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Abstract: Additive manufacturing (AM), or 3D printing, enables efficient fabrication of
complex and customized components. Despite its growth across industries, users fre-
quently encounter print failures due to design errors, process limitations, and inadequate
monitoring. While existing research has explored various aspects of these failures, much of
it remains fragmented, with limited consolidated overviews that map common problems,
troubleshooting strategies, and guidelines across the AM workflow. This study conducted
a systematic literature review using the Preferred Reporting Items for Systematic Reviews
and Meta-Analyses (PRISMA) methodology to identify and categorize common 3D printing
problems and their solutions. Relevant studies published between 2000 and 2024 were
extracted from major databases. A total of 126 peer-reviewed articles were selected and
analyzed. Three major categories of recurring challenges were identified: (1) design and
pre-processing errors; (2) geometric errors and dimensional deviations; (3) failures in in-
process error detection and response. A variety of mitigation strategies have been proposed
across the literature, including STL and slicing optimization, thermal management, ma-
chine calibration, and sensor-based real-time monitoring. These approaches reflect the
multifactorial nature of 3D printing failures, which often arise from the complex interplay
of design, material, and process parameters. This review provides a structured summary
of failure types and mitigation strategies across the AM workflow.

Keywords: additive manufacturing; guideline; PRISMA; troubleshooting

1. Introduction

3D printing, also referred to as additive manufacturing (AM), is a technology that
fabricates physical objects by sequentially depositing material layers based on digital files.
Due to its capability to rapidly and cost-effectively produce complex structures, 3D printing
has become a core technology in various industries, including the aerospace, healthcare,
and automotive sectors [1]. The use of 3D printers for customized production offers
significant advantages in small-scale mass production, earning technical recognition from a
wide spectrum of users, ranging from individual creators to large-scale manufacturers [2].
Notably, the 3D printing market experienced remarkable growth in 2023, surpassing $20
billion for the first time, driven by advancements in metal 3D printing technologies and a
transition toward mass production [3,4].

Despite its innovative potential, users often encounter a variety of challenges when
learning and effectively utilizing 3D printing technologies. Issues that arise during the
printing process, such as reduced print quality and design and mechanical setting errors,
can pose significant difficulties for both novice and experienced users alike [5]. Whilst
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previous studies have proposed various analyses and solutions to 3D printing issues, most
have remained limited to specific case-based or post hoc approaches, lacking comprehen-
sive coverage of problems across the entire process workflow [6]. Additionally, many
existing studies tend to address only narrowly defined problems within specific AM pro-
cesses, which contributes to the persistence of a broader research gap. It is important that
knowledge of AM-related errors and their corresponding solutions be made accessible not
only to specialists, but also to a wider range of users who interact with these technologies.
To support this need, there is value in conducting reviews that take a more comprehensive
and structured approach to synthesizing fragmented findings across diverse AM contexts.

While narrative reviews are often sufficient for summarizing research trends, we
adopted the Preferred Reporting Items for Systematic Reviews and Meta-Analyses
(PRISMA) methodology to enhance the transparency and reproducibility of the litera-
ture selection and analysis process. The use of PRISMA helps minimize the influence of
researcher bias and provides a logical and standardized framework for systematically iden-
tifying and synthesizing relevant studies—even for those who may not be long-standing
experts in the field. Building on this foundation, this study aims to propose a proactive
approach that systematically identifies and analyzes potential problems that may arise
throughout the 3D printing process, categorized by components and stages. Specifically,
we apply the PRISMA methodology, which is commonly used to enhance transparency and
quality in systematic reviews and meta-analyses [7], to comprehensively review existing
literature on 3D printing-related issues and their corresponding solutions. Through this
systematic review, we aim to develop practical guidelines that help 3D printing users
prevent printing failures and ensure successful output. To guide this investigation, we
formulated the following research questions:

Q1: What types of problems are commonly encountered when using 3D printing technolo-
gies across different stages of the process?

Q2: What solutions have been proposed in the literature to address these problems, and
how might they inform practice and future research?

2. Methodology
2.1. Literature Search Strategy

This study conducted a systematic literature review based on the PRISMA guidelines
to identify common issues encountered during the use of 3D printers and their correspond-
ing solutions. PRISMA encourages transparency in the process of identifying, selecting,
and reporting research, including the search strategy, classification method, inclusion and
exclusion criteria, and the use of automation tools. This methodology enhances the relia-
bility of literature selection and enables researchers to define clear research questions and
apply consistent criteria for analysis [8]. Due to its robustness and reproducibility, PRISMA
is widely adopted across disciplines to yield trustworthy results.

To ensure comprehensive coverage, the literature search was conducted across major
academic databases, including Google Scholar, ScienceDirect, PubMed, and IEEE Xplore.
The search targeted publications from 1 January 2000 to 31 July 2024. Keywords used in the
search included combinations of terms such as “3D printing”, “3D printer”, or “additive
manufacturing” with “error(s)”, “guideline(s)”, or “troubleshooting”, specifically within
the article titles. This ensured that studies addressing errors and guidance related to 3D
printing and additive manufacturing were inclusively identified. The keyword combination
logic used in this title-based search is summarized in Figure 1.
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Keyword combination logic

AM-related terms Problem-related terms
"3D printing" "error(s)"

OR "3D printer" AND | OR "guideline(s)"

OR "additive manufacturing" OR "troubleshooting"

Figure 1. Keyword combination logic used in the title-based search.

