Deep Learning-Based Performance Modeling of Hydrogen Fuel Cells Using Artificial Neural Networks: A Comparative Study of Optimizers
Abstract
:1. Introduction
2. Model Development and Theory
2.1. ANN Model Theory
2.2. Proposed ANN Model for Modeling PEMFCs
2.3. ANN Model Training
- Mean squared error (MSE) measures the average squared deviation between the real voltage and predicted voltage . A low MSE value indicates a good model fit, defined as follows [32]:
- is the real voltage;
- is the predicted voltage;
- is the total number of observations.
- Root-Mean-Square Error (RMSE): A lower RMSE means better precision, defined as follows [33]:
- Mean Absolute Percentage Error (MAPE) measures the average magnitude of the errors between the predicted and actual values, expressed as a percentage of the actual values. The MAPE is calculated using the following formula:
- Coefficient of determination (R2): This metric indicates the percentage of variance explained by the model. A value close to 1 means that the model predicts the data well, while a value close to 0 indicates poor performance, defined as follows [34]:
- is the real voltage;
- is the predicted voltage;
- is the mean of the real values.
3. Data Acquisition
3.1. Hardware Setup
3.1.1. Hydrogen Fuel Cell
3.1.2. Programmable DC Electronic Load
3.2. Data Acquisition for Deep Learning
3.3. Results
4. Model Performance and Evaluation
4.1. Optimizer
4.2. Results
4.3. Supremacy of the Proposed Model over the ML Models
4.4. Comparative Study Between Different Optimizers
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Lassioui, A.; Fadil, H.E.; Rachid, A.; El-Idrissi, Z.; Bouanou, T.; Belhaj, F.Z.; Giri, F. Modelling and Sliding Mode Control of a Wireless Power Transfer System for BEV Charger. Int. J. Model. Identif. Control 2020, 34, 171–186. [Google Scholar] [CrossRef]
- Koundi, M.; El Fadil, H.; EL Idrissi, Z.; Lassioui, A.; Intidam, A.; Bouanou, T.; Nady, S.; Rachid, A. Investigation of Hydrogen Production System-Based PEM EL: PEM EL Modeling, DC/DC Power Converter, and Controller Design Approaches. Clean. Technol. 2023, 5, 531–568. [Google Scholar] [CrossRef]
- Hassan, Q.; Azzawi, I.D.J.; Sameen, A.Z.; Salman, H.M. Hydrogen Fuel Cell Vehicles: Opportunities and Challenges. Sustainability 2023, 15, 11501. [Google Scholar] [CrossRef]
- Rachid, A.; El Fadil, H.; Gaouzi, K.; Rachid, K.; Lassioui, A.; El Idrissi, Z.; Koundi, M. Electric Vehicle Charging Systems: Comprehensive Review. Energies 2023, 16, 255. [Google Scholar] [CrossRef]
- Aminudin, M.A.; Kamarudin, S.K.; Lim, B.H.; Majilan, E.H.; Masdar, M.S.; Shaari, N. An Overview: Current Progress on Hydrogen Fuel Cell Vehicles. Int. J. Hydrogen Energy 2023, 48, 4371–4388. [Google Scholar] [CrossRef]
- Sajid, A.; Pervaiz, E.; Ali, H.; Noor, T.; Baig, M.M. A Perspective on Development of Fuel Cell Materials: Electrodes and Electrolyte. Int. J. Energy Res. 2022, 46, 6953–6988. [Google Scholar] [CrossRef]
