. Sci. Eng. 2019, 592, 012150. [Google Scholar] [CrossRef]
- Scipioni, S.I.; Lambiase, F. Error Introduced by Direct 3D Printing of Compression Samples of PLA Made by FDM Process. Int. J. Adv. Manuf. Technol. 2023, 129, 4355–4368. [Google Scholar] [CrossRef]
- Becker, P.; Gebert, J.; Roennau, A.; Finsterwalder, F.; Dillmann, R. Online Error Detection in Additive Manufacturing: A Review. In Proceedings of the 2021 IEEE 8th International Conference on Industrial Engineering and Applications (ICIEA), Chengdu, China, 23–26 April 2021; pp. 167–175. [Google Scholar]
- Kyung, Y.S.; Choi, S.Y.; Kim, G.B.; Song, H.K.; Kim, H.; You, D.; Jeong, I.G.; Homg, J.H.; Kim, N.; Kim, C.-S. Analysis of Errors in 3D Printing Phantoms for Partial Nephrectomy. Eur. Urol. Suppl. 2017, 16, e1922–e1924. [Google Scholar] [CrossRef]
- Martinez-Marquez, D.; Jokymaityte, M.; Mirnajafizadeh, A.; Carty, C.P.; Lloyd, D.; Stewart, R.A. Development of 18 Quality Control Gates for Additive Manufacturing of Error Free Patient-Specific Implants. Materials 2019, 12, 3110. [Google Scholar] [CrossRef]
- Pinto, J.M.; Arrieta, C.; Andia, M.E.; Uribe, S.; Ramos-Grez, J.; Vargas, A.; Irarrazaval, P.; Tejos, C. Sensitivity Analysis of Geometric Errors in Additive Manufacturing Medical Models. Med. Eng. Phys. 2015, 37, 328–334. [Google Scholar] [CrossRef]
- Suzuki, T.; Tateno, T. Tool Path Design of Metal Powder Extrusion in Additive Manufacturing for Suppressing Shape Error Caused During Sintering. Int. J. Autom. Technol. 2024, 18, 493–502. [Google Scholar] [CrossRef]
- Reichwein, J.; Geis, J.; Rudolph, K.; Kirchner, E. Design Guidelines for the Separation of Components to Combine the Potentials of Additive and Conventional Manufacturing Processes. Procedia CIRP 2022, 109, 592–597. [Google Scholar] [CrossRef]
- Zmarzły, P.; Gogolewski, D.; Kozior, T. Design Guidelines for Plastic Casting Using 3D Printing. J. Eng. Fibers Fabr. 2020, 15, 1558925020916037. [Google Scholar] [CrossRef]
- Vastola, G.; Sin, W.J.; Sun, C.-N.; Sridhar, N. Design Guidelines for Suppressing Distortion and Buckling in Metallic Thin-Wall Structures Built by Powder-Bed Fusion Additive Manufacturing. Mater. Des. 2022, 215, 110489. [Google Scholar] [CrossRef]
- Majarena, A.C.; Aguilar, J.J.; Santolaria, J. Development of an Error Compensation Case Study for 3D Printers. Procedia Manuf. 2017, 13, 864–871. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, J.; Guo, M.; Wang, L. Research on the Printing Error of Tilted Vertical Beams in Delta-Robot 3D Printers. Rapid Prototyp. J. 2021, 27, 1633–1649. [Google Scholar] [CrossRef]
- Zhang, S.; Sun, Z.; Long, J.; Li, C.; Bai, Y. Dynamic Condition Monitoring for 3D Printers by Using Error Fusion of Multiple Sparse Auto-Encoders. Comput. Ind. 2019, 105, 164–176. [Google Scholar] [CrossRef]
- Duan, M.; Yoon, D.; Okwudire, C.E. A Limited-Preview Filtered B-Spline Approach to Tracking Control—With Application to Vibration-Induced Error Compensation of a 3D Printer. Mechatronics 2018, 56, 287–296. [Google Scholar] [CrossRef]
- Li, L.; Anand, S. Hatch Pattern Optimization of Powder Bed Fusion Additive Manufacturing Process for Minimizing Flatness Error. Procedia Manuf. 2021, 53, 456–465. [Google Scholar] [CrossRef]
- Junk, S.; Bär, F. Design Guidelines for Additive Manufacturing Using Masked Stereolithography mSLA. Procedia CIRP 2023, 119, 1122–1127. [Google Scholar] [CrossRef]
- Mao, Y.; Wei, H.; Chang, L.; Yue, J.; Liu, T.; Xing, F.; Liao, W. Origin of Deposition Errors and Layer-Wise Control Strategies during Laser Additive Manufacturing. Virtual Phys. Prototyp. 2023, 18, e2173615. [Google Scholar] [CrossRef]
