Confronting Novel Alternatives of Per- and Polyfluoroalkyl Substances: From the Exposure Pathway to the Health Risk Estimation
Abstract
1. Introduction
2. Why PFAS Are Termed “Forever Chemicals”?
2.1. The Structural Properties of PFAS
2.2. The Demand and Development of Novel Products
2.3. The Passive Generation of PFAS By-Products
3. Environmental and Health Concerns
3.1. Environmental Exposure and Transmission
3.2. Adverse Health Outcomes
| Mechanisms | Related PFAS | Toxic Effects | |
|---|---|---|---|
| PPARα | PPARα Receptor Activation [106,107,108,109,110] | PFOA, PFBA, PFOS, PFUA, PFHpA, PFDoA, ADONA | Hepatocellular hypertrophy, Peroxisomal fatty acid β oxidation, Cytochrome 450-mediated ω hydroxylation of lauric acid, lipid metabolism abnormal |
| PPARα-Dependent Gene Expression Changes [111,112,113] | PFOA, PFNA, GenX, ADONA | Gene expression changed of fatty acid metabolism, cell cycle control, peroxisome biogenesis, proteasome structure and organization, decreasing cell viability and proliferation | |
| PPARα-Independent | Activation of Other Nuclear Receptors [92,114,115,116,117,118,119] | PFOA, PFOS, PFNA, PFHxS, PFDA, Cl-PFESAs, GenX | The activation of PPARγ, CAR, ERα, PXR, FXR, VDR, and LXRα, impairment of bile acid mechanism |
| Oxidative Stress [120,121,122,123,124,125] | PFOA, PFOS, PFNA, PFBS, PFHxA | DNA damage, tumor promotion, perturbation of lipid homeostasis, stimulation of inflammation | |
| Gap Junction Intercellular Communication Inhibition [125,126,127,128,129] | PFOA, PFOS | Influences on the maintenance of tissue homeostasis, intercellular transmission of regulatory signals, and metabolic cooperation | |
| Impaired Mitochondrial Function [130,131,132,133] | PFOS, PFOA, PFBuS, PFHxA | Cellular respiration, mitochondrial membrane potential, Mitochondrial proliferation, oxidative phosphorylation | |
| DNA Methylation Disruption [90] | F-53B | Endocrine barrier disruption | |
4. Human Health Risk Assessment Related to PFAS
4.1. Non-Targeted Analysis
4.2. Effect-Directed Analysis
4.3. Exposure Method
4.4. Method Evaluation In Vitro
4.5. Quantitative Structure–Activity Relationship
4.6. Prioritization Approach for PFAS Control
5. Conclusions and Perspectives
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wang, Z.; DeWitt, J.C.; Higgins, C.P.; Cousins, I.T. A Never-Ending Story of Per- and Polyfluoroalkyl Substances (PFASs)? Environ. Sci. Technol. 2017, 51, 2508–2518. [Google Scholar] [CrossRef] [PubMed]
- Kapp, R. Fluorine. Encyclopedia of Toxicology, 2nd ed.; Wexler, P., Ed.; Elsevier: Amsterdam, The Netherlands, 2005; pp. 343–346. [Google Scholar]
- Johnson, M.S.; Buck, R.C.; Cousins, I.T.; Weis, C.P.; Fenton, S.E. Estimating Environmental Hazard and Risks from Exposure to Per- and Polyfluoroalkyl Substances (PFASs): Outcome of a SETAC Focused Topic Meeting. Environ. Toxicol. Chem. 2021, 40, 543–549. [Google Scholar] [CrossRef] [PubMed]
- Cordner, A.; De La Rosa, V.Y.; Schaider, L.A.; Rudel, R.A.; Richter, L.; Brown, P. Guideline Levels for PFOA and PFOS in Drinking Water: The Role of Scientific Uncertainty, Risk Assessment Decisions, and Social Factors. J. Expo. Sci. Environ. Epidemiol. 2019, 29, 157–171. [Google Scholar] [CrossRef] [PubMed]
- Savitz, D.; Stein, C.; Dougan, M. Serum PFOA and PFOS and Pregnancy Outcome. Epidemiology 2009, 20, S239. [Google Scholar] [CrossRef]
- Tan, K.T.; Shen, P.; Ang, W.M.; Lim, I.R.L.; Yu, W.Z.; Wu, Y.; Chan, S.H. Tap vs Bottled: Assessing PFAS Levels and Exposure Risks in Singapore’s Drinking Water. ACS EST Water 2025, 5, 4395–4403. [Google Scholar] [CrossRef]
- Wang, Y.; Chang, W.; Wang, L.; Zhang, Y.; Zhang, Y.; Wang, M.; Wang, Y.; Li, P. A review of sources, multimedia distribution and health risks of novel fluorinated alternatives. Ecotoxicol. Environ. Saf. 2019, 182, 109402. [Google Scholar] [CrossRef]
- Glüge, J.; Scheringer, M.; Cousins, I.T.; DeWitt, J.C.; Goldenman, G.; Herzke, D.; Lohmann, R.; Ng, C.A.; Trier, X.; Wang, Z.Y. An Overview of the Uses of Per- and Polyfluoroalkyl Substances (PFAS). Environ. Sci.-Process. Impacts 2020, 22, 2345–2373. [Google Scholar] [CrossRef]
- Wang, X.; Yu, N.; Qian, Y.; Shi, W.; Zhang, X.; Geng, J.; Yu, H.; Wei, S. Non-target and Suspect Screening of Per- and Polyfluoroalkyl Substances in Chinese Municipal Wastewater Treatment Plants. Water Res. 2020, 183, 115989. [Google Scholar] [CrossRef] [PubMed]
- Anderson, R.H.; Long, G.C.; Porter, R.C.; Anderson, J.K. Occurrence of Select Perfluoroalkyl Substances at U.S. Air Force Aqueous Film-forming Foam Release Sites Other Than Fire-training Areas: Field-validation of Critical Fate and Transport Properties. Chemosphere 2016, 150, 678–685. [Google Scholar] [CrossRef] [PubMed]
- Barzen-Hanson, K.A.; Roberts, S.C.; Choyke, S.; Oetjen, K.; McAlees, A.; Riddell, N.; McCrindle, R.; Ferguson, P.L.; Higgins, C.P.; Field, J.A. Discovery of 40 Classes of Per- and Polyfluoroalkyl Substances in Historical Aqueous Film-Forming Foams (AFFFs) and AFFF-Impacted Groundwater. Environ. Sci. Technol. 2017, 51, 2047–2057. [Google Scholar] [CrossRef] [PubMed]
- De Silva, A.O.; Armitage, J.M.; Bruton, T.A.; Dassuncao, C.; Heiger-Bernays, W.; Hu, X.C.; Kärrman, A.; Kelly, B.; Ng, C.; Robuck, A.; et al. PFAS Exposure Pathways for Humans and Wildlife: A Synthesis of Current Knowledge and Key Gaps in Understanding. Environ. Toxicol. Chem. 2021, 40, 631–657. [Google Scholar] [CrossRef]
- Domingo, J.L.; Nadal, M. Per- and Polyfluoroalkyl Substances (PFASs) in Food and Human Dietary Intake: A Review of the Recent Scientific Literature. J. Agric. Food Chem. 2017, 65, 533–543. [Google Scholar] [CrossRef] [PubMed]
- Abraham, K.; Mielke, H.; Fromme, H.; Volkel, W.; Menzel, J.; Peiser, M.; Zepp, F.; Willich, S.N.; Weikert, C. Internal Exposure to Perfluoroalkyl Substances (PFASs) and Biological Markers in 101 Healthy 1-year-old Children: Associations Between Levels of Perfluorooctanoic Acid (PFOA) and Vaccine Response. Arch. Toxicol. 2020, 94, 2131–2147. [Google Scholar] [CrossRef] [PubMed]
- Balk, F.G.P.; Winkens Putz, K.; Ribbenstedt, A.; Gomis, M.I.; Filipovic, M.; Cousins, I.T. Children’s Exposure to Perfluoroalkyl Acids—A Modelling Approach. Environ. Sci.-Process. Impacts 2019, 21, 1875–1886. [Google Scholar] [CrossRef]
- Fangninou, F.F.; Yu, Z.Y.; Li, W.Z.; Xue, L.; Yin, D.Q. Metastatic Effects of Perfluorooctanoic Acid (PFOA) on Drosophila melanogaster with Metabolic Reprogramming and Dysrhythmia in a Multigenerational Exposure Scenario. Sci. Total Environ. 2024, 912, 169305. [Google Scholar] [CrossRef]