2.2. Literature Selection Process

The literature selection process was conducted using the PRISMA flow diagram
(Figure 2) and followed specific inclusion and exclusion criteria. Studies were included
if they addressed problems encountered during the use of 3D printers and proposed cor-
responding solutions. Eligible sources included original research articles, experimental
studies, review articles, and case studies focusing specifically on technical or methodologi-

cal aspects of 3D printing.
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Figure 2. PRISMA flow diagram of the study selection process.
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The selection proceeded through a two-stage exclusion process. In the first stage,
studies were excluded if only abstracts were available, if full-text access was not accessible,
if the papers were not written in English, or if the documents were not in scholarly article
format (e.g., books, reports). The second stage excluded studies that focused solely on
specific industries, assessed the performance of printed products without addressing failure
causes, or provided only general overviews without concrete troubleshooting approaches.

The initial search yielded a total of 366 studies. After removing duplicates, 200 unique
studies remained. Applying the first exclusion criteria resulted in 143 eligible papers. A
second round of screening was then conducted, and studies that did not align with the
research questions were excluded. As a result, a final set of 126 studies was selected for
full analysis and data extraction. No automation tools were used during the selection
process; all screening and eligibility assessments were conducted manually based on the
predefined criteria.

2.3. Data Extraction and Analysis

From the final selection of 126 studies, data were extracted based on predefined
criteria, including the study title, publication year, research objectives, key problems en-
countered during 3D printer use, and corresponding solutions. The data extraction process
followed the PRISMA methodology, with two researchers independently conducting the
extraction. In cases of disagreement, a third researcher reviewed the discrepancies and
facilitated resolution.

In this process, we examined the publication recency, research focus, and objectives
of each study, and assessed their methodological rigor and experimental design to ensure
validity and reliability. Particular emphasis was placed on identifying recurring issues such
as printing errors, quality degradation, and mechanical failures, as well as the solutions
proposed to address them. A structured coding process was applied to organize the
extracted data, allowing for the consistent categorization of problem types and associated
solutions across studies. This analysis enabled us to classify common problem types and
extract representative troubleshooting strategies reported across the literature.

Additionally, to evaluate consistency among the findings, similar studies were com-
paratively analyzed. Major findings and contributions were synthesized according to the
research questions. Finally, the limitations of existing research were discussed and future
research directions were proposed, providing key insights for the continued advancement
of 3D printing studies.

3. Analysis of Troubleshooting Problems in 3D Printing Technologies

AM encompasses a range of process technologies, each characterized by distinct
technical attributes depending on the materials used and the specific forming mechanisms
involved. The results of the literature analysis revealed that across various AM techniques
there are recurring types of issues and corresponding strategies proposed to address
them. Accordingly, this study first identifies the common categories of problems that arise
throughout AM processes. For each problem type, representative failure cases are outlined
along with the specific solutions proposed in the reviewed literature.

To aid interpretation of the following analysis, we refer to the ISO/ASTM 52900
classification, which categorizes AM into seven primary process types [9]. While this study
does not aim to conduct a modality-specific comparison, it is acknowledged that certain
troubleshooting challenges may vary across different AM processes. A summary of each
process, along with its definition and representative technologies, is provided in Table 1.
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Table 1. Categories of additive manufacturing processes with definitions and examples.

Process Definition Example‘
Technologies
. . A liquid bonding agent is selectively .
Binder Jetting (B]) deposited to join powder materials. ExOne, ZPrinting, and VoxelJet.
Directed Energy Focused thermal energy is used to
Deposition (DED) fuse materials by melting as they are LENS, WAAM, and EBAM.

being deposited.

Material Extrusion (ME)

Material is selectively dispensed
through a nozzle or orifice.

FDM/FFF,
Contour Crafting.

Droplets of feedstock material are

Material Jetting (M]) selectively deposited. Poly]Jet, MJP, and NP]J.
Powder Bed Fusion (PBF) Lgﬁg‘;‘:l;f";e;%zeéfiéely fuses SLS, SLM, DMLS, and EBM.
Sheet Lamination (SHL) Sheets of material are bonded to form LOM, and CBAM.

a part.

Liquid photopolymer in a vat is
selectively curedby
light-activated polymerization.

Vat Photopolymerization

(VPP) SLA, DLP, and CLIP.

3.1. Design and Pre-Processing Errors

In AM the quality of printed objects is influenced not only by post-processing condi-
tions but also by the appropriateness of the design and pre-processing steps performed
prior to printing. Key pre-printing procedures include CAD-based modeling, STL file
conversion, slicing parameter configuration, build orientation setup, and material and tem-
perature parameter input. These preliminary steps have a direct impact on the dimensional
accuracy, surface quality, and mechanical properties of the printed parts. Errors at the
design or pre-processing stage often lead to cumulative issues that are difficult to correct in
later stages of the process.