- Auškalnis, L.; Akulauskas, M.; Jegelevičius, D.; Simonaitis, T.; Rutkūnas, V. Error Propagation from Intraoral Scanning to Additive Manufacturing of Complete-Arch Dentate Models: An in Vitro Study. J. Dent. 2022, 121, 104136. [Google Scholar] [CrossRef]
- Tian, W.; Li, Q.; Wang, Q.; Chen, D.; Gao, W. Additive Manufacturing Error Quantification on Stability of Composite Sandwich Plates with Lattice-Cores through Machine Learning Technique. Compos. Struct. 2024, 327, 117645. [Google Scholar] [CrossRef]
- Cajal, C.; Santolaria, J.; Velazquez, J.; Aguado, S.; Albajez, J. Volumetric Error Compensation Technique for 3D Printers. Procedia Eng. 2013, 63, 642–649. [Google Scholar] [CrossRef]
- Das, P.; Chandran, R.; Samant, R.; Anand, S. Optimum Part Build Orientation in Additive Manufacturing for Minimizing Part Errors and Support Structures. Procedia Manuf. 2015, 1, 343–354. [Google Scholar] [CrossRef]
- Majd, Y.F.; Tsuzuki, M.S.; Barari, A. A Machine Learning Approach to Find Density Percentage Error Resulting by Infill Patterns in Additive Manufacturing. IFAC-Pap. 2023, 56, 4740–4745. [Google Scholar] [CrossRef]
- Zgórniak, P.; Stachurski, W. Determination of Systematic Errors of 3D Printer in Order to Ensure Manufacturing Correctness of the Prototype. Adv. Manuf. Sci. Technol. 2010, 34, 35–45. [Google Scholar]
- Girard, J.; Zhang, S. Fast Error Detection Method for Additive Manufacturing Process Monitoring Using Structured Light Three Dimensional Imaging Technique. Opt. Lasers Eng. 2025, 184, 108609. [Google Scholar] [CrossRef]
- Zapico, P.; Peña, F.; Valiño, G.; Rico, J.C.; Meana, V.; Mateos, S. Virtual-Point-Based Geometric Error Compensation Model for Additive Manufacturing Machines. Rapid Prototyp. J. 2023, 29, 837–849. [Google Scholar] [CrossRef]
- Becker, P.; Spielbauer, N.; Roennau, A.; Dillmann, R. Real-Time in-Situ Process Error Detection in Additive Manufacturing. In Proceedings of the 2020 Fourth IEEE International Conference on Robotic Computing (IRC), Taichung, Taiwan, 9–11 November 2020; pp. 426–427. [Google Scholar]
- Baumann, F.; Roller, D. Vision Based Error Detection for 3D Printing Processes. MATEC Web Conf. 2016, 59, 06003. [Google Scholar] [CrossRef]
- Peña, F.; Fernández, A.; Zapico, P.; Valiño, G.; Rico, J.C. Conoscopic Holography Feasibility for Form Error In-Situ Monitoring in Additive Manufacturing. IFAC-PapersOnLine 2022, 55, 1031–1036. [Google Scholar] [CrossRef]
- Zeng, L.; Wu, W. Approximation Error Analysis of Contour on 3D Printing. In Proceedings of the International Conference on Mechanisms and Robotics (ICMAR 2022), Zhuhai, China, 25–27 February 2022; Volume 12331, pp. 852–857. [Google Scholar]
- Leung, Y.-S.; Kwok, T.-H.; Mao, H.; Chen, Y. Digital Material Design Using Tensor-Based Error Diffusion for Additive Manufacturing. Comput.-Aided Des. 2019, 114, 224–235. [Google Scholar] [CrossRef]
- Brunton, A.; Arikan, C.A.; Urban, P. Pushing the Limits of 3D Color Printing: Error Diffusion with Translucent Materials. ACM Trans. Graph. 2015, 35, 1–13. [Google Scholar] [CrossRef]
- Pritchet, D.; Moser, N.; Ehmann, K.; Cao, J.; Huang, J. Quantifying Discretization Errors in Electrophoretically-Guided Micro Additive Manufacturing. Micromachines 2018, 9, 447. [Google Scholar] [CrossRef]
- Rudolph, J.-P.; Emmelmann, C. Analysis of Design Guidelines for Automated Order Acceptance in Additive Manufacturing. Procedia Cirp 2017, 60, 187–192. [Google Scholar] [CrossRef]
- Simionato, E.; Aldaya, I.; Oliveira, J.A.D.; Jardini, A.L.; Avila, J.; Rosa, G.S.D.; Penchel, R.A. Design Guidelines and Performance Analysis of a Wideband Coaxial Horn Antenna Fabricated via Additive Manufacturing. IEEE Open J. Antennas Propag. 2024, 5, 1121–1132. [Google Scholar] [CrossRef]