- Rappazzo, K.M.; Coffman, E.; Hines, E.P. Exposure to Perfluorinated Alkyl Substances and Health Outcomes in Children: A Systematic Review of the Epidemiologic Literature. Int. J. Environ. Res. Public Health 2017, 14, 691. [Google Scholar] [CrossRef] [PubMed]
- Schlezinger, J.J.; Puckett, H.; Oliver, J.; Nielsen, G.; Heiger-Bernays, W.; Webster, T.F. Perfluorooctanoic Acid Activates Multiple Nuclear Receptor Pathways and Skews Expression of Genes Regulating Cholesterol Homeostasis in Liver of Humanized PPARα Mice Fed an American Diet. Toxicol. Appl. Pharmacol. 2020, 405, 115204. [Google Scholar] [CrossRef]
- Zhang, Y.; Beesoon, S.; Zhu, L.; Martin, J.W. Biomonitoring of Perfluoroalkyl Acids in Human Urine and Estimates of Biological Half-life. Environ. Sci. Technol. 2013, 47, 10619–10627. [Google Scholar] [CrossRef]
- Ye, M.X.; Luo, X.J.; Liu, Y.; Zhu, C.H.; Feng, Q.J.; Zeng, Y.H.; Mai, B.X. Sex-Specific Bioaccumulation, Maternal Transfer, and Tissue Distribution of Legacy and Emerging Per- and Polyfluoroalkyl Substances in Snakes (Enhydris chinensis) and the Impact of Pregnancy. Environ. Sci. Technol. 2023, 57, 4481–4491. [Google Scholar] [CrossRef]
- Ateia, M.; Van Buren, J.; Barrett, W.; Martin, T.; Back, G.G. Sunrise of PFAS Replacements: A Perspective on Fluorine-Free Foams. ACS Sustain. Chem. Eng. 2023, 11, 7986–7996. [Google Scholar] [CrossRef]
- Guo, R.; Sim, W.J.; Lee, E.S.; Lee, J.H.; Oh, J.E. Evaluation of the Fate of Perfluoroalkyl Compounds in Wastewater Treatment Plants. Water Res. 2010, 44, 3476–3486. [Google Scholar] [CrossRef] [PubMed]
- Rand, A.A.; Rooney, J.P.; Butt, C.M.; Meyer, J.N.; Mabury, S.A. Cellular Toxicity Associated with Exposure to Perfluorinated Carboxylates (PFCAs) and Their Metabolic Precursors. Chem. Res. Toxicol. 2014, 27, 42–50. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Yu, N.Y.; Zhu, X.B.; Guo, H.W.; Jiang, J.G.; Wang, X.B.; Shi, W.; Wu, J.C.; Yu, H.X.; Wei, S. Suspect and Nontarget Screening of Per- and Polyfluoroalkyl Substances in Wastewater from a Fluorochemical Manufacturing Park. Environ. Sci. Technol. 2018, 52, 11007–11016. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Gong, X.Y.; Wan, R.N.; Gan, Z.W.; Lu, Y.; Sun, H.W. Application of an Immobilized Ionic Liquid for the Passive Sampling of Perfluorinated Substances in Water. J. Cheromatography A 2017, 1515, 45–53. [Google Scholar] [CrossRef]
- Brendel, S.; Fetter, É.; Staude, C.; Vierke, L.; Biegel-Engler, A. Short-chain Perfluoroalkyl Acids: Environmental Concerns and a Regulatory Strategy under REACH. Environ. Sci. Eur. 2018, 30, 9. [Google Scholar] [CrossRef]
- Ojo, A.F.; Peng, C.; Ng, J.C. Assessing the Human Health Risks of per- and Polyfluoroalkyl Substances: A Need for Greater Focus on Their Interactions as Mixtures. J. Hazard. Mater. 2021, 407, 124863. [Google Scholar] [CrossRef]
- Lindstrom, A.B.; Strynar, M.J.; Libelo, E.L. Polyfluorinated Compounds: Past, Present, and Future. Environ. Sci. Technol. 2011, 45, 7954–7961. [Google Scholar] [CrossRef]
- Zeng, Z.; Song, B.; Xiao, R.; Zeng, G.; Gong, J.; Chen, M.; Xu, P.; Zhang, P.; Shen, M.; Yi, H. Assessing the Human Health Risks of Perfluorooctane Sulfonate by in vivo and in vitro Studies. Environ. Int. 2019, 126, 598–610. [Google Scholar] [CrossRef]
- Li, K.; Gao, P.; Xiang, P.; Zhang, X.; Cui, X.; Ma, L.Q. Molecular Mechanisms of PFOA-induced Toxicity in Animals and Humans: Implications for Health Risks. Environ. Int. 2017, 99, 43–54. [Google Scholar] [CrossRef]
- Dias, D.; Bons, J.; Kumar, A.; Kabir, M.H.; Liang, H. Forever Chemicals, Per-and Polyfluoroalkyl Substances (PFAS), in Lubrication. Lubricants 2024, 12, 114. [Google Scholar] [CrossRef]
- Gaines, L.G.T. Historical and Current Usage of Per- and Polyfluoroalkyl Substances (PFAS): A Literature Review. Am. J. Ind. Med. 2023, 66, 353–378. [Google Scholar] [CrossRef] [PubMed]
- Brunn, H.; Arnold, G.; Koerner, W.; Rippen, G.; Steinhaeuser, K.G.; Valentin, I. PFAS: Forever Chemicals-persistent, Bioaccumulative and Mobile. Reviewing the Status and the Need for Their Phase out and Remediation of Contaminated Sites. Environ. Sci. Eur. 2023, 35, 20. [Google Scholar] [CrossRef]
- Krafft, M.P.; Riess, J.G. Selected Physicochemical Aspects of Poly- and Perfluoroalkylated Substances Relevant to Performance, Environment and Sustainability—Part One. Chemosphere 2015, 129, 4–19. [Google Scholar] [CrossRef]
- Chen, H.; Yao, Y.; Zhao, Z.; Wang, Y.; Wang, Q.; Ren, C.; Wang, B.; Sun, H.; Alder, A.C.; Kannan, K. Multimedia Distribution and Transfer of Per- and Polyfluoroalkyl Substances (PFASs) Surrounding Two Fluorochemical Manufacturing Facilities in Fuxin, China. Environ. Sci. Technol. 2018, 52, 8263–8271. [Google Scholar] [CrossRef] [PubMed]
- Evich, M.G.; Davis, M.J.B.; McCord, J.P.; Acrey, B.; Awkerman, J.A.; Knappe, D.R.U.; Lindstrom, A.B.; Speth, T.F.; Tebes-Stevens, C.; Strynar, M.J.; et al. Per- and Polyfluoroalkyl Substances in the Environment. Science 2022, 375, eabg9065. [Google Scholar] [CrossRef] [PubMed]
- Davis, M.J.B.; Evich, M.G.; Goodrow, S.M.; Washington, J.W. Environmental Fate of Cl-PFPECAs: Accumulation of Novel and Legacy Perfluoroalkyl Compounds in Real-World Vegetation and Subsoils. Environ. Sci. Technol. 2023, 57, 8994–9004. [Google Scholar] [CrossRef] [PubMed]
- Herrick, R.L.; Buckholz, J.; Biro, F.M.; Calafat, A.M.; Ye, X.; Xie, C.; Pinney, S.M. Polyfluoroalkyl Substance Exposure in the Mid-Ohio River Valley, 1991–2012. Environ. Pollut. 2017, 228, 50–60. [Google Scholar] [CrossRef] [PubMed]
- Salice, C.J.; Anderson, T.A.; Anderson, R.H.; Olson, A.D. Ecological Risk Assessment of Perfluooroctane Sulfonate to Aquatic Fauna from a Bayou Adjacent to Former Fire Training Areas at a US Air Force Installation. Environ. Toxicol. Chem. 2018, 37, 2198–2209. [Google Scholar] [CrossRef]
- Semerád, J.; Hatasová, N.; Grasserová, A.; Černá, T.; Filipová, A.; Hanč, A.; Innemanová, P.; Pivokonský, M.; Cajthaml, T. Screening for 32 Per- and Polyfluoroalkyl Substances (PFAS) Including GenX in Sludges from 43 WWTPs Located in the Czech Republic—Evaluation of Potential Accumulation in Vegetables after Application of Biosolids. Chemosphere 2020, 261, 128018. [Google Scholar] [CrossRef]
- Hu, X.C.; Andrews, D.Q.; Lindstrom, A.B.; Bruton, T.A.; Schaider, L.A.; Grandjean, P.; Lohmann, R.; Carignan, C.C.; Blum, A.; Balan, S.A.; et al. Detection of Poly- and Perfluoroalkyl Substances (PFASs) in U.S. Drinking Water Linked to Industrial Sites, Military Fire Training Areas, and Wastewater Treatment Plants. Environ. Sci. Technol. Lett. 2016, 3, 344–350. [Google Scholar] [CrossRef]