According to the literature, the major issues arising during the design and pre-
processing stages are as follows. First, during the process of converting CAD models into
STL files composed of small triangles, geometric fidelity may not be sufficiently preserved,
which can lead to information loss and result in shape distortions [10]. This phenomenon
is illustrated in Figure 3a. Such distortions are particularly problematic for models with
curves or complex geometries, where chordal errors frequently occur. To reduce these
errors, a denser mesh is often used, but this increases the file size and computational load
during slicing [11].

Layer
CAD STL e
CAD
geometry

/ \

shape distortion stair-step effect overhanging

(a) (b) (c)

Figure 3. Visual examples of (a) shape distortion, (b) stair-step effect, and (c) overhang deformation.

Second, during slicing, where G-code is generated based on the STL file, the quality
and precision of the output are directly influenced by user-defined parameters. A repre-
sentative example is layer thickness, which affects the trade-off between precision and
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speed. Thinner layers yield higher resolution but slower print times, whereas thicker layers
increase speed at the cost of surface quality. Especially in curved regions, visible layer
boundaries can create a phenomenon known as the stair-step effect, which may be partially
mitigated by adjusting the build orientation [12]. This effect is illustrated in Figure 3b. To
reduce such artifacts, the “Discrete Interpolable-Area Error Profile (DIA-EP)” algorithm
has been proposed, applying thinner layers to highly curved areas and thicker layers to
flatter surfaces [13]. Additionally, the type of path generation algorithm and its resolution
settings are significant factors affecting print quality [14]. Notably, different application
domains have adopted tailored strategies to address such fidelity challenges. In medical
additive manufacturing, particularly for patient-specific implants or anatomical models,
maintaining fine geometric fidelity is critical; hence, adaptive slicing and ultra-fine layer
resolution are often prioritized, despite longer build times. In contrast, industrial applica-
tions such as tooling or prototyping may tolerate greater dimensional deviation in favor of
increased throughput, often leveraging coarser slicing or post-processing techniques. Build-
ing on these developments, recent algorithmic approaches such as adaptive slicing and
Al-driven design tools have been introduced to further enhance pre-processing accuracy
and geometric fidelity.

Third, within the same slicing process, build orientation is another critical factor. Due
to the layer-by-layer nature of AM, build orientation influences layer structure, need for and
number of support structures, material consumption, print time, and ultimately, durability
and post-processing difficulty [15]. One notable issue is the “supporting error”. Without
adequate support in inclined or overhanging areas, the geometry may collapse or warp.
A representative example of such unsupported deformation is illustrated in Figure 3c. In
high-precision parts, improper placement or angle of support structures can lead to print
failure or deformation [16]. Therefore, build orientation should not be considered merely a
visual or esthetic factor but a critical design parameter closely linked to functional quality
and manufacturing efficiency.

Since these errors are typically irreversible after printing and often result in signifi-
cant quality degradation, pre-print simulation-based verification, high-resolution mesh
generation, and adherence to standardized design guidelines are essential. Recent re-
search [11] also highlights the importance of pre-evaluating toolpath quality at the G-code
level. Techniques such as applying G2/G3 commands for curved path optimization or
using post-processing algorithms like Arc Welder have been proposed to enhance toolpath
precision. As such, design and pre-processing errors are among the leading causes of print
quality degradation and must be considered as both the starting point and a core control
node in the overall AM process.

3.2. Geometric Errors and Dimensional Deviations

AM has gained significant attention for its ability to precisely fabricate complex
geometries and efficiently produce customized components in small quantities. Despite
these advantages, multiple studies have focused on addressing quality and printing errors
that occur throughout the AM process [17,18]. During printing, relatively minor issues
such as dimensional deviations or surface roughness may arise; in severe cases, geometric
distortions and structural instabilities can lead to critical defects such as cracks, porosity,
or warping. Unsupported features such as overhangs and bridges can collapse without
proper support structures, potentially resulting in severe print failures like the “spaghetti
error”, which renders the component unusable. These precision-related concerns are
particularly critical in medical applications, where AM is widely used for surgical implants,
patient-specific prosthetics, and anatomical phantoms [19]. Such components must closely
conform to individual anatomical features, often with acceptable dimensional deviations
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restricted to within a few micrometers as inaccuracies can directly affect patient safety and
treatment efficacy [20]. Accordingly, extensive research has been conducted to identify
and compensate for dimensional and geometric inaccuracies in medical AM, focusing on
process optimization and improving geometric fidelity [21].

The literature review revealed that discrepancies between the designed CAD model
and the printed output were among the most frequently observed issues. While design and
pre-processing errors have been discussed in detail in Section 3.1, this section focuses on
the physical and mechanical factors that contribute to geometric inaccuracies during the
actual printing process.