- ZHANG, Q.; Lee, B.-C. Research on Solutions to Slicing Errors in FDM 3D Printing of Thin-Walled Structures. Int. J. Internet Broadcast. Commun. 2024, 16, 176–181. [Google Scholar]
- Michaeli, J.G.; DeGroff, M.C.; Roxas, R.C. Error Aggregation in the Reengineering Process from 3D Scanning to Printing. Scanning 2017, 2017, 1–8. [Google Scholar] [CrossRef]
- Naulakha, N.K. Guidelines for Increasing Application of 3D Metal Printing-a Case Study at Equinor ASA. Master’s Thesis, UiT Norges Arktiske Universitet, Tromsø, Norway, 2021. [Google Scholar]
- Charalampous, P.; Kostavelis, I.; Kontodina, T.; Tzovaras, D. Learning-Based Error Modeling in FDM 3D Printing Process. Rapid Prototyp. J. 2021, 27, 507–517. [Google Scholar] [CrossRef]
- Wu, H.; Luo, H.; Wang, K.; Ye, D.; Huang, Y. Enhanced Geometric Precision of Non-Contact, Conformal 3D Printing via “Error-Transferred” towards Jetting-Direction. Precis. Eng. 2021, 72, 1–12. [Google Scholar] [CrossRef]
- Leirmo, T.L.; Semeniuta, O. Minimizing Form Errors in Additive Manufacturing with Part Build Orientation: An Optimization Method for Continuous Solution Spaces. Open Eng. 2022, 12, 227–244. [Google Scholar] [CrossRef]
- Peña, F.; Rico, J.C.; Zapico, P.; Valiño, G.; Mateos, S. A Layerwise Geometric Error Compensation Procedure for Additive Manufacturing. Rapid Prototyp. J. 2024, 30, 490–501. [Google Scholar] [CrossRef]
- Cajal, C.; Santolaria, J.; Samper, D.; Velazquez, J. Efficient Volumetric Error Compensation Technique for Additive Manufacturing Machines. Rapid Prototyp. J. 2016, 22, 2–19. [Google Scholar] [CrossRef]
- Elkaseer, A.; Mueller, T.; Charles, A.; Scholz, S. Digital Detection and Correction of Errors in As-Built Parts: A Step towards Automated Quality Control of Additive Manufacturing. In Proceedings of the World Congress on Micro and Nano Manufacturing, Portorož, Slovenia, 18–20 September 2018; pp. 18–20. [Google Scholar]
- Keaveney, S.; Connolly, P.; O’Cearbhaill, E.D. Kinematic Error Modeling and Error Compensation of Desktop 3D Printer. Nanotechnol. Precis. Eng. 2018, 1, 180–186. [Google Scholar] [CrossRef]
- Ma, X.; Lin, F.; Zhang, L. The Heterogeneous Compensation for the Infiltrative Error of the Binder Jetting Additive Manufacturing Processes. 2015. Available online: https://utw10945.utweb.utexas.edu/sites/default/files/2015/2015-16-Ma.pdf (accessed on 14 October 2024).
- Bhatia, S. Effect of Machine Positional Errors on Geometric Tolerances in Additive Manufacturing. Master’s Thesis, University of Cincinnati, Cincinnati, OH, USA, 2014. [Google Scholar]
- Munteanu, A.; Chitariu, D.-F.; Horodinca, M.; Dumitras, C.-G.; Negoescu, F.; Savin, A.; Chifan, F. A Study on the Errors of 2D Circular Trajectories Generated on a 3D Printer. Appl. Sci. 2021, 11, 11695. [Google Scholar] [CrossRef]
- Das, P.; Mhapsekar, K.; Chowdhury, S.; Samant, R.; Anand, S. Selection of Build Orientation for Optimal Support Structures and Minimum Part Errors in Additive Manufacturing. Comput.-Aided Des. Appl. 2017, 14, 1–13. [Google Scholar] [CrossRef]
- Cong, B.; Yoo, H.W.; Pechgraber, D.; Schitter, G. Cross-Scan Error Evaluation of Large Size Polygon Mirror Based Laser Scanning System for Industrial 3D Printing. In Proceedings of the 2024 IEEE International Conference on Advanced Intelligent Mechatronics (AIM), Boston, MA, USA, 15–19 July 2024; pp. 290–295. [Google Scholar]
- Wu, Y.; Chiu, G. Error Diffusion Based Feedforward Height Control for Inkjet 3D Printing. In Proceedings of the 2023 IEEE/ASME international conference on advanced intelligent mechatronics (AIM), Seattle, WA, USA, 28–30 June 2023; pp. 125–131. [Google Scholar]