- Zhang, Z.; Mao, J.; Liu, Z. Advancements and Insights in Thermal and Water Management of Proton Exchange Membrane Fuel Cells: Challenges and Prospects. Int. Commun. Heat. Mass. Transf. 2024, 153, 107376. [Google Scholar] [CrossRef]
- Ghasemi, M.; Nassef, A.M.; Al-Dhaifallah, M.; Rezk, H. Performance Improvement of Microbial Fuel Cell through Artificial Intelligence. Int. J. Energy Res. 2021, 45, 342–354. [Google Scholar] [CrossRef]
- Belhaj, F.Z.; El Fadil, H.; El Idrissi, Z.; Intidam, A.; Koundi, M.; Giri, F. New Equivalent Electrical Model of a Fuel Cell and Comparative Study of Several Existing Models with Experimental Data from the PEMFC Nexa 1200 W. Micromachines 2021, 12, 1047. [Google Scholar] [CrossRef]
- Tellez-Cruz, M.M.; Escorihuela, J.; Solorza-Feria, O.; Compañ, V. Proton Exchange Membrane Fuel Cells (PEMFCs): Advances and Challenges. Polymers 2021, 13, 3064. [Google Scholar] [CrossRef]
- Kordesch, K.; Hacker, V.; Gsellmann, J.; Cifrain, M.; Faleschini, G.; Enzinger, P.; Fankhauser, R.; Ortner, M.; Muhr, M.; Aronson, R.R. Alkaline Fuel Cells Applications. J. Power Sources 2000, 86, 162–165. [Google Scholar] [CrossRef]
- Eapen, D.; Suseendiran, S.; Rengaswamy, R. Phosphoric Acid Fuel Cells. In Compendium of Hydrogen Energy; Elsevier: Amsterdam, The Netherlands, 2016; pp. 57–70. [Google Scholar]
- Dicks, A.L. Molten Carbonate Fuel Cells. Curr. Opin. Solid State Mater. Sci. 2004, 8, 379–383. [Google Scholar] [CrossRef]
- Ramadhani, F.; Hussain, M.A.; Mokhlis, H.; Hajimolana, S. Optimization Strategies for Solid Oxide Fuel Cell (SOFC) Application: A Literature Survey. Renew. Sustain. Energy Rev. 2017, 76, 460–484. [Google Scholar] [CrossRef]
- Cheng, L.; Wu, Z.; Mou, J.; Gu, Y.; Wu, D.; Zhou, P.; Liu, J. Research Progress on Gas Supply System of Proton Exchange Membrane Fuel Cells. Processes 2024, 12, 1224. [Google Scholar] [CrossRef]
- Baroutaji, A.; Arjunan, A.; Robinson, J.; Wilberforce, T.; Abdelkareem, M.A.; Olabi, A.G. PEMFC Poly-Generation Systems: Developments, Merits, and Challenges. Sustainability 2021, 13, 11696. [Google Scholar] [CrossRef]
- Wang, Y.; Pang, Y.; Xu, H.; Martinez, A.; Chen, K.S. PEM Fuel Cell and Electrolysis Cell Technologies and Hydrogen Infrastructure Development–A Review. Energy Environ. Sci. 2022, 15, 2288–2328. [Google Scholar] [CrossRef]
- Segundo, R.-F.; Rocío, P.-C.; Luis, C.-C.; Angelats Silva, L.M. Potential Use of the Fungus Trichoderma Sp. as a Plastic-Reducing Agent and Electricity Generator in Microbial Fuel Cells. Processes 2024, 12, 2904. [Google Scholar] [CrossRef]
- Ogungbemi, E.; Wilberforce, T.; Ijaodola, O.; Thompson, J.; Olabi, A. Selection of Proton Exchange Membrane Fuel Cell for Transportation. Int. J. Hydrogen Energy 2021, 46, 30625–30640. [Google Scholar] [CrossRef]
- Veeranjaneyulu, K.; Joshi, S.; Devalla, V.; Kiran, K.S.; Khushal, K. Recent Advancements of PEMFC in Transport Applications; AIP Publishing: Melville, NY, USA, 2023; Volume 2492. [Google Scholar]
- Tao, S.; Irvine, J.T. Discovery and Characterization of Novel Oxide Anodes for Solid Oxide Fuel Cells. Chem. Rec. 2004, 4, 83–95. [Google Scholar] [CrossRef]