First, thermal variations and the accumulation of residual thermal stress are widely
reported as the primary causes of geometric errors. Printed materials tend to shrink during
the cooling process, and interlayer temperature gradients can result in asymmetric thermal
stress [22]. These stresses may cause overall warping, localized lifting, or tilting of the print,
potentially leading to collisions with the recoater or print failures [23]. Although the severity
of these effects varies with process and material, they are commonly observed across AM
technologies. For example, in material extrusion (ME) processes such as fused deposition
modeling (FDM), warping may occur due to filament shrinkage upon cooling [24]. In
powder bed fusion (PBF) processes like selective laser melting (SLM) and electron beam
melting (EBM), rapid heating and cooling can create steep thermal gradients, resulting in
high residual stress [25]. These thermal effects often lead to geometric distortions such as
warping or shrinkage. These geometric accuracy concerns tend to be more stringent in
medical applications due to patient-specific requirements, whereas industrial contexts may
prioritize repeatability and structural performance. Figure 4 illustrates (a) a schematic of
layer deformation caused by thermal stress and (b) a simplified shrinkage model comparing
the designed geometry to the printed output.

I S—

Layer Deformation Shrinkage

(a) (b)

Figure 4. (a) Layer deformation and (b) shrinkage illustrations.

Second, mechanical vibrations and minor misalignments in the system can accumulate
over time and significantly affect print accuracy. Instabilities during machine operation,
including vibrations and inconsistent movements, directly influence nozzle positioning and
path tracking accuracy, resulting in interlayer misalignment and geometric distortion [26].
Low repeatability in the Z-axis or backlash in the drive mechanisms may cause cumulative
misalignment, degrading the consistency of printed layers. Bed leveling errors, where
the build plate is not parallel to the reference plane, can also lead to uneven initial layers,
poor adhesion, and compromised overall geometric integrity [27]. These issues are often
exacerbated by mechanical wear and tear, such as a relaxation of synchronous belts or
bearing degradation, causing a gradual decline in print quality over time [28]. In stepper
motor-driven systems, excessive vibration during head or platform movement can lead
to tracking errors, step skipping, and visible surface artifacts such as ringing or layer
registration errors [29].
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Third, various process conditions and equipment-related variables have also been
reported as key contributors to printing errors. For instance, in PBF processes spatially non-
uniform laser energy distribution or suboptimal hatch path planning can lead to reduced
flatness and surface accuracy of printed parts [30]. In ME processes, imbalanced material
extrusion often results in defects. In particular, temporary interruptions in material flow or
excessive self-overlapping in localized regions during extrusion may produce uneven layer
thickness, thereby compromising the geometric accuracy of the printed object [22]. In Vat
Photopolymerization (VPP), especially in masked stereolithography (mSLA), differences
in resin viscosity and curing time can cause variations in surface accuracy and shrinkage
behavior, potentially leading to geometric distortion and dimensional mismatch [31]. In
Directed Energy Deposition (DED), if the balance between powder feed rate and laser
energy input is not properly maintained then irregular melt pool dynamics may occur,
resulting in non-uniform layer formation and reduced consistency in deposition [32].
Although the specific causes vary across AM technologies, instability in process parameters
universally contributes to degradation in print quality. As such, these process-dependent
factors must be systematically considered across all AM platforms.

In conclusion, geometric errors and dimensional inaccuracies in AM are rarely the
result of a single cause. Instead, they arise from the complex interplay of multiple fac-
tors, including thermal fluctuations, mechanical vibrations, alignment errors, and process
parameter variations. Such issues are frequently linked to material shrinkage behaviors,
machine repeatability issues, non-uniform deposition paths, and inconsistencies in curing
conditions. These problems are not limited to any one AM method but are inherent risks
across all additive manufacturing processes. The following table (Table 2) summarizes the
issues and proposed solutions related to geometric errors and dimensional deviations. All
proposed solutions listed in the table were extracted from the respective referenced studies.

Table 2. Selective literature on the geometric errors and dimensional deviations.

Author(s) (Year) AM Issue Root Cause Proposed Solution
Technology
Accumulated error during Shrinkage-compensated design
. . . intraoral scanning (10S); adjustment.

Auskalnis et al. (2022) [33] VPP Photopolymer shrinkage. resin shrinkage Standardization of
during printing. post-curing conditions.
Node detachment, radius Precision prediction and error

Tian et al. (2024) [34] PBF Micro-geometry defects. :;E.lrlatl(.m’ and .surface quantlflc.atlon. .

istortion during Geometric parameter modeling and
SLM printing. sensitivity analysis.
STL quality degradation
. Stair-stepping and due to an improper Layer thickness tuning and

Pinto etal. (2015) [21] M overbuilding. tessellation threshold and material optimization.

mesh resolution.
Real-time probing-based
Kinematic position error measurement.
. Volumetric dimensional per axis and cumulative Multidimensional

Cajal et al. (2013) [35] VPP deviation. mismatch in STL-based compensation model.

build location. Volume correction and reprinting
based on STL data.

Errors in flatness, Mathematical modeling of
verticality, and roundness geometric errors.

Das et al. (2015) [36] PBF Stair-stepping. depending on build Output orientation optimization.

orientation and
slice thickness.

Visual analysis via quadtree-based
support structure calculation.
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Table 2. Cont.