- Fu, G.; Gu, T.; Gao, H.; Lu, C. A Postprocessing and Path Optimization Based on Nonlinear Error for Multijoint Industrial Robot-Based 3D Printing. Int. J. Adv. Robot. Syst. 2020, 17, 1729881420952249. [Google Scholar] [CrossRef]
- Song, G.-H.; Lee, C.-M.; Kim, D.-H. Investigation of Path Planning to Reduce Height Errors of Intersection Parts in Wire-Arc Additive Manufacturing. Materials 2021, 14, 6477. [Google Scholar] [CrossRef]
- Xia, Z.; He, Z.; Wang, Q.; Wang, Y. A New Finite Element Model with Manufactured Error for Additive Manufacturing. Comput. Model. Eng. Sci. 2020, 124, 703–720. [Google Scholar] [CrossRef]
- Samperi, M.T. Development of Design Guidelines for Metal Additive Manufacturing and Process Selection. Master’s Thesis, The Pennsylvania State University, University Park, PA, USA, 2014. [Google Scholar]
- Lei, G.; Lu, L.; Bi, G.; Zhang, L.; Sun, L. Digital Model Reconstruction and Geometric Error Analysis of Additive Manufacturing Blisk Enabled by 3D Scanner. Proc. J. Phys. Conf. Ser. 2024, 2760, 012037. [Google Scholar] [CrossRef]
- Lv, N.; Ouyang, X.; Qiao, Y. Adaptive Layering Algorithm for FDM-3D Printing Based on Optimal Volume Error. Micromachines 2022, 13, 836. [Google Scholar] [CrossRef]
- Jin, Y.; Qin, S.J.; Huang, Q. Out-of-Plane Geometric Error Prediction for Additive Manufacturing. In Proceedings of the 2015 IEEE International Conference on Automation Science and Engineering (CASE), Gothenburg, Sweden, 24–28 August 2015; pp. 918–923. [Google Scholar]
- Tian, W. Nonlinear Dynamic Analysis and Quantification of Additive Manufacturing Error on the Stability of Lattice-Core Composite Sandwich Plate. Ph.D. Thesis, UNSW Sydney, Kensington, NSW, Australia, 2023. [Google Scholar]
- Qian, S.; Jiang, X.; Qian, P.; Zi, B.; Zhu, W. Calibration of Static Errors and Compensation of Dynamic Errors for Cable-Driven Parallel 3D Printer. J. Intell. Robot. Syst. 2024, 110, 31. [Google Scholar] [CrossRef]
- Hou, L.; Ye, C.; Guo, J.; Chen, Y.; Jing, X.; Li, Y.; Chen, S.; Huang, X.; Li, H. Allowance Optimization and Error Compensation in Hybrid Additive and Subtractive Manufacturing of Complex Parts. SSRN 2023, SSRN 4503092. [Google Scholar] [CrossRef]
- Psulkowski, S. Digital Compensation to Mechanical Error: An Investigation into Cyber-Physical Systems with DeXterTM A Hybrid Additive Manufacturing System. Undergraduate Thesis, Florida State University, Tallahassee, FL, USA, 2018. [Google Scholar]
- Yoon, D.; Duan, M.; Okwudire, C.E. Software-Based Compensation of Vibration-Induced Errors of a Commercial Desktop 3D Printer. In Proceedings of the Proceedings-32nd ASPE Annual Meeting, Cambridge, MA, USA, 20–22 April 2016; p. 478. [Google Scholar]
- Obeidi, M.A. Metal Additive Manufacturing by Laser-Powder Bed Fusion: Guidelines for Process Optimisation. Results Eng. 2022, 15, 100473. [Google Scholar] [CrossRef]
- Plocher, J.; Wioland, J.-B.; Panesar, A.S. Additive Manufacturing with Fibre-Reinforcement–Design Guidelines and Investigation into the Influence of Infill Patterns. Rapid Prototyp. J. 2022, 28, 1241–1259. [Google Scholar] [CrossRef]
- Badini, S.; Regondi, S.; Frontoni, E.; Pugliese, R. Assessing the Capabilities of ChatGPT to Improve Additive Manufacturing Troubleshooting. Adv. Ind. Eng. Polym. Res. 2023, 6, 278–287. [Google Scholar] [CrossRef]
- Alietti, L. Precision Enhancement of the 3D Printing Process Using Automated Visual Error Detection. 2021. Available online: https://www.politesi.polimi.it/retrieve/cec4914a-fd53-4aa1-96d8-85e2ea1a07e1/2022_07_Alietti_02.pdf (accessed on 14 October 2024).