- Nady, S.; Fadil, H.E.; Belhaj, F.Z.; Intidam, A.; Koundi, M.; Idrissi, Z.E. Experimental Validation of an Output Feedback Controller Based on an Integral and Adaptive Backstepping Technique for a Fuel-Cell Power System. Int. J. Model. Identif. Control 2023, 43, 199–214. [Google Scholar] [CrossRef]
- Srinivasan, S. Fuel Cells: From Fundamentals to Applications; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2006; ISBN 0-387-25116-2. [Google Scholar]
- Hamed, A.; El Fadil, H.; Lassioui, A.; Nady, S.; El Jeilani, S.; Bouanou, T. Modeling and Super-Twisting Sliding Mode Control of a Wireless Power Transfer Charger. In Automatic Control and Emerging Technologies, Proceedings of ACET 2023; El Fadil, H., Zhang, W., Eds.; Springer Nature Singapore: Singapore, 2024; pp. 387–395. [Google Scholar]
- Rajashekara, K. Power Conversion and Control Strategies for Fuel Cell Vehicles; IEEE: New York, NY, USA, 2003; Volume 3, pp. 2865–2870. [Google Scholar]
- Vichard, L.; Harel, F.; Ravey, A.; Venet, P.; Hissel, D. Analyse et Modélisation de La Dégradation d’une PEMFC à L’aide D’intelligence Artificielle; CNRS: Paris, France, 2020. [Google Scholar]
- Bicer, Y.; Dincer, I.; Aydin, M. Maximizing Performance of Fuel Cell Using Artificial Neural Network Approach for Smart Grid Applications. Energy 2016, 116, 1205–1217. [Google Scholar] [CrossRef]
- Bhagavatula, Y.S.; Bhagavatula, M.T.; Dhathathreyan, K. Application of Artificial Neural Network in Performance Prediction of PEM Fuel Cell. Int. J. Energy Res. 2012, 36, 1215–1225. [Google Scholar] [CrossRef]
- Lassioui, A.; El Ancary, M.; El Idrissi, Z.; El Fadil, H.; Rachid, K.; Rachid, A. Primary-Side Indirect Control of the Battery Charging Current in a Wireless Power Transfer Charger Using Adaptive Hill-Climbing Control Technique. Processes 2024, 12, 1264. [Google Scholar] [CrossRef]
- Abdolrasol, M.G.M.; Hussain, S.M.S.; Ustun, T.S.; Sarker, M.R.; Hannan, M.A.; Mohamed, R.; Ali, J.A.; Mekhilef, S.; Milad, A. Artificial Neural Networks Based Optimization Techniques: A Review. Electronics 2021, 10, 2689. [Google Scholar] [CrossRef]
- Paturi, U.M.R.; Cheruku, S.; Geereddy, S.R. Process Modeling and Parameter Optimization of Surface Coatings Using Artificial Neural Networks (ANNs): State-of-the-Art Review. Mater. Today Proc. 2021, 38, 2764–2774. [Google Scholar] [CrossRef]
- Köksoy, O. Multiresponse Robust Design: Mean Square Error (MSE) Criterion. Appl. Math. Comput. 2006, 175, 1716–1729. [Google Scholar] [CrossRef]
- Chai, T.; Draxler, R.R. Root Mean Square Error (RMSE) or Mean Absolute Error (MAE)?—Arguments against Avoiding RMSE in the Literature. Geosci. Model. Dev. 2014, 7, 1247–1250. [Google Scholar] [CrossRef]
- Chicco, D.; Warrens, M.J.; Jurman, G. The Coefficient of Determination R-Squared Is More Informative than SMAPE, MAE, MAPE, MSE and RMSE in Regression Analysis Evaluation. Peerj Comput. Sci. 2021, 7, e623. [Google Scholar] [CrossRef]
- Datenblatt_Nexa1200_EN_1109. Available online: https://www.ien.eu/uploads/tx_etim/Datenblatt_Nexa1200_EN_1109.pdf (accessed on 1 May 2025).