Author(s) (Year) AM Issue Root Cause Proposed Solution
Technology
Calibrated scanner-based
Positional deviation measurement.
Majarena et al. (2017) [26] ~ ME Pos1t19nal and during ax1s.n.10V€ment,' G-code COF.I‘ECtIOH using positional
linearity errors. loss of precision over error matrices.
longer paths. Reprinting based on
modified toolpath.
. - ANN-based deformation prediction.
Residual stress and : .
tric th 1 - Backward interpolation for
Li and Anand (2021) [30] PBF Flatness error. a}slym lr:\ © nfc erhrni h distortion calculation.
S Im age drom ;,C i - GA-based multilayer hatch angle
pattern and scan direction. optimization.
- Neural network for predicting the
Discrepancy between volumetric percentage error.
. . . - target and actual infill, - Proposed algorithm for
Majd et al. (2023) [37] ME Infill density deviation. irregular infill geometry, infill optimization.
and extrusion profile. - Dataset-based training on infill
patterns and parameters.
- i lysi
Recurrent dimensional Systemfahc error anatysis by
Zoérniak and Stachurski deviation d di XYZ orientation.
gormax and Stachursi MJ Dimensional deviation. eviation depending on - Statistical compensation guidelines.
(2010) [38] print location "~ Directi timization f ot
d orientation irection optimization for prototype
an ’ development.
Moodleah and c ' Irregular point C{oud and - Geometric error calculation using
oodleah an ME eometric error inaccurate inter-layer triangular interlayer regions.

Kirimasthong (2023) [13]

during slicing. boundary leading to

; - Adaptive slicing and G-code tuning.
cumulative shape error. P & &

To effectively address these challenges, a comprehensive, end-to-end quality manage-
ment framework is essential. This should encompass not only path optimization during
the design and slicing stages but also post-print 3D scanning-based verification, geometry
compensation tailored to process characteristics, shrinkage-aware design compensation,
and statistical prediction-based calibration strategies. Only through such holistic control
mechanisms can consistent geometric fidelity and dimensional precision be achieved in
complex AM workflows.

3.3. Failures in In-Process Error Detection and Response

AM is a process that often requires continuous operation over several hours. During
this time, the quality of the printed output can be affected in real time by various physical
factors such as temperature fluctuations, vibrations, and the wear of mechanical compo-
nents. Consequently, even when the initial setup is highly precise, unforeseen variables
that occur during the printing process can frequently lead to print failures. This issue is
particularly critical in long-duration prints, where constant user supervision is not feasible.
In such cases, the need for systems capable of detecting and autonomously responding to
errors in real time has been increasingly emphasized. To help readers intuitively under-
stand the structure and data flow of such systems, Figure 5 presents a simplified schematic
illustration of a typical sensor-integrated real-time monitoring setup in AM.
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Representative issues observed in this category include the following. First, interlayer
deposition errors, such as missing geometry or over-deposition, can compromise the
structural integrity of the final product if not immediately detected as the same defect may
propagate throughout the remaining layers [39]. Second, minor anomalies such as material
extrusion imbalance, machine vibration, or misalignment between axes can significantly
degrade the dimensional accuracy of the printed object. However, conventional sensor-
based systems often lack the sensitivity or responsiveness required to detect and correct
such deviations in real time [29]. Third, if the system fails to quickly identify the exact
location and nature of an error after it occurs then a delayed response can result in increased
material waste and reduced output quality [40].

In response to these challenges, a few studies have proposed technological approaches
that enable real-time error detection and adaptive response during the AM process [41,42].
The following table (Table 3) summarizes selected prior studies and outlines the key
techniques and underlying principles proposed to address the problem of in-process
error detection and reaction failures. These techniques are designed to detect various
abnormalities that may occur during printing, or to enable preemptive control measures.
Their ultimate goal is to enhance both the accuracy and speed of error detection and

response in additive manufacturing systems.

Table 3. Selective literature on the in-process error detection and response.

Author(s) (Year)

Issue

Technique Used

Technique Description

Advantages

Auskalnis et al. (2022) [33]

Zhang et al. (2019) [28]

Duan et al. (2018) [29]

Pena et al. (2022) [43]

Layer deposition error

Print anomalies

Equipment vibration

Geometric errors

Structured light-based 2D
phase domain
error detection.

EFMSAE (error fusion of
multiple sparse
auto-encoders).

LPFBS (limited-preview
filtered b-spline).

CH (conoscopic
holography).

Detects printing errors in a
2D phase domain,
minimizing the need for
full 3D reconstruction.

Unsupervised
learning-based condition
monitoring using
multi-sensor data.

Feedforward control
technique generating
predictive B-spline paths
for short intervals and
adjusting them in real
time to correct
vibration-induced errors.

Uses non-contact optical
interferometry sensors to
measure geometric
deviation per layer and
quantify radial deviations.

Faster error detection
compared to 3D point
cloud analysis and enables
automatic correction of
error regions.

Early detection of
micro-defects in delta 3D
printers using low-cost
sensors which enables
real-time response.
Reduces surface
roughness and positional
misalignment during
high-speed printing and
enables sensor-free
real-time correction on
low-cost printers.