- Brion, D. Deep Learning Enabled Error Detection and Correction for 3D Printing. Ph.D. Thesis, University of Cambridge, Cambridge, UK, 2023. [Google Scholar]
- Plocher, J. Fibre-Reinforced Additive Manufacturing: From Design Guidelines to Advanced Lattice Structures. Ph.D. Thesis, Imperial College London, London, UK, 2022. [Google Scholar]
- Kovács11, S.E.; Varga, L. Additive Manufacturing Mistakes: An Overview of Possible Errors in Laser Power Bed Fusion Processes. Doktorandusz Alm. PhD Stud. Alm. 2023, 184–188. [Google Scholar]
- Khaleed, H.M.T.; Badruddin, I.A.; Saquib, A.N.; Addas, M.F.; Kamangar, S.; Yunus Khan, T.M. Novel Approach to Manufacture an AUV Propeller by Additive Manufacturing and Error Analysis. Appl. Sci. 2019, 9, 4413. [Google Scholar] [CrossRef]
- Lu, Y. Error Characterization of EOS M280 Additive Manufacturing Machine. Master’s Thesis, The Pennsylvania State University, University Park, PA, USA, 2017. [Google Scholar]
- Kumaran, S.V.; Abd Wahab, D.; Abd Aziz, N.; Wahid, Z. Guidelines for Automotive Component Repair Using Additive Manufacturing in Industry 4.0: Design and Process Perspective. J. Inf. Syst. Technol. Manag. 2024, 9, 20–32. [Google Scholar] [CrossRef]
- Buttard, M.; Chehab, B.; Josserond, C.; Charlot, F.; Lhuissier, P.; Bataillon, X.; Deschamps, A.; Villanova, J.; Fivel, M.; Blandin, J.-J. Guidelines to Tailor the Mechanical Response of Aluminium Alloys Designed for Additive Manufacturing. SSRN 2024, SSRN 4607360. [Google Scholar]
- Islam, M.N.; Pramanik, A.; Slamka, S. Errors in Different Geometric Aspects of Common Engineering Parts during Rapid Prototyping Using a Z Corp 3D Printer. Prog. Addit. Manuf. 2016, 1, 55–63. [Google Scholar] [CrossRef]
- Choi, Y.-H. Influence of Bed Temperature on Heat Shrinkage Shape Error in FDM Additive Manufacturing of the ABS-Engineering Plastic. World J. Eng. Technol. 2016, 4, 186. [Google Scholar] [CrossRef]
- Salamone, F.; Danza, L.; Meroni, I.; Pollastro, M.C. A Low-Cost Environmental Monitoring System: How to Prevent Systematic Errors in the Design Phase through the Combined Use of Additive Manufacturing and Thermographic Techniques. Sensors 2017, 17, 828. [Google Scholar] [CrossRef]
- Šantak, I.; Duspara, M.; Cumin, J.; Kovačević, B.; Maglić, L.; Stoić, A. Simulation of First Layer Adhesion Errors in 3D Printing. In Proceedings of the 10th International Scientific and Expert Conference TEAM2022, Slavonski Brod, Croatia, 21–22 September 2022; pp. 307–315. [Google Scholar]
- Liu, L.; Ngo, K.D.; Lu, G.-Q. Guideline for Paste Extrusion 3D Printing of Slump-Free Ferrite Inductor Cores. Ceram. Int. 2021, 47, 5803–5811. [Google Scholar] [CrossRef]
- Di Tore, S.; De Simone, G.; Todino, M.D. Learning by Making. 3D Printing Guidelines for Teachers. In Proceedings of the Makers at School, Educational Robotics and Innovative Learning Environments: Research and Experiences from FabLearn Italy 2019, in the Italian Schools and Beyond; Springer International Publishing, New York, NY, USA; 2021; pp. 181–186. [Google Scholar]
- Agrawal, R. Sustainable Design Guidelines for Additive Manufacturing Applications. Rapid Prototyp. J. 2022, 28, 1221–1240. [Google Scholar] [CrossRef]
- Kabbur, N. Design and Manufacturing Guidelines for Additive Manufacturing of High Porosity Cellular Structures. Master’s Thesis, University of Cincinnati, Cincinnati, OH, USA, 2017. [Google Scholar]
- García-Vigueras, M.; Polo-Lopez, L.; Stoumpos, C.; Dorlé, A.; Molero, C.; Gillard, R. Metal 3D-Printing of Waveguide Components and Antennas: Guidelines and New Perspectives; IntechOpen: London, UK, 2023. [Google Scholar]
- Shehadeh, A. Evaluation of 316L Stainless Steel Part Fabrication Using Additive and Subtractive Manufacturing: A Guideline for Process Selection. 1 June 2019. Available online: https://qspace.qu.edu.qa/handle/10576/12335 (accessed on 15 October 2024).