- Jia, Y.; Zhu, Y.; Xu, D.; Feng, X.; Yu, X.; Shan, G.; Zhu, L. Insights into the Competitive Mechanisms of Per- and Polyfluoroalkyl Substances Partition in Liver and Blood. Environ. Sci. Technol. 2022, 56, 6192–6200. [Google Scholar] [CrossRef] [PubMed]
- Koch, A.; Aro, R.; Wang, T.; Yeung, L.W.Y. Towards a Comprehensive Analytical Workflow for the Chemical Characterisation of Organofluorine in Consumer Products and Environmental Samples. Trends Anal. Chem. 2020, 123, 115423. [Google Scholar] [CrossRef]
- Cousins, I.T.; Vestergren, R.; Wang, Z.; Scheringer, M.; McLachlan, M.S. The Precautionary Principle and Chemicals Management: The Example of Perfluoroalkyl Acids in Groundwater. Environ. Int. 2016, 94, 331–340. [Google Scholar] [CrossRef]
- Sun, M.; Arevalo, E.; Strynar, M.; Lindstrom, A.; Richardson, M.; Kearns, B.; Pickett, A.; Smith, C.; Knappe, D.R.U. Legacy and Emerging Perfluoroalkyl Substances Are Important Drinking Water Contaminants in the Cape Fear River Watershed of North Carolina. Environ. Sci. Technol. Lett. 2016, 3, 415–419. [Google Scholar] [CrossRef]
- Paul, A.G.; Jones, K.C.; Sweetman, A.J. A First Global Production, Emission, And Environmental Inventory For Perfluorooctane Sulfonate. Environ. Sci. Technol. 2008, 43, 389–392. [Google Scholar] [CrossRef]
- Wang, Z.; Cousins, I.T.; Scheringer, M.; Buck, R.C.; Hungerbuhler, K. Global Emission Inventories for C4-C14 Perfluoroalkyl Carboxylic Acid (PFCA) Homologues from 1951 to 2030, Part I: Production and Emissions from Quantifiable Sources. Environ. Int. 2014, 70, 62–75. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.Y.; Cousins, I.T.; Scheringer, M.; Hungerbühler, K. Fluorinated Alternatives to Long-chain Perfluoroalkyl Carboxylic Acids (PFCAs), Perfluoroalkane Sulfonic Acids (PFSAs) and Their Potential Precursors. Environ. Int. 2013, 60, 242–248. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.Y.; Cousins, I.T.; Scheringer, M.; Hungerbuehler, K. Hazard Assessment of Fluorinated Alternatives to Long-chain Perfluoroalkyl Acids (PFAAs) and Their Precursors: Status Quo, Ongoing Challenges and Possible Solutions. Environ. Int. 2015, 75, 172–179. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.; Ruan, T.; Jiang, G. Progress on Analytical Methods and Environmental Behavior of Emerging Per- and Polyfluoroalkyl Substances. Chin. Sci. Bull. 2017, 62, 2724–2738. [Google Scholar] [CrossRef]
- Zhou, X.; Sheng, N.; Wang, J.; Dai, J. The Current Research Status of Several Kinds of Fluorinated Alternatives. Asian J. Ecotoxicol. 2017, 12, 3–12. [Google Scholar] [CrossRef]
- Pan, Y.T.; Zhang, H.X.; Cui, Q.Q.; Sheng, N.; Yeung, L.W.Y.; Sun, Y.; Guo, Y.; Dai, J.Y. Worldwide Distribution of Novel Perfluoroether Carboxylic and Sulfonic Acids in Surface Water. Environ. Sci. Technol. 2018, 52, 7621–7629. [Google Scholar] [CrossRef]
- Wang, S.W.; Huang, J.; Yang, Y.; Hui, Y.M.; Ge, Y.X.; Larssen, T.; Yu, G.; Deng, S.B.; Wang, B.; Harman, C. First Report of a Chinese PFOS Alternative Overlooked for 30 Years: Its Toxicity, Persistence, and Presence in the Environment. Environ. Sci. Technol. 2013, 47, 10163–10170. [Google Scholar] [CrossRef]
- Strynar, M.; Dagnino, S.; McMahen, R.; Liang, S.; Lindstrom, A.; Andersen, E.; McMillan, L.; Thurman, M.; Ferrer, I.; Ball, C. Identification of Novel Perfluoroalkyl Ether Carboxylic Acids (PFECAs) and Sulfonic Acids (PFESAs) in Natural Waters Using Accurate Mass Time-of-Flight Mass Spectrometry (TOFMS). Environ. Sci. Technol. 2015, 49, 11622–11630. [Google Scholar] [CrossRef]
- Newton, S.; McMahen, R.; Stoeckel, J.A.; Chislock, M.; Lindstrom, A.; Strynar, M. Novel Polyfluorinated Compounds Identified Using High Resolution Mass Spectrometry Downstream of Manufacturing Facilities near Decatur, Alabama. Environ. Sci. Technol. 2017, 51, 1544–1552. [Google Scholar] [CrossRef] [PubMed]
- Gebbink, W.A.; van Asseldonk, L.; van Leeuwen, S.P.J. Presence of Emerging Per- and Polyfluoroalkyl Substances (PFASs) in River and Drinking Water near a Fluorochemical Production Plant in the Netherlands. Environ. Sci. Technol. 2017, 51, 11057–11065. [Google Scholar] [CrossRef] [PubMed]
- Prevedouros, K.; Cousins, I.T.; Buck, R.C.; Korzeniowski, S.H. Sources, Fate and Transport of Perfluorocarboxylates. Environ. Sci. Technol. 2006, 40, 32–44. [Google Scholar] [CrossRef]
- Ameduri, B.; Hori, H. Recycling and the End of Life Assessment of Fluoropolymers: Recent Developments, Challenges and Future Trends. Chem. Soc. Rev. 2023, 52, 4208–4247. [Google Scholar] [CrossRef] [PubMed]
- Brandsma, S.H.; Koekkoek, J.C.; van Velzen, M.J.M.; de Boer, J. The PFOA Substitute GenX Detected in the Environment near a Fluoropolymer Manufacturing Plant in the Netherlands. Chemosphere 2019, 220, 493–500. [Google Scholar] [CrossRef]
- Li, X.; Li, W.; Wang, Z.; Wang, X.; Cai, Y.; Shi, Y. Atmospheric Emission of Per- and Polyfluoroalkyl Substances (PFAS) from a Fluoropolymer Manufacturing Facility: Focus on Emerging PFAS and the Potential Contribution of Condensable PFAS on their Atmospheric Partitioning. Environ. Sci. Technol. 2025, 59, 9709–9720. [Google Scholar] [CrossRef]
- Song, X.; Vestergren, R.; Shi, Y.; Huang, J.; Cai, Y. Emissions, Transport, and Fate of Emerging Per- and Polyfluoroalkyl Substances from One of the Major Fluoropolymer Manufacturing Facilities in China. Environ. Sci. Technol. 2018, 52, 9694–9703. [Google Scholar] [CrossRef] [PubMed]
- Lohmann, R.; Cousins, I.T.; DeWitt, J.C.; Gluge, J.; Goldenman, G.; Herzke, D.; Lindstrom, A.B.; Miller, M.F.; Ng, C.A.; Patton, S.; et al. Are Fluoropolymers Really of Low Concern for Human and Environmental Health and Separate from Other PFAS? Environ. Sci. Technol. 2020, 54, 12820–12828. [Google Scholar] [CrossRef] [PubMed]
- Ellis, D.A.; Mabury, S.A.; Martin, J.W.; Muir, D.C.G. Thermolysis of Fluoropolymers as a Potential Source of Halogenated Organic Acids in the Environment. Nature 2001, 412, 321–324. [Google Scholar] [CrossRef]
- He, P.; Chen, L.; Shao, L.; Zhang, H.; Lu, F. Municipal Solid Waste (MSW) Landfill: A Source of Microplastics? -Evidence of Microplastics in Landfill Leachate. Water Res. 2019, 159, 38–45. [Google Scholar] [CrossRef] [PubMed]
- Hua, Y.; Yang, P.; Huang, T.; Green, S.; Luong, J. Defluorination and Derivatization of Fluoropolymers for Determination of Total Organic Fluorine in Polyolefin Resins by Gas Chromatography. Anal. Methods 2025, 17, 3746–3756. [Google Scholar] [CrossRef] [PubMed]
- Myers, A.L.; Jobst, K.J.; Mabury, S.A.; Reiner, E.J. Using Mass Defect Plots as a Discovery Tool to Identify Novel Fluoropolymer Thermal Decomposition Products. J. Mass Spectrom. 2014, 49, 291–296. [Google Scholar] [CrossRef] [PubMed]
