This is an early access version, the complete PDF, HTML, and XML versions will be available soon.
Open AccessArticle
Catalytic Degradation of Polystyrene at Low Temperature Over a Mo–W–Fe–Ni Carbide–Alloy Catalyst
1
Department of Metallurgy, Escuela Superior de Ingeniería Química e Industrias Extractivas (ESIQIE), Instituto Politécnico Nacional, Edif. 7, Av. IPN S/N, Zacatenco, Mexico City 07738, Mexico
2
Unidad Profesional “Adolfo López Mateos” (UPALM), Escuela Superior de Ingeniería Mecánica y Eléctrica (ESIME), Instituto Politecnico Nacional, Av. IPN s/n, Mexico City 07738, Mexico
3
Tecnológico de Estudios Superiores de Ixtapaluca (TESI), Tecnológico Nacional de México, Km 7 Carretera Ixtapaluca–Coatepec S/N, Ixtapaluca 56580, Mexico
4
Laboratorio de Posgrado e Investigación de Operaciones Unitarias, Escuela Superior de Ingeniería Química e Industrias Extractivas (ESIQIE), Instituto Politécnico Nacional, Edif. 7, Av. IPN S/N, Zacatenco, Mexico City 07738, Mexico
*
Authors to whom correspondence should be addressed.
Processes 2025, 13(12), 3900; https://doi.org/10.3390/pr13123900 (registering DOI)
Submission received: 31 October 2025
/
Revised: 21 November 2025
/
Accepted: 28 November 2025
/
Published: 2 December 2025
Abstract
In this study, we investigate the catalytic degradation of polystyrene (PS) in water at low temperature (90–110 C, 1 atm) using a multiphase carbide–alloy catalyst obtained by mechanosynthesis. X-ray diffraction and scanning electron microscopy confirm a mixture of Mo–W carbides and Fe/Ni alloys, consistent with multiple types of active sites. High-resolution mass spectrometry (MS) is used to assign products by oligomer-series spacing (styrene repeat mass, 104.15 Da) and the residual mass for end-group identification. At 90 C without catalyst, the spectrum shows PS fragments between –4618, consistent with thermal depolymerization. With catalyst at 90 C, new lower- peaks emerge and long-chain signals diminish, indicating enhanced chain scission under mild conditions. Increasing the temperature to 100 and 110 C yields even lighter ions (e.g., and 247.88), confirming stronger cracking and a larger number of distinct products. End groups inferred from include alkenes (C–C), alkanes (C, C), cyclic C–C fragments, and alcohols, which are consistent with protolytic C–C bond cleavage (Haag–Dessau), oxidative dehydrogenation, and subsequent hydrogenation/hydration on metal/carbide sites. Overall, the results show that water-activated carbide–alloy catalysts can drive PS deconstruction at low temperature, shifting products toward shorter chains with useful functional groups, while a simple MS-based rule set provides a transparent and reproducible approach to product assignment.
Share and Cite
MDPI and ACS Style
Castillo Plata, F.J.; Carvajal-Mariscal, I.; Rivera Olvera, J.N.; Cruz Narváez, Y.; Díaz Barriga Arceo, L.G.
Catalytic Degradation of Polystyrene at Low Temperature Over a Mo–W–Fe–Ni Carbide–Alloy Catalyst. Processes 2025, 13, 3900.
https://doi.org/10.3390/pr13123900
AMA Style
Castillo Plata FJ, Carvajal-Mariscal I, Rivera Olvera JN, Cruz Narváez Y, Díaz Barriga Arceo LG.
Catalytic Degradation of Polystyrene at Low Temperature Over a Mo–W–Fe–Ni Carbide–Alloy Catalyst. Processes. 2025; 13(12):3900.
https://doi.org/10.3390/pr13123900
Chicago/Turabian Style
Castillo Plata, Fredy Josealdo, Ignacio Carvajal-Mariscal, Jesús Noé Rivera Olvera, Yair Cruz Narváez, and Lucía Graciela Díaz Barriga Arceo.
2025. "Catalytic Degradation of Polystyrene at Low Temperature Over a Mo–W–Fe–Ni Carbide–Alloy Catalyst" Processes 13, no. 12: 3900.
https://doi.org/10.3390/pr13123900
APA Style
Castillo Plata, F. J., Carvajal-Mariscal, I., Rivera Olvera, J. N., Cruz Narváez, Y., & Díaz Barriga Arceo, L. G.
(2025). Catalytic Degradation of Polystyrene at Low Temperature Over a Mo–W–Fe–Ni Carbide–Alloy Catalyst. Processes, 13(12), 3900.
https://doi.org/10.3390/pr13123900
Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details
here.
Article Metrics
Article metric data becomes available approximately 24 hours after publication online.