- Klar, R.M.; Cox, J.; Raja, N.; Lohfeld, S. The 3D-McMap Guidelines: Three-Dimensional Multicomposite Microsphere Adaptive Printing. Biomimetics 2024, 9, 94. [Google Scholar] [CrossRef] [PubMed]
- Gokuldoss, P.K.; Kolla, S.; Eckert, J. Additive Manufacturing Processes: Selective Laser Melting, Electron Beam Melting and Binder Jetting—Selection Guidelines. Materials 2017, 10, 672. [Google Scholar] [CrossRef] [PubMed]
- Kranz, J.; Herzog, D.; Emmelmann, C. Design Guidelines for Laser Additive Manufacturing of Lightweight Structures in TiAl6V4. J. Laser Appl. 2015, 27, S14001. [Google Scholar] [CrossRef]
- Lozada, N.; Miguel, J. Evaluation of Carbon Fiber Reinforced Polymer Composites Produced by Additive Manufacturing for Design Guidelines. Master’s Thesis, Campus Monterrey, Monterrey, Mexico, 2018. [Google Scholar]
- Mihasan, M. A Beginner’s Guideline for Low-cost 3D Printing of Macromolecules Usable for Teaching and Demonstration. Biochem. Mol. Biol. Educ. 2021, 49, 521–528. [Google Scholar] [CrossRef]
- Moylan, S.; Slotwinski, J. Assessment of Guidelines for Conducting Round Robin Studies in Additive Manufacturing. In Proceedings of the ASPE Spring Topical Meeting—Dimensional Accuracy and Surface Finish in Additive Manufacturing; NIST: Berkeley, CA, USA, 2014; Volume 57, pp. 82–85. [Google Scholar]
- Çıklaçandır, S.; Ciklacandir, S.; Çulha, S.; Culha, S.; İşler, Y.; Isler, Y. Design of a Real-Time Tracking System to Eliminate 3D Printing Errors Caused by Thermoplastic Materials. Akıllı Sist. Ve Uygulamaları Derg. 2022, 5, 82–85. [Google Scholar]
- Duman, B.; Süzen, A.A. Modeling of IoT-Based Additive Manufacturing Machine’s Digital Twin for Error Detection. Mühendis. Bilim. Ve Tasar. Derg. 2023, 11, 486–497. [Google Scholar] [CrossRef]
- Jin, Y.; Liao, H.; Pierson, H.A. A Multi-Resolution Framework for Automated in-Plane Alignment and Error Quantification in Additive Manufacturing. Rapid Prototyp. J. 2020, 26, 1289–1303. [Google Scholar] [CrossRef]
- Kim, H.; Okwudire, C.E. Combined Servo Error Pre-Compensation and Feedrate Optimization—with Application to a 3D Printer and Precision Motion Stage. Int. J. Adv. Manuf. Technol. 2020, 109, 809–821. [Google Scholar] [CrossRef]
- Engle, J.; Nguyen, R.; Buah, K.; Weaver, J.M. Reducing Computer Visualization Errors for In-Process Monitoring of Additive Manufacturing Systems Using Smart Lighting and Colorization System. 2019. Available online: https://utw10945.utweb.utexas.edu/sites/default/files/2019/125%20Reducing%20Computer%20Visualization%20Errors%20for%20In-Proc.pdf (accessed on 15 October 2024).