Enables fast acquisition of
high-density 3D shape
data and allows precise,
non-contact monitoring of
layer-wise deviations in
FFF processes.
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3.4. Overall Classification and Solution Approaches

In the previous sections, we examined three primary categories of errors in additive
manufacturing (AM). Building upon that foundation, this section presents a broader classifi-
cation by organizing the selected studies according to both the identified problem domains
and the types of solution approaches proposed. A total of 126 studies were initially selected
based on their relevance to the research questions. However, upon closer examination, 12 of
these studies were found to lack a clear alignment with either the defined error categories
or the specified solution strategies. To maintain analytical consistency, these studies were
grouped under a separate “Other” classification. Table 4 presents the classification of the
reviewed literature according to the defined error domains and corresponding solution
approaches: (3.1) design and pre-processing errors, (3.2) geometric errors and dimensional
deviations, and (3.3) failures in in-process error detection and response. Each study is also
classified based on its proposed solution approach, either through the development of
software-based algorithms, hardware-based physical systems, or user-controlled opera-
tional strategies. For clarity, the table excludes hardware-based interventions during the
design/pre-processing stage (3.1) and user-setting-based strategies in the in-process stage
(3.3) as these combinations are not logically applicable within the AM workflow. As shown
in the table, a substantial number of studies emphasize software-based solutions, such as
computational modeling, machine learning-driven parameter optimization, or geometric
compensation algorithms aimed at improving accuracy and detecting failures in real time.
In contrast, hardware-focused or user-directed solutions appeared less frequently overall;
however, a notable number of user-driven strategies were observed within the 3.2 category.
This can be attributed to the fact that many studies incorporating the keyword “guideline”
proposed user-controllable methods specifically designed to enhance model accuracy.

Table 4. Mapping of representative AM studies by problem domain and solution approach.

Sub-

Section Solution Approach References
31 Development of software-based algorithm. [13,37,44-49]
User-controlled operational strategies. [11,16,20,50-52]
Development of software-based algorithm. [12,14,25-27,29,30,32,34-36,53-83]
3.2 Development of hardware-based physical system.  [14,62,74,75,84-87]
User-controlled operational strategies. [17,21,23,27,31,33,38,69,78,88-104]
33 Development of software-based algorithm. [18,28,39,105-120]

Development of hardware-based physical system.  [18,41,42,105,109-112,117,120-124]

From a broader perspective, all studies underscore the importance of systematic er-
ror modeling and compensation techniques to improve final-part accuracy and reduce
manufacturing defects. For instance, in Section 3.1 (Design and Pre-processing Errors),
several algorithms have been proposed to correct slicing and modeling errors by minimiz-
ing approximation deviations in model contours [44]. In contrast, Section 3.2 (Geometric
Errors and Dimensional Deviations) focuses on geometric compensation of FDM processes,
employing methods such as virtual reference points or machine learning regressors to ad-
dress issues like build platform misalignments or layer-wise shrinkage [34]. In some cases,
although the primary focus was on dimensional deviations, several studies have developed
algorithms that address these issues by modifying the design and pre-processing steps
typically covered in Section 3.1 [53]. Finally, studies corresponding to Section 3.3 (Failures
in In-Process Error Detection and Response) incorporate hardware components, such as sen-
sors, to capture critical data in real time, which then serve as inputs for algorithms designed
to enable early detection and mitigation of failures [105]. Overall, these findings confirm
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that software-driven compensation and predictive modeling techniques hold promising
potential for improved AM performance. However, to translate these strategies effectively
into practice, structured collaboration between design engineers—who ensure that models
meet geometric and functional constraints—and control system experts—who develop
real-time feedback mechanisms to detect and correct fabrication errors—will be essential.

4. Discussion

This study employed a systematic review methodology following the PRISMA guide-
lines to ensure a transparent and comprehensive literature survey. A broad search strategy
was designed to capture relevant studies on 3D printing failures and mitigation techniques,
spanning multiple academic databases. The identification, screening, and eligibility phases
were documented using a PRISMA flow diagram, resulting in a final corpus of peer-
reviewed articles that directly addressed the research questions. By adhering to PRISMA'’s
structured approach, the review minimized selection bias and provided an overview of the
state-of-the-art. This rigorous process underpins the reliability of the findings and allowed
for the extraction of key themes. In particular, the included studies converged on three
primary categories of challenges in additive manufacturing: (1) design and pre-processing
errors; (2) geometric errors and dimensional deviations; (3) failures in in-process error
detection and response. These categories formed the basis for organizing the results and
are discussed in detail below in relation to the research objectives.

Challenges in the design and pre-processing errors arise from the early stages of the
3D printing workflow, specifically during the design of the 3D model and the preparation
of that model for printing, which includes file conversion and slicing. Common problems
identified in the literature include a range of design-for-manufacturing issues and setup
mistakes that can predispose a print to fail. For example, the accuracy and printability
of a part are highly dependent on its design, meaning that 3D printing is not well-suited
for certain geometrical features such as unsupported overhangs, extremely thin vertical
columns, or large flat horizontal spans without support. Models that ignore these con-
straints often suffer from collapse, severe sagging, or incomplete layers during printing.
Another prevalent issue is the loss of fidelity when converting a CAD model into the
triangulated STL format for slicing. The STL approximation represents curved surfaces as a
mesh of flat facets, introducing discretization errors that cause subtle geometry distortions.
These pre-processing errors can lead to gaps or misalignments between layers, especially
for small features or curved surfaces, ultimately affecting the dimensional accuracy and
surface quality of the final part. Furthermore, improper slicing configurations such as
selecting a suboptimal part orientation, inadequate support structures, or incorrect process
parameters are frequently reported for failed builds. Such mistakes can result in issues like
poor bed adhesion, internal stresses, or unstable structures during the print.