- Skedung, L.; Savvidou, E.; Schellenberger, S.; Reimann, A.; Cousins, I.T.; Benskin, J.P. Identification and Quantification of Fluorinated Polymers in Consumer Products by Combustion Ion Chromatography and Pyrolysis-gas Chromatography-mass Spectrometry. Environ. Sci. Process. Impacts 2024, 26, 82–93. [Google Scholar] [CrossRef] [PubMed]
- Ivy, D.J.; Rigby, M.; Baasandorj, M.; Burkholder, J.B.; Prinn, R.G. Global Emission Estimates and Radiative Impact of C4F10, C5F12, C6F14, C7F16 and C8F18. Atmos. Chem. Phys. 2012, 12, 7635–7645. [Google Scholar] [CrossRef]
- Olsen, G.W.; Mair, D.C.; Lange, C.C.; Harrington, L.M.; Church, T.R.; Goldberg, C.L.; Herron, R.M.; Hanna, H.; Nobiletti, J.B.; Rios, J.A.; et al. Per- and Polyfluoroalkyl Substances (PFAS) in American Red Cross Adult Blood Donors, 2000–2015. Environ. Res. 2017, 157, 87–95. [Google Scholar] [CrossRef]
- Jiao, X.; Shi, Q.; Gan, J. Uptake, Accumulation and Metabolism of PFASs in Plants and Health Perspectives: A Critical Review. Crit. Rev. Environ. Sci. Technol. 2021, 51, 2745–2776. [Google Scholar] [CrossRef]
- Liu, Z.; Lu, Y.; Song, X.; Jones, K.; Sweetman, A.J.; Johnson, A.C.; Zhang, M.; Lu, X.; Su, C. Multiple Crop Bioaccumulation and Human Exposure of Perfluoroalkyl Substances around a Mega Fluorochemical Industrial Park, China: Implication for Planting Optimization and Food Safety. Environ. Int. 2019, 127, 671–684. [Google Scholar] [CrossRef]
- Kelly, B.C.; Ikonomou, M.G.; Blair, J.D.; Surridge, B.; Hoover, D.; Grace, R.; Gobas, F.A.P.C. Perfluoroalkyl Contaminants in an Arctic Marine Food Web: Trophic Magnification and Wildlife Exposure. Environ. Sci. Technol. 2009, 43, 4037–4043. [Google Scholar] [CrossRef]
- Tomy, G.T.; Budakowski, W.; Halldorson, T.; Helm, P.A.; Stern, G.A.; Friesen, K.; Pepper, K.; Tittlemier, S.A.; Fisk, A.T. Fluorinated Organic Compounds in an Eastern Arctic Marine Food Web. Environ. Sci. Technol. 2004, 38, 6475–6481. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Simon, K.L.; Best, D.A.; Bowerman, W.; Venier, M. Novel and Legacy Per- and Polyfluoroalkyl Substances in Bald Eagle Eggs from the Great Lakes Region. Environ. Pollut. 2020, 260, 113811. [Google Scholar] [CrossRef] [PubMed]
- Dassuncao, C.; Hu, X.C.; Nielsen, F.; Weihe, P.; Grandjean, P.; Sunderland, E.M. Shifting Global Exposures to Poly- and Perfluoroalkyl Substances (PFASs) Evident in Longitudinal Birth Cohorts from a Seafood-Consuming Population. Environ. Sci. Technol. 2018, 52, 3738–3747. [Google Scholar] [CrossRef] [PubMed]
- Tartu, S.; Bourgeon, S.; Aars, J.; Andersen, M.; Lone, K.; Jenssen, B.M.; Polder, A.; Thiemann, G.W.; Torget, V.; Welker, J.M.; et al. Diet and Metabolic State are the Main Factors Determining Concentrations of Perfluoroalkyl Substances in Female Polar Bears from Svalbard. Environ. Pollut. 2017, 229, 146–158. [Google Scholar] [CrossRef] [PubMed]
- Cousins, I.T.; Ng, C.A.; Wang, Z.; Scheringer, M. Why is High Persistence alone a Major Cause of Concern? Environ. Sci. Process. Impacts 2019, 21, 781–792. [Google Scholar] [CrossRef]
- McMurdo, C.J.; Ellis, D.A.; Webster, E.; Butler, J.; Christensen, R.D.; Reid, L.K. Aerosol Enrichment of the Surfactant PFO and Mediation of the Water-Air Transport of Gaseous PFOA. Environ. Sci. Technol. 2008, 42, 3969–3974. [Google Scholar] [CrossRef]
- Ahrens, L.; Shoeib, M.; Harner, T.; Lee, S.C.; Guo, R.; Reiner, E.J. Wastewater Treatment Plant and Landfills as Sources of Polyfluoroalkyl Compounds to the Atmosphere. Environ. Sci. Technol. 2011, 45, 8098–8105. [Google Scholar] [CrossRef]
- Joerss, H.; Xie, Z.; Wagner, C.C.; von Appen, W.J.; Sunderland, E.M.; Ebinghaus, R. Transport of Legacy Perfluoroalkyl Substances and the Replacement Compound HFPO-DA through the Atlantic Gateway to the Arctic Ocean-Is the Arctic a Sink or a Source? Environ. Sci. Technol. 2020, 54, 9958–9967. [Google Scholar] [CrossRef]
- Calore, F.; Badetti, E.; Bonetto, A.; Pozzobon, A.; Marcomini, A. Non-conventional Sorption Mmaterials for the Removal of Legacy and Emerging PFAS from Water: A Review. Emerg. Contam. 2024, 10, 100303. [Google Scholar] [CrossRef]
- Huang, J.; Fu, K.; Fang, Z.; Luo, J. Enhanced Selective Removal of PFAS at Trace Level using Quaternized Cellulose-functionalized Polymer Resin: Performance and Mechanism. Water Res. 2025, 272, 122937. [Google Scholar] [CrossRef]
- Poothong, S.; Padilla-Sánchez, J.A.; Papadopoulou, E.; Giovanoulis, G.; Thomsen, C.; Haug, L.S. Hand Wipes: A Useful Tool for Assessing Human Exposure to Poly- and Perfluoroalkyl Substances (PFASs) through Hand-to-Mouth and Dermal Contacts. Environ. Sci. Technol. 2019, 53, 1985–1993. [Google Scholar] [CrossRef]
- Kang, H.; Choi, K.; Lee, H.-S.; Kim, D.-H.; Park, N.-Y.; Kim, S.; Kho, Y. Elevated Levels of Short Carbon-chain PFCAs in Breast Milk among Korean Women: Current Status and Potential Challenges. Environ. Res. 2016, 148, 351–359. [Google Scholar] [CrossRef]
- Yao, J.; Pan, Y.; Sheng, N.; Su, Z.; Guo, Y.; Wang, J.; Dai, J. Novel Perfluoroalkyl Ether Carboxylic Acids (PFECAs) and Sulfonic Acids (PFESAs): Occurrence and Association with Serum Biochemical Parameters in Residents Living Near a Fluorochemical Plant in China. Environ. Sci. Technol. 2020, 54, 13389–13398. [Google Scholar] [CrossRef]
- Sheng, N.; Pan, Y.; Guo, Y.; Sun, Y.; Dai, J. Hepatotoxic Effects of Hexafluoropropylene Oxide Trimer Acid (HFPO-TA), A Novel Perfluorooctanoic Acid (PFOA) Alternative, on Mice. Environ. Sci. Technol. 2018, 52, 8005–8015. [Google Scholar] [CrossRef]
- Conley, J.M.; Lambright, C.S.; Evans, N.; McCord, J.; Strynar, M.J.; Hill, D.; Medlock-Kakaley, E.; Wilson, V.S.; Gray, L.E. Hexafluoropropylene Oxide-dimer Acid (HFPO-DA or GenX) Alters Maternal and Fetal Glucose and Lipid Metabolism and Produces Neonatal Mortality, Low Birthweight, and Hepatomegaly in the Sprague-Dawley Rat. Environ. Int. 2021, 146, 106204. [Google Scholar] [CrossRef] [PubMed]
- McDonough, C.A.; Ward, C.; Hu, Q.; Vance, S.; Higgins, C.P.; DeWitt, J.C. Immunotoxicity of an Electrochemically Fluorinated Aqueous Film-Forming Foam. Toxicol. Sci. 2020, 178, 104–114. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.Y.; Xu, L.L.; Zhong, M.T.; Chen, Y.K.; Lai, M.Q.; Wang, Q.; Xie, X.L. Gestational GenX and PFOA Exposures Induce Hepatotoxicity, Metabolic Pathway, and Microbiome Shifts in Weanling Mice. Sci. Total Environ. 2024, 907, 168059. [Google Scholar] [CrossRef] [PubMed]