- Straub, J. Physical Security and Cyber Security Issues and Human Error Prevention for 3D Printed Objects: Detecting the Use of an Incorrect Printing Material. In Proceedings of the Dimensional Optical Metrology and Inspection for Practical Applications VI, Anaheim, CA, USA, 13 April 2017; Volume 10220, pp. 90–105. [Google Scholar]
- Ramamurthy, R.; Bromberg, V.; Fiorillo, T.; Harding, K. Error Mapping Method for Multi-Axis Additive Manufacturing System. Dimens. Opt. Metrol. Insp. Pract. Appl. VII 2018, 10667, 99–109. [Google Scholar]
- Zeng, L.; Wu, W. Analysis and Prediction of Height Error of FDM 3D Printing. In Proceedings of the 2022 2nd International Conference on Control and Intelligent Robotics, Nanjing, China, 24–26 June 2022; pp. 667–670. [Google Scholar]
- Shen, Z.; Shang, X.; Zhao, M.; Dong, X.; Xiong, G.; Wang, F.-Y. A Learning-Based Framework for Error Compensation in 3D Printing. IEEE Trans. Cybern. 2019, 49, 4042–4050. [Google Scholar] [CrossRef]
- Omairi, A.; Ismail, Z.H. Towards Machine Learning for Error Compensation in Additive Manufacturing. Appl. Sci. 2021, 11, 2375. [Google Scholar] [CrossRef]
- Bandari, Y.K.; Charrett, T.O.; Michel, F.; Ding, J.; Williams, S.W.; Tatum, R.P. Compensation Strategies for Robotic Motion Errors for Additive Manufacturing (AM). In Proceedings of the 27th Annual International Solid Freeform Fabrication Symposium, Austin, TX, USA, 8–10 August 2016. [Google Scholar]
- Wang, D.; Shen, Z.; Dong, X.; Fang, Q.; Wang, W.; Dong, X.; Xiong, G. Deep Reinforcement Learning for Dynamic Error Compensation in 3D Printing. In Proceedings of the 2023 IEEE 19th International Conference on Automation Science and Engineering (CASE), Auckland, New Zealand, 26–30 August 2023; pp. 1–7. [Google Scholar]
- Wylie, B.; Moore Jr, C. Optical Methods of Error Detection in Additive Manufacturing: A Literature Review. J. Manuf. Mater. Process. 2023, 7, 80. [Google Scholar] [CrossRef]
- Paulsen, T. Visual Error Detection on 3D Printing. Bachelor’s Thesis, NTNU, Trondheim, Norway, 2019. [Google Scholar]
- Brion, D.A.; Pattinson, S.W. Generalisable 3D Printing Error Detection and Correction via Multi-Head Neural Networks. Nat. Commun. 2022, 13, 4654. [Google Scholar] [CrossRef]
- Mehta, P.; Mujawar, M.A.; Lafrance, S.; Bernadin, S.; Ewing, D.; Bhansali, S. Editors’ Choice—Review—Sensor-Based and Computational Methods for Error Detection and Correction in 3D Printing. ECS Sens. Plus 2024, 3, 030602. [Google Scholar] [CrossRef]
- Liu, X.; Lv, C.; Liu, B.; Li, X.; Jia, X. Machining Error Analysis of Large-Size Ceramic Additive Manufacturing Based on Scanning Exposure Technology. In Proceedings of the Second International Conference on Advanced Manufacturing Technology and Manufacturing Systems (ICAMTMS 2023), Nanjing, China, 26–28 May 2023; Volume 12744, pp. 44–49. [Google Scholar]
- Klingert, J.; Bruder, R.; Schweikard, A. Optical Recognition of Error States to Secure Quality in FDM 3d Printing. Trans. Addit. Manuf. Meets Med. 2019, 1, 1909S03P04. [Google Scholar] [CrossRef]
- Lianghua, Z. Research on Error Analysis and Online Recognition Method of Contour in 3D Printing. Proc. J. Phys. Conf. Ser. 2020, 1605, 012031. [Google Scholar] [CrossRef]
- Gabstur, P.; Pollak, M.; Kocisko, M. Detection of Process Errors of Additive Manufacturing. MM Sci. J. 2024, 2024, 7306–7311. [Google Scholar] [CrossRef]
- Budinoff, H.D.; McMains, S. Will It Print: A Manufacturability Toolbox for 3D Printing. Int. J. Interact. Des. Manuf. IJIDeM 2021, 15, 613–630. [Google Scholar] [CrossRef]
- Sani, A.R.; Zolfagharian, A.; Kouzani, A.Z. Artificial Intelligence-Augmented Additive Manufacturing: Insights on Closed-Loop 3D Printing. Adv. Intell. Syst. 2024, 6, 2400102. [Google Scholar] [CrossRef]
- Ulkir, O. Investigation on the Mechanical and Thermal Properties of Metal-PLA Composites Fabricated by FDM. Rapid Prototyp. J. 2024, 30, 2113–2122. [Google Scholar] [CrossRef]
Process | Definition | Example Technologies |
---|---|---|
Binder Jetting (BJ) | A liquid bonding agent is selectively deposited to join powder materials. | ExOne, ZPrinting, and VoxelJet. |
Directed Energy Deposition (DED) | Focused thermal energy is used to fuse materials by melting as they are being deposited. | LENS, WAAM, and EBAM. |
Material Extrusion (ME) | Material is selectively dispensed through a nozzle or orifice. | FDM/FFF, Contour Crafting. |
Material Jetting (MJ) | Droplets of feedstock material are selectively deposited. | PolyJet, MJP, and NPJ. |
Powder Bed Fusion (PBF) | Thermal energy selectively fuses regions of a powder bed | SLS, SLM, DMLS, and EBM. |
Sheet Lamination (SHL) | Sheets of material are bonded to form a part. | LOM, and CBAM. |