To minimize errors arising in the design and pre-processing stages, Design for Additive
Manufacturing (DfAM) provides a systematic framework that incorporates the physical
limitations of the manufacturing process into the design phase itself. This framework is
further supported by software tools capable of automatically validating and correcting
design features [1]. For instance, in the context of metal powder bed fusion, distortion and
buckling in thin-walled structures can be mitigated through the use of design maps that
correlate wall thickness and fillet radius, thereby enabling designers to model components
with greater confidence [25]. Additionally, Budinoff and McMains (2021) introduced
a toolkit that automatically analyzes a 3D model for known problem features such as
warping-prone corners, likely weak overhangs, and insufficient support regions, and
suggests modifications in geometry or orientation to improve manufacturability [125].
These pre-processing solutions, often integrated into slicing software, have shown success
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in preventing common failure modes such as part toppling or excessive material deposition
in unsupported areas.

The second major category of challenges pertains to the accuracy and fidelity of the
printed object’s geometry. Even when a part is well-designed and correctly sliced, the
physical printing process can introduce geometrical distortions, dimensional inaccuracies,
and surface quality issues. A multitude of studies confirm that achieving high dimen-
sional accuracy and repeatability in 3D printing is non-trivial, with errors stemming from
both machine limitations and material behavior. For instance, FDM inherently produces
layer-by-layer artifacts that can roughen surfaces and slightly alter dimensions. As the ex-
truded filament cools and solidifies, it may shrink unevenly, leading to warping or internal
stresses that cause subtle deformations [24]. Such thermally induced deformation means
that printed features can deviate from their intended geometry: holes might come out
undersized or shafts oversized due to material contraction and the finite extrusion width.
Another well-documented source of error is the aforementioned STL model approximation.
The conversion of curved CAD surfaces into flat facets introduces a chordal error, which is
when the printed object’s surface can deviate by a small amount from the true shape and is
often noticeable in fine details or circular features. Compounded with the discrete layer
thickness, this leads to a “stair-stepping” effect on sloped surfaces and dimensional offsets
that accumulate over the height of the part [12]. Consequently, researchers have observed
that without compensation even optimally designed parts may not meet tight tolerance
requirements. In summary, typical geometric problems include the warping and curling of
parts, dimensional shrinkage or expansion, and surface roughness or texture deviations.
These issues were frequently highlighted in the surveyed literature as key barriers to using
3D printed components.

Addressing the research question on solutions to improve geometric accuracy, re-
searchers have investigated both hardware- and software-based approaches. On the hard-
ware side, one solution is improved printer calibration and control. High-end machines
employ closed-loop controls to ensure each layer is deposited within the correct toler-
ances. Heating enclosures and controlled cooling systems are used to mitigate warping by
maintaining a uniform temperature field around the part, thereby reducing the thermal
gradients that cause distortion. On the software side, error compensation algorithms have
been proposed. These algorithms pre-emptively modify the print instructions to coun-
teract known sources of deviation. Likewise, some tools adjust the toolpath to account
for filament expansion, effectively calibrating out systematic errors. A study on FDM
dimensional accuracy noted that tweaking the STL mesh can lessen the chordal discrepancy
and improve the match between the printed part and the CAD model. Another set of solu-
tions involves post-processing for dimensional correction; for instance, targeted annealing
or vapor smoothing can relieve internal stresses and improve dimensional fidelity after
printing. While post-processing veers outside the printing process itself, it is sometimes
necessary to meet tight dimensional specs.

The third challenge category identified is the failure to detect and respond to errors
during the printing process itself. Even with a perfect design and a well-calibrated printer,
unforeseen issues can arise mid-print such as material jams, layer misalignment, support
structure failure, or loss of adhesion that could lead to a failed print. A recurring theme in
the reviewed studies is that traditional 3D printers operate in an open-loop manner with
minimal real-time feedback, making in-process failures disturbingly common. In answer
to research question 1, the types of problems often occurring during the print include
filament feed problems (e.g., clogged nozzles or filament running out), thermal anomalies
like overheating or cooling leading to poor layer bonding, and mechanical issues such as
stepper motors skipping. One particular failure mode is the so-called “spaghetti print”,
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where due to a dislodged part or missed layer the printer continues extruding filament
into empty space, creating a tangled mess of filament. Without intervention, the print is
irrecoverable and results in wasted material and time. Overall, the lack of timely detection
means that many prints fail only after significant waste has occurred.