- Zhao, S.; Sun, Y.; Duan, J.; Zhang, T.; Xiao, Y.; Zhu, Y.; Jia, Y.; Zhong, W.; Zhu, L. Impacts of Gestational F-53B Exposure on Fetal Neurodevelopment: Insights from Placental and Thyroid Hormone Disruption. Environ. Health 2025, 3, 308–320. [Google Scholar] [CrossRef]
- Tan, Z.; An, Z.; Lv, J.; Xiao, F.; Li, L.; Li, J.; Duan, W.; Guo, M.; Zeng, X.; Liu, Y.; et al. Tissue Accumulation and Hepatotoxicity of 8:2 Chlorinated Polyfluoroalkyl Ether Sulfonate: A Multi-omics Analysis Deciphering Hepatic Amino Acid Metabolic Dysregulation in Mice. J. Hazard. Mater. 2025, 483, 136668. [Google Scholar] [CrossRef]
- Xin, Y.; Wan, B.; Yu, B.; Fan, Y.; Chen, D.; Guo, L.H. Chlorinated Polyfluoroalkylether Sulfonic Acids Exhibit Stronger Estrogenic Effects than Perfluorooctane Sulfonate by Activating Nuclear Estrogen Receptor Pathways. Environ. Sci. Technol. 2020, 54, 3455–3464. [Google Scholar] [CrossRef]
- Tang, L.; Qiu, W.; Zhang, S.; Wang, J.; Yang, X.; Xu, B.; Magnuson, J.T.; Xu, E.G.; Wu, M.; Zheng, C. Poly- and Perfluoroalkyl Substances Induce Immunotoxicity via the TLR Pathway in Zebrafish: Links to Carbon Chain Length. Environ. Sci. Technol. 2023, 57, 6139–6149. [Google Scholar] [CrossRef]
- Wang, L.; Yang, T.; Liu, X.; Liu, J.; Liu, W. Critical Evaluation and Meta-Analysis of Ecotoxicological Data on Per- and Polyfluoroalkyl Substances (PFAS) in Freshwater Species. Environ. Sci. Technol. 2024, 58, 17555–17566. [Google Scholar] [CrossRef]
- Issemann, I.; Green, S. Activation of a Member of the Steroid Hormone Receptor Superfamily by Peroxisome Proliferators. Nature 1990, 347, 645–650. [Google Scholar] [CrossRef]
- Phelps, D.W.; Parkinson, L.V.; Boucher, J.M.; Muncke, J.; Geueke, B. Per- and Polyfluoroalkyl Substances in Food Packaging: Migration, Toxicity, and Management Strategies. Environ. Sci. Technol. 2024, 58, 5670–5684. [Google Scholar] [CrossRef]
- Cousins, I.T.; DeWitt, J.C.; Glüge, J.; Goldenman, G.; Herzke, D.; Lohmann, R.; Ng, C.A.; Scheringer, M.; Wang, Z.Y. The High Persistence of PFAS is Sufficient for Their Management as a Chemical Class. Environ. Sci.-Process. Impacts 2020, 22, 2307–2312. [Google Scholar] [CrossRef]
- Chou, W.C.; Lin, Z.M. Probabilistic Human Health Risk Assessment of Perfluorooctane Sulfonate (PFOS) by Integrating in vitro, in vivo Toxicity, and Human Epidemiological Studies using a Bayesian-based Dose-response Assessment Coupled with Physiologically Based Pharmacokinetic (PBPK) Modeling Approach. Environ. Int. 2020, 137, 105581. [Google Scholar] [CrossRef] [PubMed]
- Di Nisio, A.; Pannella, M.; Vogiatzis, S.; Sut, S.; Dall’Acqua, S.; Santa Rocca, M.; Antonini, A.; Porzionato, A.; De Caro, R.; Bortolozzi, M.; et al. Impairment of Human Dopaminergic Neurons at Different Developmental Stages by Perfluoro-octanoic Acid (PFOA) and Differential Human Brain Areas Accumulation of Perfluoroalkyl Chemicals. Environ. Int. 2022, 158, 106982. [Google Scholar] [CrossRef] [PubMed]
- Foguth, R.M.; Flynn, R.W.; de Perre, C.; Iacchetta, M.; Lee, L.S.; Sepúlveda, M.S.; Cannon, J.R. Developmental Exposure to Perfluorooctane Sulfonate (PFOS) and Perfluorooctanoic Acid (PFOA) Selectively Decreases Brain Dopamine Levels in Northern Leopard Frogs. Toxicol. Appl. Pharmacol. 2019, 377, 114623. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.Y.; Lin, L.Y.; Chiang, C.K.; Wang, W.J.; Su, Y.N.; Hung, K.Y.; Chen, P.C. Investigation of the Associations Between Low-Dose Serum Perfluorinated Chemicals and Liver Enzymes in US Adults. Am. J. Gastroenterol. 2010, 105, 1354–1363. [Google Scholar] [CrossRef]
- Vuong, A.M.; Yolton, K.; Webster, G.M.; Sjödin, A.; Calafat, A.M.; Braun, J.M.; Dietrich, K.N.; Lanphear, B.P.; Chen, A. Prenatal Polybrominated Diphenyl Ether and Perfluoroalkyl Substance Exposures and Executive Function in School-age Children. Environ. Res. 2016, 147, 556–564. [Google Scholar] [CrossRef]
- Maisonet, M.; Terrell Metrecia, L.; McGeehin Michael, A.; Christensen Krista, Y.; Holmes, A.; Calafat Antonia, M.; Marcus, M. Maternal Concentrations of Polyfluoroalkyl Compounds during Pregnancy and Fetal and Postnatal Growth in British Girls. Environ. Health Perspect. 2012, 120, 1432–1437. [Google Scholar] [CrossRef]
- Ghisari, M.; Eiberg, H.; Long, M.; Bonefeld-Jorgensen, E.C. Polymorphisms in Phase I and Phase II Genes and Breast Cancer Risk and Relations to Persistent Organic Pollutant Exposure: A Case-control Study in Inuit Women. Environ. Health 2014, 13, 19. [Google Scholar] [CrossRef]
- Cui, J.; Yang, R.; Yu, Y.; Yang, C.; He, L.; Wang, Z.; Jin, H.; Liu, D. Exposure Characteristics and Health Risk Assessment of Per- and Polyfluoroalkyl Substances and Their Typical Isomers in Human Serum. Acta Sci. Circumstantiae 2024, 44, 432–440. [Google Scholar] [CrossRef]
- Bjork, J.A.; Wallace, K.B. Structure-Activity Relationships and Human Relevance for Perfluoroalkyl Acid–Induced Transcriptional Activation of Peroxisome Proliferation in Liver Cell Cultures. Toxicol. Sci. 2009, 111, 89–99. [Google Scholar] [CrossRef] [PubMed]
- Bjork, J.A.; Butenhoff, J.L.; Wallace, K.B. Multiplicity of Nuclear Receptor Activation by PFOA and PFOS in Primary Human and Rodent Hepatocytes. Toxicology 2011, 288, 8–17. [Google Scholar] [CrossRef] [PubMed]
- Wolf, D.C.; Moore, T.; Abbott, B.D.; Rosen, M.B.; Das, K.P.; Zehr, R.D.; Lindstrom, A.B.; Strynar, M.J.; Lau, C. Comparative Hepatic Effects of Perfluorooctanoic Acid and WY 14,643 in PPAR-alpha Knockout and Wild-type Mice. Toxicol. Pathol. 2008, 36, 632. [Google Scholar] [CrossRef] [PubMed]
- Wolf, C.J.; Schmid, J.E.; Lau, C.; Abbott, B.D. Activation of Mouse and Human Peroxisome Proliferator-activated Receptor-alpha (PPARα) by Perfluoroalkyl Acids (PFAAs): Further Investigation of C4-C12 Compounds. Reprod. Toxicol. 2012, 33, 546–551. [Google Scholar] [CrossRef]
- Lai, T.T.; Eken, Y.; Wilson, A.K. Binding of Per- and Polyfluoroalkyl Substances to the Human Pregnane X Receptor. Environ. Sci. Technol. 2020, 54, 15986–15995. [Google Scholar] [CrossRef]
- Rosen, M.B.; Abbott, B.D.; Wolf, D.C.; Corton, J.C.; Wood, C.R.; Schmid, J.E.; Das, K.P.; Zehr, R.D.; Blair, E.T.; Lau, C. Gene Profiling in the Livers of Wild-type and PPARalpha-null Mice Exposed to Perfluorooctanoic Acid. Toxicol. Pathol. 2008, 36, 592–607. [Google Scholar] [CrossRef] [PubMed]
- Cheng, X.; Klaassen, C.D. Critical Role of PPAR-alpha in Perfluorooctanoic Acid- and Perfluorodecanoic Acid-induced Downregulation of Oatp Uptake Transporters in Mouse Livers. Toxicol. Sci. 2008, 106, 37–45. [Google Scholar] [CrossRef]