Vat Photopolymerization (VPP) | Liquid photopolymer in a vat is selectively curedby light-activated polymerization. | SLA, DLP, and CLIP. |
Author(s) (Year) | AM Technology | Issue | Root Cause | Proposed Solution |
---|---|---|---|---|
Auškalnis et al. (2022) [33] | VPP | Photopolymer shrinkage. | Accumulated error during intraoral scanning (IOS); resin shrinkage during printing. |
|
Tian et al. (2024) [34] | PBF | Micro-geometry defects. | Node detachment, radius variation, and surface distortion during SLM printing. |
|
Pinto et al. (2015) [21] | MJ | Stair-stepping and overbuilding. | STL quality degradation due to an improper tessellation threshold and mesh resolution. |
|
Cajal et al. (2013) [35] | VPP | Volumetric dimensional deviation. | Kinematic position error per axis and cumulative mismatch in STL-based build location. |
|
Das et al. (2015) [36] | PBF | Stair-stepping. | Errors in flatness, verticality, and roundness depending on build orientation and slice thickness. |
|
Majarena et al. (2017) [26] | ME | Positional and linearity errors. | Positional deviation during axis movement; loss of precision over longer paths. |
|
Li and Anand (2021) [30] | PBF | Flatness error. | Residual stress and asymmetric thermal shrinkage from hatch pattern and scan direction. |
|
Majd et al. (2023) [37] | ME | Infill density deviation. | Discrepancy between target and actual infill, irregular infill geometry, and extrusion profile. |
|
Zgórniak and Stachurski (2010) [38] | MJ | Dimensional deviation. | Recurrent dimensional deviation depending on print location and orientation. |
|
Moodleah and Kirimasthong (2023) [13] | ME | Geometric error during slicing. | Irregular point cloud and inaccurate inter-layer boundary leading to cumulative shape error. |
|
Author(s) (Year) | Issue | Technique Used | Technique Description | Advantages |
---|---|---|---|---|
Auškalnis et al. (2022) [33] | Layer deposition error | Structured light-based 2D phase domain error detection. | Detects printing errors in a 2D phase domain, minimizing the need for full 3D reconstruction. | Faster error detection compared to 3D point cloud analysis and enables automatic correction of error regions. |
Zhang et al. (2019) [28] | Print anomalies | EFMSAE (error fusion of multiple sparse auto-encoders). | Unsupervised learning-based condition monitoring using multi-sensor data. | Early detection of micro-defects in delta 3D printers using low-cost sensors which enables real-time response. |
Duan et al. (2018) [29] | Equipment vibration | LPFBS (limited-preview filtered b-spline). | Feedforward control technique generating predictive B-spline paths for short intervals and adjusting them in real time to correct vibration-induced errors. | Reduces surface roughness and positional misalignment during high-speed printing and enables sensor-free real-time correction on low-cost printers. |
Peña et al. (2022) [43] | Geometric errors | CH (conoscopic holography). | Uses non-contact optical interferometry sensors to measure geometric deviation per layer and quantify radial deviations. | Enables fast acquisition of high-density 3D shape data and allows precise, non-contact monitoring of layer-wise deviations in FFF processes. |
Sub- Section | Solution Approach | References |
---|---|---|
3.1 | Development of software-based algorithm. | [13,37,44,45,46,47,48,49] |
User-controlled operational strategies. | [11,16,20,50,51,52] | |
3.2 | Development of software-based algorithm. | [12,14,25,26,27,29,30,32,34,35,36,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83] |
Development of hardware-based physical system. | [14,62,74,75,84,85,86,87] | |
User-controlled operational strategies. | [17,21,23,27,31,33,38,69,78,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104] | |
3.3 | Development of software-based algorithm. | [18,28,39,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120] |
Development of hardware-based physical system. | [18,41,42,105,109,110,111,112,117,120,121,122,123,124] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kwon, S.; Hwang, D. Understanding and Resolving 3D Printing Challenges: A Systematic Literature Review. Processes 2025, 13, 1772. https://doi.org/10.3390/pr13061772
Kwon S, Hwang D. Understanding and Resolving 3D Printing Challenges: A Systematic Literature Review. Processes. 2025; 13(6):1772. https://doi.org/10.3390/pr13061772
Chicago/Turabian StyleKwon, Seulhee, and Dongwook Hwang. 2025. "Understanding and Resolving 3D Printing Challenges: A Systematic Literature Review" Processes 13, no. 6: 1772. https://doi.org/10.3390/pr13061772
APA StyleKwon, S., & Hwang, D. (2025). Understanding and Resolving 3D Printing Challenges: A Systematic Literature Review. Processes, 13(6), 1772. https://doi.org/10.3390/pr13061772