- Li, H.; Gao, D.; Shi, L.; Zheng, F.; Yang, B. Parameter Identification of Solid Oxide Fuel Cell Using Elman Neural Network and Dynamic Fitness Distance Balance-Manta Ray Foraging Optimization Algorithm. Processes 2024, 12, 2504. [Google Scholar] [CrossRef]
- Wickramaarachchi, W.A.M.K.P.; Minakshi, M.; Gao, X.; Dabare, R.; Wong, K.W. Hierarchical Porous Carbon from Mango Seed Husk for Electro-Chemical Energy Storage. Chem. Eng. J. Adv. 2021, 8, 100158. [Google Scholar] [CrossRef]
current(A) | 1.91 | 1.93 | 2.31 | 4.74 | 7.51 | 12.67 |
voltage (V) | 27.27 | 27.31 | 27.29 | 26.18 | 24.58 | 24.43 |
temperature (°C) | 18.05 | 18.16 | 18.16 | 18.16 | 18.16 | 24.57 |
current (A) | 18.43 | 24.80 | 31.50 | 33.49 | 38.49 | 44.62 |
voltage (V) | 23.89 | 23.15 | 22.60 | 22.77 | 21.80 | 21.21 |
temperature (°C) | 31.52 | 38.27 | 45.63 | 50.87 | 50.87 | 53.41 |
current (A) | 49.16 | 20.02 | 14.22 | 8.85 | 3.99 | 2.14 |
voltage (V) | 20.65 | 25.37 | 26.26 | 27.26 | 28.67 | 29.36 |
temperature (°C) | 54.37 | 48.74 | 44.40 | 38.28 | 31.81 | 25.38 |
Parameter | Value | Role |
---|---|---|
Learning rate | 0.001 | Controls the speed of model weight updates. |
Gradient decay factor | 0.99 | Controls the weighting of past gradients. |
Squared gradient decay factor | 0.99 | Regulates the weighting of gradient squares. |
Epsilon | 10−7 | Prevents division by zero in weight updates. |
Model | MSE | R2 |
---|---|---|
Proposed ANN model | 0.0429 | 0.9071 |
ML model-DT | 18.0816 | 0.9427 |
ML model-DT | 7.5854 | 0.9759 |
ML model-DT | 4.5308 | 0.9856 |
ML model-DT | 4.1651 | 0.9868 |
Parameter | ADAM | SGDM | RMSprop |
---|---|---|---|
Learning rate | 0.001 | 0.001 | 0.01 |
Gradient decay factor | 0.99 | - | - |
Squared gradient decay factor | 0.99 | - | 0.7 |
Epsilon | 10−7 | 0.002 | 0.003 |
Optimizer | MSE | RMSE | MAPE | R2 |
---|---|---|---|---|
ADAM | 0.0429 | 0.2071 | 1.05% | 0.9071 |
RMSprop | 0.2198 | 0.4688 | 2.53% | 0.5241 |
SGDM | 0.4761 | 0.6900 | 1.62% | −0.0307 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abbade, H.; El Fadil, H.; Lassioui, A.; Intidam, A.; Hamed, A.; El Asri, Y.; Fhail, A.; Hasni, A. Deep Learning-Based Performance Modeling of Hydrogen Fuel Cells Using Artificial Neural Networks: A Comparative Study of Optimizers. Processes 2025, 13, 1453. https://doi.org/10.3390/pr13051453
Abbade H, El Fadil H, Lassioui A, Intidam A, Hamed A, El Asri Y, Fhail A, Hasni A. Deep Learning-Based Performance Modeling of Hydrogen Fuel Cells Using Artificial Neural Networks: A Comparative Study of Optimizers. Processes. 2025; 13(5):1453. https://doi.org/10.3390/pr13051453
Chicago/Turabian StyleAbbade, Hafsa, Hassan El Fadil, Abdellah Lassioui, Abdessamad Intidam, Ahmed Hamed, Yassine El Asri, Abdelouahad Fhail, and Anwar Hasni. 2025. "Deep Learning-Based Performance Modeling of Hydrogen Fuel Cells Using Artificial Neural Networks: A Comparative Study of Optimizers" Processes 13, no. 5: 1453. https://doi.org/10.3390/pr13051453
APA StyleAbbade, H., El Fadil, H., Lassioui, A., Intidam, A., Hamed, A., El Asri, Y., Fhail, A., & Hasni, A. (2025). Deep Learning-Based Performance Modeling of Hydrogen Fuel Cells Using Artificial Neural Networks: A Comparative Study of Optimizers. Processes, 13(5), 1453. https://doi.org/10.3390/pr13051453