Discrete Element Simulation Study on Shear Mechanical Properties of Coal Seams with Horizontal Bedding Under Different Normal Stresses
Abstract
1. Introduction
2. Numeric Simulation Scheme
3. Simulation Results and Analysis
3.1. Shear Stress-Displacement Characteristics
3.2. Shear Strength Characteristics
3.3. Macroscopic and Microscopic Fracture Modes
3.4. Characteristics of Force Chain
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Gao, M.; Xie, J.; Gao, Y.; Wang, W.; Li, C.; Yang, B.; Liu, J.; Xie, H. Mechanical Behavior of Coal under Different Mining Rates: A Case Study from Laboratory Experiments to Field testing Mechanical Behavior of Coal under Different Mining Rates: A Case Study from Laboratory Experiments to Field Testing. Int. J. Min. Sci. Technol. 2021, 31, 825–841. [Google Scholar] [CrossRef]
- Li, H.; He, M.; Xiao, Y.; Liu, D.; Hu, J.; Cheng, T. Granite Strain bursts Induced by True Triaxial Transient Unloading at Different Stress Levels: Insights from Excess Energy ΔE. J. Rock Mech. Geotech. Eng. 2025, in press. [CrossRef]
- Li, H.; He, M.; Qiao, Y.; Cheng, T.; Han, Z. Assessing Burst Proneness and Seismogenic Process of Anisotropic Coal Via the Realistic Energy Release Rate (RERR) Index. Rock Mech. Rock Eng. 2025, 58, 2999–3013. [Google Scholar] [CrossRef]
- Hu, J.; He, M.; Li, H.; Cheng, T.; Tao, Z.; Liu, D.; Peng, D. Control Effect of Negative Poisson’s Ratio (NPR) Cable on Impact-Induced Rockburst with Different Strain Rates: An Experimental Investigation. Rock Mech. Rock Eng. 2023, 56, 5167–5180. [Google Scholar] [CrossRef]
- Jiang, B.; Wu, K.; Wang, Q.; Kang, H.; Zhang, B.; Zhang, Z.; Chen, C. Development of Physical Model Test System for Fault-Slip Induced Rockburst in Underground Coal mining Development of Physical Model Test System for Fault-Slip Induced Rockburst in Underground Coal Mining. J. Rock Mech. Geotech. Eng. 2025, 17, 2227–2238. [Google Scholar] [CrossRef]
- Hu, J.; He, M.; Li, H.; Tao, Z.; Liu, D.; Cheng, T.; Peng, D. Rockburst Hazard Control Using the Excavation Compensation Method (ECM): A Case Study in the Qinling Water Conveyance Tunnel. Engineering 2024, 34, 154–163. [Google Scholar] [CrossRef]
- Wang, X.; Pan, Y.; Hai, L. Instability Criterion of Fault Rockburst Based on Gradient-Dependent Plasticity. Chin. J. Rock Mech. Eng. 2004, 23, 588–591. [Google Scholar] [CrossRef]
- Wei, C.; Zhang, C.; Canbulat, I.; Huang, W. Numerical Investigation into Impacts of Major Fault on Coal Burst in Longwall Mining—A Case study Numerical Investigation into Impacts of Major Fault on Coal Burst in Longwall Mining—A Case Study. Int. J. Rock Mech. Min. Sci. 2021, 147, 104907. [Google Scholar] [CrossRef]
- Song, Z.Y.; Dang, W.G.; Bai, Z.C.; Zhao, Y.; Wang, P.T.; Yang, Z. Mechanical Responses and Fracturing Behaviors of Coal under Complex Normal and Shear Stresses, Part I: Experimental Results. Int. J. Coal Sci. Technol. 2024, 11, 63. [Google Scholar] [CrossRef]
