Thin Films for Next Generation Technologies: A Comprehensive Review of Fundamentals, Growth, Deposition Strategies, Applications, and Emerging Frontiers
Abstract
1. Introduction
2. Historical Evolution
3. Growth Fundamentals and Physics
3.1. Nucleation
3.2. Growth Modes
3.2.1. Volmer–Weber Growth Mode
3.2.2. Frank–van der Merwe Growth Mode
3.2.3. Stranski–Krastanov Growth Mode
3.2.4. Step Flow Growth Mode
3.3. Adatom Kinetics
3.3.1. Surface Diffusion Fundamentals
3.3.2. Adatom Mobility and Film Morphology
3.3.3. Diffusion Length and Nucleation Dynamics
3.3.4. Ehrlich–Schwoebel Barriers and Step-Edge Kinetics
3.4. Strain and Lattice Mismatch
3.4.1. Strain States and Critical Thickness
3.4.2. Strain Relaxation Mechanisms
3.5. Stress and Failure
3.5.1. Sources of Stress in Thin Films
- Intrinsic stresses originate during film growth from microstructural evolution, atomic incorporation events, and grain coalescence, and these growth-related stresses can be tensile or compressive depending on the deposition mechanism and energy flux to the growing surface [78]. For polycrystalline and columnar films, tensile stresses frequently develop during the coalescence of islands as boundaries “zip” together and trap misfit strains, while compressive stresses commonly accompany high-energy ion incorporation, peening, and atomic insertion into interstitial sites [79]. Atomistic and structural studies of amorphous and hydrogenated films have further clarified how void elimination, bond reconfiguration, and trapped impurities set the sign and magnitude of intrinsic stress in many technologically important layers [80].
- Thermal stress arises from differential thermal contraction between film and substrate after high-temperature growth or during thermal cycling, and this extrinsic component often dominates in heterostructures processed at elevated temperatures or used in variable-temperature environments [81]. The magnitude of the thermal mismatch stress is a function of the coefficient of thermal expansion difference, the film/substrate elastic moduli, and the temperature excursion, which means even modest CTE mismatch can generate stresses large enough to buckle or crack ultrathin brittle films during cooldown [82]. Thermally induced stresses can also drive time-dependent relaxation via creep or dislocation motion at elevated temperatures, so reported stresses at room temperature may represent a frozen, partially relaxed state that depends on the entire thermal history of the sample [71].
- Extrinsic stresses beyond thermal effects—including chemical reactions with ambient species, moisture uptake in organic films, hydrogen embrittlement, and radiation damage—modify both the mechanical state and interfacial toughness of films and can therefore convert a stable film stack into a progressively failing system under service conditions [83]. Environmental species can induce large compressive or tensile changes by causing swelling, phase change, or volumetric expansion, and such chemically driven extrinsic stress transients are often the trigger for buckling-delamination in multilayers and coatings exposed to humidity or reactive atmospheres [84]. Because extrinsic effects are frequently spatially non-uniform (for example, edge ingress of moisture or local corrosion), they also create stress gradients that favor crack nucleation at specific weak points rather than uniform fracture across the surface [71,85].
3.5.2. Strategies to Minimize Stress and Failure
3.6. Importance and Influence of Substrates in Thin Film Growth and Growth Modes
3.6.1. Thermodynamic Influence and Nucleation Control
3.6.2. Substrate Structure and Kinetic Regulation
3.6.3. Lattice Mismatch, Strain, and Interface Coherency
3.6.4. Substrate Effects on Stress Evolution and Film Integrity
3.6.5. Engineering Significance and Practical Implications
- Regulation of growth modes through the adjustment of interfacial energies and wetting characteristics [109].
- Enhancement of film consistency and texture through surface designs or tiered shapes [110].
- Decreasing strain and defect densities via lattice-matched or flexible buffer layers [111].
- Enhanced adhesion and longevity through chemical alterations or graded interfacial designs [112].