- Zhang, S.; Chen, K.; Li, W.; Chai, Y.; Zhu, J.; Chu, B.; Li, N.; Yan, J.; Zhang, S.; Yang, Y. Varied Thyroid Disrupting Effects of Perfluorooctanoic Acid (PFOA) and Its Novel Alternatives Hexafluoropropylene-oxide-dimer-acid (GenX) and Ammonium 4,8-dioxa-3H-perfluorononanoate (ADONA) in vitro. Environ. Int. 2021, 156, 106745. [Google Scholar] [CrossRef]
- Rosen, M.B.; Lee, J.S.; Ren, H.; Vallanat, B.; Jie, L.; Waalkes, M.P.; Abbott, B.D.; Lau, C.; Corton, J.C. Toxicogenomic Dissection of the Perfluorooctanoic Acid Transcript Profile in Mouse Liver: Evidence for the Involvement of Nuclear Receptors PPAR Alpha and CAR. Toxicol. Sci. 2008, 103, 46–56. [Google Scholar] [CrossRef] [PubMed]
- Rosen, M.B.; Schmid, J.R.; Corton, J.C.; Zehr, R.D.; Lau, C. Gene Expression Profiling in Wild-Type and PPARα-Null Mice Exposed to Perfluorooctane Sulfonate Reveals PPARα-Independent Effects. PPAR Res. 2010, 2010, 794739. [Google Scholar] [CrossRef] [PubMed]
- Rosen, M.B.; Das, K.P.; Rooney, J.; Abbott, B.; Lau, C.; Corton, J.C. PPARα-independent Transcriptional Targets of Perfluoroalkyl Acids Revealed by Transcript Profiling. Toxicology 2017, 387, 95–107. [Google Scholar] [CrossRef] [PubMed]
- Ren, H.; Vallanat, B.; Nelson, D.M.; Yeung, L.; Guruge, K.S.; Lam, P.; Lehman-Mck Ee Man, L.D.; Corton, J.C. Evidence for the Involvement of Xenobiotic-responsive Nuclear Receptors in Transcriptional Effects upon Perfluoroalkyl Acid Exposure in Diverse Species. Reprod. Toxicol. 2009, 27, 266–277. [Google Scholar] [CrossRef]
- Zhang, L.; Ren, X.M.; Wan, B.; Guo, L.H. Structure-dependent Binding and Activation of Perfluorinated Compounds on Human Peroxisome Proliferator-activated Receptor γ. Toxicol. Appl. Pharmacol. 2014, 279, 275–283. [Google Scholar] [CrossRef]
- Yoo, H.J.; Pyo, M.C.; Rhee, K.H.; Lim, J.M.; Yang, S.A.; Yoo, M.K.; Lee, K.W. Perfluorooctanoic Acid (PFOA) and Hexafluoropropylene Oxide-dimer Acid (GenX): Hepatic Stress and Bile Acid Metabolism with Different Pathways. Ecotoxicol. Environ. Saf. 2023, 259, 115001. [Google Scholar] [CrossRef]
- Xu, J.; Shimpi, P.; Armstrong, L.; Salter, D.; Slitt, A.L. PFOS Induces Adipogenesis and Glucose Uptake in Association with Activation of Nrf2 Signaling Pathway. Toxicol. Appl. Pharmacol. 2016, 290, 21–30. [Google Scholar] [CrossRef]
- Zeng, H.-c.; Zhang, L.; Li, Y.-y.; Wang, Y.-j.; Xia, W.; Lin, Y.; Wei, J.; Xu, S.-q. Inflammation-like Glial Response in Rat Brain Induced by Prenatal PFOS Exposure. NeuroToxicology 2011, 32, 130–139. [Google Scholar] [CrossRef]
- Takagi, A.; Sai, K.; Umemura, T.; Hasegawa, R.; Kurokawa, Y. Short-term Exposure to the Peroxisome Proliferators, Perfluorooctanoic Acid and Perfluorodecanoic Acid, Causes Significant Increase of 8-hydroxydeoxyguanosine in Liver DNA of Rats. Cancer Lett. 1991, 57, 55–60. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Liu, W.; Song, J.; Yu, H.; Jin, Y.; Oami, K.; Sato, I.; Saito, N.; Tsuda, S. A Comparative Study on Oxidative Damage and Distributions of Perfluorooctane Sulfonate (PFOS) in Mice at Different Postnatal Developmental Stages. J. Toxicol. Sci. 2009, 34, 245–254. [Google Scholar] [CrossRef]
- Eriksen, K.T.; Raaschou-Nielsen, O.; Sørensen, M.; Roursgaard, M.; Loft, S.; Møller, P. Genotoxic Potential of the Perfluorinated Chemicals PFOA, PFOS, PFBS, PFNA and PFHxA in Human HepG2 Cells. Mutat. Res./Genet. Toxicol. Environ. Mutagen. 2010, 700, 39–43. [Google Scholar] [CrossRef]
- Corton, J.C.; Cunningham, M.L.; Hummer, B.T.; Lau, C.; Meek, B.; Peters, J.M.; Popp, J.A.; Rhomberg, L.; Seed, J.; Klaunig, J.E. Mode of Action Framework Analysis for Receptor-mediated Toxicity: The Peroxisome Proliferator-activated Receptor Alpha (PPARα) as a Case Study. Crit. Rev. Toxicol. 2014, 44, 1–49. [Google Scholar] [CrossRef]
- Hu, W.; Jones, P.D.; Upham, B.L.; Trosko, J.E.; Lau, C.; Giesy, J.P. Inhibition of Gap Junctional Intercellular Communication by Perfluorinated Compounds in Rat Liver and Dolphin Kidney Epithelial Cell Lines In Vitro and Sprague-Dawley Rats In Vivo. Toxicol. Sci. 2002, 68, 429–436. [Google Scholar] [CrossRef] [PubMed]
- Upham, B.L.; Deocampo, N.D.; Wurl, B.; Trosko, J.E. Inhibition of Gap Junctional Intercellular Communication by Perfluorinated Fatty Acids is Dependent on the Chain Length of the Fluorinated Tail. Int. J. Cancer 1998, 78, 491–495. [Google Scholar] [CrossRef]
- Upham Brad, L.; Park, J.-S.; Babica, P.; Sovadinova, I.; Rummel Alisa, M.; Trosko James, E.; Hirose, A.; Hasegawa, R.; Kanno, J.; Sai, K. Structure-Activity–Dependent Regulation of Cell Communication by Perfluorinated Fatty Acids Using In Vivo and In Vitro Model Systems. Environ. Health Perspect. 2009, 117, 545–551. [Google Scholar] [CrossRef] [PubMed]
- Wan, H.-T.; Mruk, D.D.; Wong, C.K.C.; Cheng, C.Y. Perfluorooctanesulfonate (PFOS) Perturbs Male Rat Sertoli Cell Blood-Testis Barrier Function by Affecting F-Actin Organization via p-FAK-Tyr407: An In Vitro Study. Endocrinology 2014, 155, 249–262. [Google Scholar] [CrossRef]
- Quist, E.M.; Filgo, A.J.; Cummings, C.A.; Kissling, G.E.; Hoenerhoff, M.J.; Fenton, S.E. Hepatic Mitochondrial Alteration in CD-1 Mice Associated with Prenatal Exposures to Low Doses of Perfluorooctanoic Acid (PFOA). Toxicol. Pathol. 2014, 43, 546–557. [Google Scholar] [CrossRef]
- Starkov, A.A.; Wallace, K.B. Structural Determinants of Fluorochemical-Induced Mitochondrial Dysfunction. Toxicol. Sci. 2002, 66, 244–252. [Google Scholar] [CrossRef] [PubMed]
- Walters, M.W.; Bjork, J.A.; Wallace, K.B. Perfluorooctanoic Acid Stimulated Mitochondrial Biogenesis and Gene Transcription in Rats. Toxicology 2009, 264, 10–15. [Google Scholar] [CrossRef]
- Wallace, K.B.; Kissling, G.E.; Melnick, R.L.; Blystone, C.R. Structure–activity Relationships for Perfluoroalkane-induced in vitro Interference with Rat Liver Mitochondrial Respiration. Toxicol. Lett. 2013, 222, 257–264. [Google Scholar] [CrossRef]
- Panieri, E.; Baralic, K.; Djukic-Cosic, D.; Djordjevic, A.B.; Saso, L. PFAS Molecules: A Major Concern for the Human Health and the Environment. Toxics 2022, 10, 44. [Google Scholar] [CrossRef]
- Fenton, S.E.; Ducatman, A.; Boobis, A.; DeWitt, J.C.; Lau, C.; Ng, C.; Smith, J.S.; Roberts, S.M. Per- and Polyfluoroalkyl Substance Toxicity and Human Health Review: Current State of Knowledge and Strategies for Informing Future Research. Environ. Toxicol. Chem. 2021, 40, 606–630. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.N.; D’Agostino, L.A.; Qu, G.B.; Jiang, G.B.; Martin, J.W. High-resolution Mass Spectrometry (HRMS) Methods for Nontarget Discovery and Characterization of Poly- and Per-fluoroalkyl Substances (PFASs) in Environmental and Human Samples. Trends Anal. Chem. 2019, 121, 115420. [Google Scholar] [CrossRef]