- Wu, P.; Chen, L.; Chen, Y.; Mao, X.; Pu, H.; Zhang, K.; Wang, X.; Zhang, W. Experimental Study on Mechanical Properties and Microcrack Fracture of Coal Specimens under the Coupling of Loading Rate and Compression–Shear Loads. Int. J. Geomech. 2022, 22, 04022028. [Google Scholar] [CrossRef]
- He, Q.; Li, Y.; Li, D.; Zhang, C. Microcrack Fracturing of Coal Specimens under Quasi-Static Combined Compression-Shear Loading. J. Rock Mech. Geotech. Eng. 2020, 12, 1014–1026. [Google Scholar] [CrossRef]
- Tang, C.; Yao, Q.; Li, Z.; Zhang, Y.; Ju, M. Experimental Study of Shear Failure and Crack Propagation in Water-Bearing Coal Samples. Energy Sci. Eng. 2019, 7, 2193–2204. [Google Scholar] [CrossRef]
- Shen, J.; Wan, L.; Zuo, J. Non-Linear Shear Strength Model for Coal Rocks. Rock Mech. Rock Eng. 2019, 52, 4123–4132. [Google Scholar] [CrossRef]
- Duan, M.; Jiang, C.; Guo, X.; Yang, K.; Tang, J.; Yin, Z.; Hu, X. Experimental Study on Mechanics and Seepage of Coal under Different Bedding Angle and True Triaxial Stress State. Bull. Eng. Geol. Environ. 2022, 81, 399. [Google Scholar] [CrossRef]
- Liu, S.; Zhao, H.; Zhu, J.; Su, B. The Effect of Bedding on Deformation Localization and Damage Constitutive Modeling in Coal Specimens. Mech. Time-Depend. Mater. 2024, 28, 3139–3155. [Google Scholar] [CrossRef]
- Liu, J.; Hu, J.; Huang, X.; Yu, B.; Nie, Z.; Yang, D. Low Nuclear Magnetic Resonance Experimental Study on Gas Adsorption of High-Rank Coals with Different Beddings. ACS Omega 2022, 7, 18752–18760. [Google Scholar] [CrossRef]
- Mortezaei, R.; Mohammadi, S.D.; Sarfarazi, V.; Moayedi Far, A. Investigation of Shear Behavior of Notched Bedding Rock Containing Welded Interface between Hard and Soft Layers; an Acoustic Emission-Based Approach. Theor. Appl. Fract. Mech. 2023, 127, 104063. [Google Scholar] [CrossRef]
- Huang, L.; Li, B.; Li, C.; Wu, B.; Wang, J. Research on Anisotropic Characteristics and Energy Damage Evolution Mechanism of Bedding Coal under Uniaxial Compression. Energy 2024, 301, 131659. [Google Scholar] [CrossRef]
- Gao, L.; Zhao, H.; Liu, H. Mechanical Response Mechanism and Seepage Characteristics of Gas-Bearing Bedding Coal under Impact Loading. Eng. Fract. Mech. 2025, 326, 111425. [Google Scholar] [CrossRef]
- Tan, L.; Ren, T.; Yang, X.; He, X. A Numerical Simulation Study on Mechanical Behaviour of Coal with Bedding Planes under Coupled Static and Dynamic Load. Int. J. Min. Sci. Technol. 2018, 28, 791–797. [Google Scholar] [CrossRef]
- Liu, C.; Yin, G.; Li, M.; Shang, D.; Deng, B.; Song, Z. Deformation and Permeability Evolution of Coals Considering the Effect of Beddings. Int. J. Rock Mech. Min. Sci. 2019, 117, 49–62. [Google Scholar] [CrossRef]
- Du, M.; Gao, F.; Zheng, W.; Su, S.; Li, P.; Sang, S.; Gao, X.; Hou, P.; Wang, S. Cracking Patterns and Damage Evolution Characteristics of Coal with Bedding Structures under Liquid Nitrogen Cooling. Nat. Resour. Res. 2024, 33, 2193–2214. [Google Scholar] [CrossRef]