4. Thin Film Deposition Techniques
4.1. Physical Vapor Deposition Techniques
4.1.1. Thermal Evaporation Technique
4.1.2. Electron Beam Evaporation
4.1.3. Sputtering Techniques
DC Sputtering
RF Sputtering
Magnetron Sputtering
4.2. Chemical Vapor Deposition
4.2.1. Conventional Chemical Vapor Deposition
4.2.2. Low-Pressure Chemical Vapor Deposition
4.2.3. Plasma Vapor Deposition
4.2.4. Metal–Organic Chemical Vapor Deposition
4.3. Atomic Layer Deposition
4.4. Molecular Beam Epitaxy
4.5. Pulsed Laser Deposition
4.6. Solution-Based and Printing Methods
4.7. Electrodeposition and Electrochemical Methods
4.8. Hybrid and Emerging Approaches
5. Classification and Material Properties
5.1. Composition-Based
5.1.1. Metallic Thin Films
5.1.2. Semiconductor Thin Films
5.1.3. Dielectric Thin Films
5.1.4. Polymeric Thin Films
5.1.5. Hybrid and Emerging Thin Films
5.1.6. Interdependence of Material Properties
5.2. Structure-Based
5.2.1. Amorphous Thin Films
5.2.2. Crystalline Thin Films
5.2.3. Nanocomposite Thin Films
5.3. Functionality-Based
5.3.1. Conductive Thin Films
5.3.2. Optical Thin Films
5.3.3. Ferroelectric Thin Films
5.3.4. Catalytic Thin Films
5.4. Dimensionality
5.4.1. Ultrathin Films
5.4.2. Two-Dimensional (2D) Films
5.4.3. Multilayer Films
5.4.4. Superlattice Films
5.4.5. Interrelation of Dimensional Regimes
6. Applications of Thin Films
6.1. Electronics and Photonics
6.2. Energy
6.3. Sensors and Biomedical
6.4. Industrial and Protective
6.5. Quantitative Performance Metrics and Industrial Prospects of Thin Film Technologies
6.5.1. Zero-Bias, Room-Temperature Operation
6.5.2. Conformal, 3-D Thin Film Thermocouples on Complex Surfaces
6.5.3. Low-Power, Transparent, and Flexible Thin Film Sensors
6.5.4. Consolidated Quantitative Insights on Thin Film Sensing Studies
6.5.5. UV-Assisted Nanocomposite Oxide Thin Films for Reduced-Temperature Gas Sensing
6.5.6. Environmental and High-Temperature Stability of Metallic/MXene Thin Films in Sensing and Thermoelectric Applications
6.5.7. Effect of Film Thickness on ZnO Thin Film Gas Sensing
6.5.8. Flexible Mg3Bi2 Thin Film Thermoelectrics: Performance and Durability
6.5.9. High-Sensitivity La-Doped ZnO Thin Films for CO2 Gas Sensing
6.5.10. Interface-Engineered GZO/NAZO Multilayer ZnO-Based Thin Films for Thermoelectric Performance
6.6. Industrial Translation and Manufacturing Challenges
7. Defects in Thin Films
7.1. Defect Types: Vacancies, Dislocations, Voids, Pinholes
7.2. Mitigation: Passivation, Encapsulation, Multilayer Barriers
8. Computational Modeling and AI in Thin Films
8.1. Traditional: DFT, MD for Band Structure, Defect Energies, Stress Analysis
8.2. Machine Learning: Predicting Bandgaps, Conductivity, Adhesion
8.3. High-Throughput Screening: Databases (Materials Project, AFLOW)
8.4. Autonomous Labs: Bayesian Optimization + Robotics for Closed-Loop Synthesis
9. Critical Gaps, Challenges, and Future
9.1. Scientific Challenges-Stability, Defect Control, 2D Heterostructures
9.2. Technical Gaps
9.3. Future Vision: Eco-Friendly, AI-Driven, Reproducible Thin Film Science