- Hoover, G.; Kar, S.; Guffey, S.; Leszczynski, J.; Sepulveda, M.S. In Vitro and In Silico Modeling of Perfluoroalkyl Substances Mixture Toxicity in an Amphibian Fibroblast Cell Line. Chemosphere 2019, 233, 25–33. [Google Scholar] [CrossRef]
- Wang, Q.; Ruan, Y.F.; Jin, L.J.; Zhang, X.H.; Li, J.; He, Y.H.; Wei, S.; Lam, J.C.W.; Lam, P.K.S. Target, Nontarget, and Suspect Screening and Temporal Trends of Per- and Polyfluoroalkyl Substances in Marine Mammals from the South China Sea. Environ. Sci. Technol. 2021, 55, 1045–1056. [Google Scholar] [CrossRef]
- Young, R.B.; Pica, N.E.; Sharifan, H.; Chen, H.; Roth, H.K.; Blakney, G.T.; Borch, T.; Higgins, C.P.; Kornuc, J.J.; McKenna, A.M.; et al. PFAS Analysis with Ultrahigh Resolution 21T FT-ICR MS: Suspect and Nontargeted Screening with Unrivaled Mass Resolving Power and Accuracy. Environ. Sci. Technol. 2022, 56, 2455–2465. [Google Scholar] [CrossRef] [PubMed]
- Chu, S.; Letcher, R.J. A Targeted and Non-targeted Discovery Screening Approach for Poly-and Per-fluoroalkyl Substances in Model Environmental Biota Samples. J. Chromatogr. A 2024, 1715, 464584. [Google Scholar] [CrossRef] [PubMed]
- Ruan, T.; Li, P.; Wang, H.; Li, T.; Jiang, G. Identification and Prioritization of Environmental Organic Pollutants: From an Analytical and Toxicological Perspective. Chem. Rev. 2023, 123, 10584–10640. [Google Scholar] [CrossRef]
- Langberg, H.A.; Choyke, S.; Hale, S.E.; Koekkoek, J.; Cenijn, P.H.; Lamoree, M.H.; Rundberget, T.; Jartun, M.; Breedveld, G.D.; Jenssen, B.M.; et al. Effect-Directed Analysis Based on Transthyretin Binding Activity of Per- and Polyfluoroalkyl Substances in a Contaminated Sediment Extract. Environ. Toxicol. Chem. 2024, 43, 245–258. [Google Scholar] [CrossRef]
- Conley, J.M.; Lambright, C.S.; Evans, N.; Farraj, A.K.; Smoot, J.; Grindstaff, R.D.; Hill, D.; McCord, J.; Medlock-Kakaley, E.; Dixon, A.; et al. Dose Additive Maternal and Offspring Effects of Oral Maternal Exposure to a Mixture of Three PFAS (HFPO-DA, NBP2, PFOS) During Pregnancy in the Sprague-Dawley Rat. Sci. Total Environ. 2023, 892, 164609. [Google Scholar] [CrossRef]
- Das, K.P.; Wood, C.R.; Lin, M.T.; Starkov, A.A.; Lau, C.; Wallace, K.B.; Corton, J.C.; Abbott, B.D. Perfluoroalkyl Acids-induced Liver Steatosis: Effects on Genes Controlling Lipid Homeostasis. Toxicology 2017, 378, 37–52. [Google Scholar] [CrossRef]
- Wang, L.Q.; Liu, T.; Yang, S.; Sun, L.; Zhao, Z.Y.; Li, L.Y.; She, Y.C.; Zheng, Y.Y.; Ye, X.Y.; Bao, Q.; et al. Perfluoroalkyl Substance Pollutants Activate the Innate Immune System through the AIM2 Inflammasome. Nat. Commun. 2021, 12, 2915. [Google Scholar] [CrossRef] [PubMed]
- Nie, P.; Lan, Y.; You, T.; Jia, T.; Xu, H. F-53B Mediated ROS Affects Uterine Development in Rats during Puberty by Inducing Apoptosis. Ecotoxicol. Environ. Saf. 2024, 277, 116399. [Google Scholar] [CrossRef] [PubMed]
- Maxwell, D.L.; Oluwayiose, O.A.; Houle, E.; Roth, K.; Nowak, K.; Sawant, S.; Paskavitz, A.L.; Liu, W.; Gurdziel, K.; Petriello, M.C.; et al. Mixtures of Per- and Polyfluoroalkyl Substances (PFAS) Alter Sperm Methylation and Long-term Reprogramming of Offspring Liver and Fat Transcriptome. Environ. Int. 2024, 186, 108577. [Google Scholar] [CrossRef] [PubMed]
- Mei, J.; Jiang, J.; Lie, Z.; Pan, Y.; Xu, K.; Gao, X.; Yuan, J.; Li, L.; Wang, Y.; Wang, L.; et al. Increased Perfluorooctanoic Acid Accumulation Facilitates the Migration and Invasion of Lung Cancer Cells via Remodeling Cell Mechanics. Proc. Natl. Acad. Sci. USA 2024, 121, e2408575121. [Google Scholar] [CrossRef] [PubMed]
- Cui, Z.; Yuan, X.; Wang, Y.; Liu, Z.; Fei, X.; Chen, K.; Shen, H.M.; Wu, Y.; Xia, D. Environmentally Relevant Level of PFDA Exacerbates Intestinal Inflammation by Activating the cGAS/STING/NF-kappaB Signaling Pathway. Sci. Total Environ. 2024, 954, 176786. [Google Scholar] [CrossRef]
- Meng, G.; Zhao, J.; Huang, C.-Q.; Wang, H.-M.; Ruan, J.-X. Injury of Cell Tight Junctions and Changes of Actin Level in Acute Lung Injury. J. Occup. Health 2011, 53, 250–257. [Google Scholar] [CrossRef]
- Lee, H.Y.; You, D.J.; Taylor-Just, A.J.; Linder, K.E.; Atkins, H.M.; Ralph, L.M.; De la Cruz, G.; Bonner, J.C. Pulmonary Exposure of Mice to Ammonium Perfluoro(2-methyl-3-oxahexanoate) (GenX) Suppresses the Innate Immune Response to Carbon Black Nanoparticles and Stimulates Lung Cell Proliferation. Inhal. Toxicol. 2022, 34, 244–259. [Google Scholar] [CrossRef]
- Shane, H.L.; Baur, R.; Lukomska, E.; Weatherly, L.; Anderson, S.E. Immunotoxicity and Allergenic Potential Induced by Topical Application of Perfluorooctanoic Acid (PFOA) in a Murine Model. Food Chem. Toxicol. 2020, 136, 111114. [Google Scholar] [CrossRef]
- Weatherly, L.M.; Shane, H.L.; Baur, E.L.R.; Anderson, S.E. Systemic Toxicity Induced by Topical Application of Heptafluorobutyric Acid (PFBA) in a Murine Model. Food Chem. Toxicol. 2021, 156, 112528. [Google Scholar] [CrossRef]
- Chen, Q.; Yi, S.; Sun, Y.; Zhu, Y.; Ma, K.; Zhu, L. Contribution of Continued Dermal Exposure of PFAS-Containing Sunscreens to Internal Exposure: Extrapolation from In Vitro and In Vivo Tests to Physiologically Based Toxicokinetic Models. Environ. Sci. Technol. 2024, 58, 15005−15016. [Google Scholar] [CrossRef] [PubMed]
- Golosovskaia, E.; Örn, S.; Ahrens, L.; Chelcea, I.; Andersson, P.L. Studying Mixture Effects on Uptake and Tissue Distribution of PFAS in Zebrafish (Danio Rerio) Using Physiologically Based Kinetic (PBK) Modelling. Sci. Total Environ. 2024, 912, 168738. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.M.; Pan, X.Y.; Jia, Y.B.; Yang, X.; Song, X.H.; Ding, J.Q.; Zhong, W.J.; Feng, J.F.; Zhu, L.Y. Exploring Route-Specific Pharmacokinetics of PFAS in Mice by Coupling In Vivo Tests and Physiologically Based Toxicokinetic Models. Environ. Health Perspect. 2023, 131, 127012. [Google Scholar] [CrossRef] [PubMed]
- Thépaut, E.; Dirven, H.; Haug, L.S.; Lindeman, B.; Poothong, S.; Andreassen, M.; Hjertholm, H.; Husoy, T. Per- and Polyfluoroalkyl Substances in Serum and Associations with Food Consumption and Use of Personal Care Products in the Norwegian Biomonitoring Study from the EU Project EuroMix. Environ. Res. 2021, 195, 110795. [Google Scholar] [CrossRef]
- Flynn, R.W.; Hoskins, T.D.; Iacchetta, M.; de Perre, C.; Lee, L.S.; Hoverman, J.T.; Sepulveda, M.S. Dietary Exposure and Accumulation of Per- and Polyfluoroalkyl Substances Alters Growth and Reduces Body Condition of Post-metamorphic Salamanders. Sci. Total Environ. 2021, 765, 142730. [Google Scholar] [CrossRef]