To tackle these in-process issues, researchers have been actively developing solutions
centered on real-time monitoring and control systems. One prominent approach is the use
of sensor arrays to continuously observe the printing process. Various sensor modalities
have been explored, such as visual monitoring with cameras, thermal imaging, acoustic
sensors, and vibration/strain sensors attached to the printer. Each of these can capture
different signatures of a printing anomaly. For instance, a camera can detect visible defects
such as layer delamination, excessive stringing, or part detachment, while a microphone
or accelerometer might pick up the sound or vibration pattern of a clogged extruder or
stepper motor skip. Once an anomaly is detected, the next step is the response; simpler
systems might just alert the operator or pause the print, whereas more sophisticated
implementations attempt automated error correction. For example, machine learning
algorithms like neural networks have been trained to not only recognize specific failure
patterns from sensor data but also to adjust printing parameters on-the-fly to correct them.
These types of interventions have shown promise in reducing wasted prints, although they
remain largely in experimental stages and are not yet widespread in consumer printers.

Recent studies published since 2023 reflect an emerging trend in AM research toward
more integrated, intelligent, and scalable error mitigation strategies. For example, Girard
and Zhang (2025) introduced a structured light-based method that detects errors in the 2D
absolute phase domain, enabling selective 3D reconstruction and real-time G-code-based
correction and thereby demonstrating efficient integration of fast error detection and closed-
loop control in AM processes [39]. Similarly, Ntousia et al. (2023) proposed a printability
prediction framework that combines neural network-based geometric error estimation
with probabilistic modeling of design and process parameters, offering a technology-
agnostic tool to support quality assurance across AM platforms from the early design
stage [5]. Kwon et al. (2024) further contribute to this trajectory by introducing an Al-
driven troubleshooting system that leverages community-annotated data for real-time
failure diagnosis and user support [6]. Furthermore, a number of studies emphasize
the value of open-source platforms and collaborative ecosystems, which are expected to
accelerate the development and democratization of robust AM error-handling solutions.
Sani et al. (2024) complement these developments by presenting a comprehensive review
of closed-loop Al-augmented additive manufacturing (AI2AM), which integrates real-time
monitoring, parameter optimization, and defect correction to enhance the reliability and
efficiency of AM systems [126]. Ulkir (2024) further adds to this trajectory by experimentally
evaluating the mechanical and thermal behavior of metal-reinforced PLA composites and
optimizing FDM process parameters to enhance part quality through the data-driven
control of layer thickness, infill density, and nozzle temperature [127]. Additionally, recent
advancements in DfAM have led to the development of automated design validation tools
and real-time STL repair or slicing optimization techniques, which aim to minimize print
failures during the early stages of the AM workflow. Together, these efforts highlight a
growing emphasis on real-time, data-driven, and user-supportive frameworks that integrate
error detection, prediction, and correction across the AM workflow. This trend reflects a
broader shift toward intelligent automation, where adaptive control, predictive modeling,
and community-enabled tools work in concert to enhance reliability and accessibility in
additive manufacturing.

While the systematic approach of this review provides a high-level understanding of
3D printing challenges and solutions, there are several limitations to acknowledge. First, the



Processes 2025, 13, 1772

15 of 20

References

scope of the literature survey was constrained to studies available in indexed databases and
published in English. It is possible that relevant insights, especially practical knowledge in
industry or in non-English publications, were not captured, which may bias the findings
toward academic settings. Secondly, the quality and focus of the included studies varied.
Some papers provided quantitative data on failure rates or solution effectiveness, whereas
others were more anecdotal or conceptual. As a result, our synthesis sometimes had to
generalize across different printer technologies and materials. Another limitation lies in the
classification of challenges into three categories. In reality, these issues are interrelated as
design flaws can lead to in-process failures, and geometric inaccuracies can stem from both
design and process. Thus, there is an inherent simplification in our discussion.

5. Conclusions

In conclusion, this PRISMA-guided review has synthesized current knowledge on why
3D prints fail and how to prevent such failures, covering design-stage pitfalls, machine-
and material-induced errors, and shortcomings in process monitoring. The challenges of
design and pre-processing errors, geometric inaccuracies, and inadequate error detection
are significant, but not insurmountable. The literature offers a toolkit of solutions that
improve print success rates and part quality. Moving forward, addressing the limitations
noted and pursuing the recommended research directions will be critical. By performing
this research, the AM community can close the gap between prototype and production,
ensuring that 3D printing evolves into a reliably high-quality manufacturing technology.
The continued collaboration between design engineers, materials scientists, and control
system experts will accelerate progress toward 3D printers that are not only innovative in
what they can create, but also consistent and dependable in how they create it.

Future research should aim to address these limitations by expanding the scope
of analysis to include non-English literature, gray literature, and practice-oriented case
studies from industrial settings. This broader inclusion could enrich the understanding
of practical failure modes and solution strategies that are currently underrepresented
in academic sources. In addition, more granular classification frameworks may help to
capture the interdependencies between design-, geometry-, and process-related errors more
accurately. Finally, increased attention to benchmarking datasets, open-source validation
tools, and collaborative development environments may facilitate reproducible, scalable,
and community-driven progress in AM error detection and correction. In particular, future
studies may build upon the PRISMA-based review framework to establish comprehensive
troubleshooting guidelines that serve both researchers and practitioners in the AM field.
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