10. Summary and Perspectives
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Oviroh, P.O.; Akbarzadeh, R.; Pan, D.; Coetzee, R.A.M.; Jen, T.-C. New development of atomic layer deposition: Processes, methods and applications. Sci. Technol. Adv. Mater. 2019, 20, 465–496. [Google Scholar] [CrossRef]
- Barnasas, A.; Garoufalis, C.S.; Anyfantis, D.I.; Poulopoulos, P.; Baskoutas, S. On the Quantum Confinement Effects in Ultrathin PdO Films by Experiment and Theory. Materials 2022, 15, 8700. [Google Scholar] [CrossRef] [PubMed]
- Venables, J.A.; Spiller, G.D.T.; Hanbucken, M. Nucleation and growth of thin films. Rep. Prog. Phys. 1984, 47, 399. [Google Scholar] [CrossRef]
- Abadias, G.; Chason, E.; Keckes, J.; Sebastiani, M.; Thompson, G.B.; Barthel, E.; Doll, G.L.; Murray, C.E.; Stoessel, C.H.; Martinu, L. Review Article: Stress in thin films and coatings: Current status, challenges, and prospects. J. Vac. Sci. Technol. A 2018, 36, 020801. [Google Scholar] [CrossRef]
- El Messaoudi, N.; Franco, D.S.P.; Gubernat, S.; Georgin, J.; Şenol, Z.M.; Ciğeroğlu, Z.; Allouss, D.; El Hajam, M. Advances and future perspectives of water defluoridation by adsorption technology: A review. Environ. Res. 2024, 252, 118857. [Google Scholar] [CrossRef] [PubMed]
- Alessio, P.; da Silva, M.K.C.; Barossi, V.; Miyazaki, C.M. Nanostructured Thin Films Enhancing the Performance of New Organic Electronic Devices: Does It Make Sense? ACS Mater. Au 2024, 4, 574–581. [Google Scholar] [CrossRef]
- Aich, P.; Meneghini, C.; Tortora, L. Advances in Structural and Morphological Characterization of Thin Magnetic Films: A Review. Materials 2023, 16, 7331. [Google Scholar] [CrossRef]
- Văduva, M.; Baibarac, M.; Cramariuc, O. Functionalization of Graphene Derivatives with Conducting Polymers and Their Applications in Uric Acid Detection. Molecules 2022, 28, 135. [Google Scholar] [CrossRef] [PubMed]
- Shepelin, N.A.; Tehrani, Z.P.; Ohannessian, N.; Schneider, C.W.; Pergolesi, D.; Lippert, T. A practical guide to pulsed laser deposition. Chem. Soc. Rev. 2023, 52, 2294–2321. [Google Scholar] [CrossRef]
- Roeder, G.; Liu, S.; Aygun, G.; Evanschitzky, P.; Erdmann, A.; Schellenberger, M.; Pfitzner, L. Determination of the Dill parameters of thick positive resist for use in modeling applications. Thin Solid Film. 2011, 519, 2978–2984. [Google Scholar] [CrossRef]
- Ukoba, K.; Jen, T.-C. Thin Films in Flexible Electronics. In Shaping Tomorrow: Thin Films and 3D Printing in the Fourth Industrial Revolution–Volume 2: Applications; Springer: Cham, Switzerland, 2025; pp. 1–75. [Google Scholar] [CrossRef]
- Ratsch, C.; Venables, J.A. Nucleation theory and the early stages of thin film growth. J. Vac. Sci. Technol. A 2003, 21, S96–S109. [Google Scholar] [CrossRef]
- Evans, J.W.; Thiel, P.A.; Bartelt, M.C. Morphological evolution during epitaxial thin film growth: Formation of 2D islands and 3D mounds. Surf. Sci. Rep. 2006, 61, 1–128. [Google Scholar] [CrossRef]