- Ou, J.; Niu, J.; Wang, B.; Zhang, W.; Zhao, J.; Lyu, B.; Zhan, B.; Ma, Y. Numerical Simulation of Coal’s Mechanical Properties and Fracture Process under Uniaxial Compression: Dual Effects of Bedding Angle and Loading Rate. Processes 2024, 12, 2661. [Google Scholar] [CrossRef]
- Tang, W.; Zhai, C.; Yu, X.; Xu, J.; Sun, Y.; Cong, Y.; Zheng, Y.; Wang, Y. Dynamic Brazilian Splitting Experiment of Bedding Shale Based on Continuum-Discrete Coupled method Dynamic Brazilian Splitting Experiment of Bedding Shale Based on Continuum-Discrete Coupled Method. Int. J. Impact Eng. 2022, 168, 104289. [Google Scholar] [CrossRef]
- Hu, W.; Kwok, C.Y.; Duan, K.; Wang, T. Parametric Study of the Smooth-Joint Contact Model on the Mechanical Behavior of Jointed Rock. Int. J. Numer. Anal. Methods Geomech. 2018, 42, 358–376. [Google Scholar] [CrossRef]
- Hu, X.; Gutierrez, M.; Yan, Z. Heterogeneities of Grain Boundary Contact for Simulation of Laboratory-Scale Mechanical Behavior of Granitic rocks Heterogeneities of Grain Boundary Contact for Simulation of Laboratory-Scale Mechanical Behavior of Granitic Rocks. J. Rock Mech. Geotech. Eng. 2024, 16, 2629–2644. [Google Scholar] [CrossRef]









| Micro-Parameters | Values |
|---|---|
| Minimum radius of the particle, Rmin/mm | 0.28 |
| Ratio of maximum to minimum of radius, Rrat | 1.66 |
| Density of the particle, ρ/(kg·m−3) | 1400 |
| Friction coefficient, μ | 0.5 |
| Young’s modulus of the particle, EC/GPa | 2.25 |
| Ratio of normal to shear stiffness of the particle, kn/ks | 3.0 |
| Parallel bonding radius factor, λ | 1.0 |
| Young’s modulus of the parallel bond, C/GPa | 2.25 |
| Ratio of normal to shear stiffness of the parallel bond, n/s | 3.0 |
| Average bond normal strength, σn,mean/MPa | 12.5 |
| Standard deviation of bond normal strength, σn,dev/MPa | 1.25 |
| Average bond tangential strength, τs,mean/MPa | 12.5 |
| Standard deviation of bond tangential strength, τs,dev/MPa | 1.25 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fan, X.; Ou, J.; Tong, Y.; He, X.; Wang, B. Discrete Element Simulation Study on Shear Mechanical Properties of Coal Seams with Horizontal Bedding Under Different Normal Stresses. Processes 2025, 13, 4001. https://doi.org/10.3390/pr13124001
Fan X, Ou J, Tong Y, He X, Wang B. Discrete Element Simulation Study on Shear Mechanical Properties of Coal Seams with Horizontal Bedding Under Different Normal Stresses. Processes. 2025; 13(12):4001. https://doi.org/10.3390/pr13124001
Chicago/Turabian StyleFan, Xinchuan, Jianchun Ou, Yanjun Tong, Xiaojun He, and Bican Wang. 2025. "Discrete Element Simulation Study on Shear Mechanical Properties of Coal Seams with Horizontal Bedding Under Different Normal Stresses" Processes 13, no. 12: 4001. https://doi.org/10.3390/pr13124001
APA StyleFan, X., Ou, J., Tong, Y., He, X., & Wang, B. (2025). Discrete Element Simulation Study on Shear Mechanical Properties of Coal Seams with Horizontal Bedding Under Different Normal Stresses. Processes, 13(12), 4001. https://doi.org/10.3390/pr13124001