- Dennis, N.M.; Hossain, F.; Subbiah, S.; Karnjanapiboonwong, A.; Dennis, M.L.; McCarthy, C.; Heron, C.G.; Jackson, W.A.; Crago, J.P.; Field, J.A.; et al. Chronic Reproductive Toxicity Thresholds for Northern Bobwhite Quail (Colinus virginianus) Exposed to Perfluorohexanoic Acid (PFHxA) and a Mixture of Perfluorooctane Sulfonic Acid (PFOS) and PFHxA. Environ. Toxicol. Chem. 2021, 40, 2601–2614. [Google Scholar] [CrossRef]
- Stanifer, J.W.; Stapleton, H.M.; Souma, T.; Wittmer, A.; Zhao, X.; Boulware, L.E. Perfluorinated Chemicals as Emerging Environmental Threats to Kidney Health: A Scoping Review. Clin. J. Am. Soc. Nephrol. 2018, 13, 1479–1492. [Google Scholar] [CrossRef]
- Yang, Q.; Guo, X.; Chen, Y.; Zhang, W.; Ren, J.; Wang, J.; Tang, N.; Gao, A. Blood Levels of Perfluoroalkyl Substances (PFASs), Elements and Their Associations with Metabolic Syndrome (MetS) in Chinese Male Adults Mediated by Metabolic-related Risk Factors. Sci. Total Environ. 2020, 742, 140595. [Google Scholar] [CrossRef] [PubMed]
- Fedorenko, M.Z. Molecular Mechanisms of Protein Binding by Perfluoroalkyl Substances (PFASs). Ph.D. Thesis, University of Rhode Island, South Kingstown, RI, USA, 2019. [Google Scholar]
- Andersson, A.G.; Fletcher, T.; Xu, Y.; Karrman, A.; Pineda, D.; Nilsson, C.A.; Lindh, C.H.; Jakobsson, K.; Li, Y. The Relative Importance of Fecal and Urinary Excretion of Perfluorooctane Sulfonic Acid and Perfluorooctanoic Acid after High Exposure—An Observational Study in Ronneby, Sweden. Environ. Res. 2025, 285, 122487. [Google Scholar] [CrossRef]
- Jian, J.M.; Chen, D.; Han, F.J.; Guo, Y.; Zeng, L.X.; Lu, X.W.; Wang, F. A Short Review on Human Exposure to and Tissue Distribution of Per- and Polyfluoroalkyl Substances (PFASs). Sci. Total Environ. 2018, 636, 1058–1069. [Google Scholar] [CrossRef]
- Solan, M.E.; Lavado, R. The Use of in vitro Methods in Assessing Human Health Risks Associated with Short-chain Perfluoroalkyl and Polyfluoroalkyl Substances (PFAS). J. Appl. Toxicol. 2022, 42, 1298–1309. [Google Scholar] [CrossRef]
- Gallagher, A.; Kar, S.; Sepúlveda, M.S. Computational Modeling of Human Serum Albumin Binding of Per- and Polyfluoroalkyl Substances Employing QSAR, Read-Across, and Docking. Molecules 2023, 28, 5375. [Google Scholar] [CrossRef] [PubMed]
- Amstutz, V.H.; Cengo, A.; Sijm, D.T.; Vrolijk, M.F. SOC-VI-07 Using a Quantitative Structure-activity (QSAR) Approach in the Risk Assessment of PFAS Based on in vitro Assays. Toxicol. Lett. 2022, 368, S77. [Google Scholar] [CrossRef]
- Wyrzykowska, E.; Rybinska-Fryca, A.; Sosnowska, A.; Puzyn, T. Virtual Screening in the Design of Ionic Liquids as Environmentally Safe Bactericides. Green Chem. 2019, 21, 1965–1973. [Google Scholar] [CrossRef]
- Barycki, M.; Sosnowska, A.; Puzyn, T. AquaBoxIL—A Computational Tool for Determining the Environmental Distribution Profile of Ionic Liquids. Green Chem. 2018, 20, 3359–3370. [Google Scholar] [CrossRef]
- Kowalska, D.; Sosnowska, A.; Bulawska, N.; Stępnik, M.; Besselink, H.; Behnisch, P.; Puzyn, T. How the Structure of Per- and Polyfluoroalkyl Substances (PFAS) Influences Their Binding Potency to the Peroxisome Proliferator-Activated and Thyroid Hormone Receptors—An In Silico Screening Study. Molecules 2023, 28, 479. [Google Scholar] [CrossRef]
- Patlewicz, G.; Richard, A.M.; Williams, A.J.; Grulke, C.M.; Sams, R.; Lambert, J.; Noyes, P.D.; DeVito, M.J.; Hines, R.N.; Strynar, M.; et al. A Chemical Category-Based Prioritization Approach for Selecting 75 Per- and Polyfluoroalkyl Substances (PFAS) for Tiered Toxicity and Toxicokinetic Testing. Environ. Health Perspect. 2019, 127, 14501. [Google Scholar] [CrossRef]
- Hu, J.; Lyu, Y.; Chen, H.; Cai, L.; Li, J.; Cao, X.; Sun, W. Integration of Target, Suspect, and Nontarget Screening with Risk Modeling for Per- and Polyfluoroalkyl Substances Prioritization in Surface Waters. Water Res. 2023, 233, 119735. [Google Scholar] [CrossRef] [PubMed]
- McDougall, M.R.R.; Kalinovich, I. Developing Hazard Rating Calculation Methodologies for Per- and Polyfluoroalkyl Substances. Environ. Toxicol. Chem. 2021, 40, 937–946. [Google Scholar] [CrossRef] [PubMed]


| Exposure Pathway | Source of Exposure | Exposure Level (Concentration) | Population Affected | Duration of Exposure | Health Effects |
|---|---|---|---|---|---|
| Oral | Mixture of GenX, NBP2, and PFOS [143] | PFOS: NBP2: GenX = 3: 10: 110; total PFAS = 1.13–113 mg/kg/d | Pregnant rat | Gestation day 8–postnatal day 2 | Hepatotoxicity and cardiotoxicity |
| PFOA, PFNA, PFHxS [144] | 10 mg/kg/d | Mice | 7 days | Disturbance of lipid metabolism | |
| PFOS [145] | 5 mg/kg/d | Allergic asthmatic mice | 20 days | Immunotoxicity | |
| F-53B [146] | 0.125–6.25 mg/L/d | Rat | 28 days | Uterine dysplasia | |
| Mixture of PFOS, PFOA, PFNA, PFHxS, GenX [147] | 20 μg/L/d/PFAS | Mice | 18 weeks | Reproductive toxicity | |
| PFOA [148] | 10–700 ng/kg/d | Lung tumor-bearing mice | 4 weeks | Promoting lung adenocarcinoma progression and metastasis | |
| PFDA [149] | 8.31 μg/kg/d/animal | IBD mouse model | 9 days | Promoting the progression of IBD | |
| Inhalation | PFIB [150] | 130 mg/m3 × 5 min | Mice | Single dose | Acute lung injury |
| 140 mg/m3 × 5 min | Rat | ||||
| GenX [151] | 0.5 mg/d/animal | Mice | 1 or 14 days | Immunosuppressive effects | |
| Dermal | PFOA [152] | 12.5–50 mg/kg/d | Mice | 4 or 14 days | Immunotoxicity and allergenic potential |
| PFBA [153] | 375 mg/kg/d | Mice | 15 days | Systemic toxicity | |
| 93.8–187.5 mg/kg/d | 28 days |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, Y.; Zhang, Z.; Luo, H.; Yan, X.; Liu, Y.; Zhang, K.; Wei, Y.; Liu, Y. Confronting Novel Alternatives of Per- and Polyfluoroalkyl Substances: From the Exposure Pathway to the Health Risk Estimation. Processes 2025, 13, 4032. https://doi.org/10.3390/pr13124032
Gao Y, Zhang Z, Luo H, Yan X, Liu Y, Zhang K, Wei Y, Liu Y. Confronting Novel Alternatives of Per- and Polyfluoroalkyl Substances: From the Exposure Pathway to the Health Risk Estimation. Processes. 2025; 13(12):4032. https://doi.org/10.3390/pr13124032
Chicago/Turabian StyleGao, Yuhua, Zhenyong Zhang, Huaidong Luo, Xiaoli Yan, Ya Liu, Kena Zhang, Yintao Wei, and Yin Liu. 2025. "Confronting Novel Alternatives of Per- and Polyfluoroalkyl Substances: From the Exposure Pathway to the Health Risk Estimation" Processes 13, no. 12: 4032. https://doi.org/10.3390/pr13124032
APA StyleGao, Y., Zhang, Z., Luo, H., Yan, X., Liu, Y., Zhang, K., Wei, Y., & Liu, Y. (2025). Confronting Novel Alternatives of Per- and Polyfluoroalkyl Substances: From the Exposure Pathway to the Health Risk Estimation. Processes, 13(12), 4032. https://doi.org/10.3390/pr13124032