- Thanh, N.T.K.; Maclean, N.; Mahiddine, S. Mechanisms of Nucleation and Growth of Nanoparticles in Solution. Chem. Rev. 2014, 114, 7610–7630. [Google Scholar] [CrossRef]
- Nandy, A.; Duan, C.; Taylor, M.G.; Liu, F.; Steeves, A.H.; Kulik, H.J. Computational Discovery of Transition-metal Complexes: From High-throughput Screening to Machine Learning. Chem. Rev. 2021, 121, 9927–10000. [Google Scholar] [CrossRef]
- Ohring, M. Substrate Surfaces and Thin-Film Nucleation. In Materials Science of Thin Films, 2nd ed.; Academic Press: Cambridge, MA, USA, 2002; pp. 357–415. [Google Scholar] [CrossRef]
- Ruiz-Gómez, S.; Fernández-González, C.; Perez, L. Electrodeposition as a Tool for Nanostructuring Magnetic Materials. Micromachines 2022, 13, 1223. [Google Scholar] [CrossRef]
- Wang, T.; Li, Q.; Liu, X.; Bilal, M.; Dong, D.; Wang, H. Nanofabrication technologies for low-temperature solid oxide cells: A comprehensive review of techniques, challenges, and future perspectives. Energy Rev. 2025, 4, 100163. [Google Scholar] [CrossRef]
- Fornari, C.I.; Fornari, G.; Rappl, P.H.; Abramof, E.; Travelho, J.D.S. Monte Carlo Simulation of Epitaxial Growth. In Epitaxy; InTech: London, UK, 2018. [Google Scholar]
- Cranston, R.R.; Lessard, B.H. Metal phthalocyanines: Thin-film formation, microstructure, and physical properties. RSC Adv. 2021, 11, 21716–21737. [Google Scholar] [CrossRef] [PubMed]
- Abbas, M.; Zeng, L.; Guo, F.; Rauf, M.; Yuan, X.C.; Cai, B. A Critical Review on Crystal Growth Techniques for Scalable Deposition of Photovoltaic Perovskite Thin Films. Materials 2020, 13, 4851. [Google Scholar] [CrossRef]
- Kaiser, N. Review of the fundamentals of thin-film growth. Appl. Opt. 2002, 41, 3053–3060. [Google Scholar] [CrossRef]
- Prieto, J.E.; Markov, I. Stranski–Krastanov mechanism of growth and the effect of misfit sign on quantum dots nucleation. Surf. Sci. 2017, 664, 172–184. [Google Scholar] [CrossRef]
- Eisenberg, H.R.; Kandel, D. Origin and properties of the wetting layer and early evolution of epitaxially strained thin films. Phys. Rev. B 2002, 66, 155429. [Google Scholar] [CrossRef]
- Vasilakos, K.; Thomas, N.; Hermassi, M.; Campo, P.; McAdam, E. On the role of crystal-liquid interfacial energy in determining scaling, nucleation and crystal growth in membrane distillation crystallisation. J. Memb. Sci. 2025, 725, 123978. [Google Scholar] [CrossRef]
- Bera, S.; Das, S. Nucleation and particle growth in solution-processed thin films. In Chemical Solution Synthesis for Materials Design and Thin Film Device Applications; Elsevier: Amsterdam, The Netherlands, 2021; pp. 1–27. [Google Scholar] [CrossRef]
- Kalin, M.; Polajnar, M. The correlation between the surface energy, the contact angle and the spreading parameter, and their relevance for the wetting behaviour of DLC with lubricating oils. Tribol. Int. 2013, 66, 225–233. [Google Scholar] [CrossRef]
- Li, X.; Ren, L.; Zheng, X.; Poudel, B.; Wang, K.; Qian, J. Multiscale Coupling Between Macroscopic Mechanics and Atomic Assembly (MM–AA) of Soft-Lattice Halide Perovskites. Aggregate 2025, e70170. [Google Scholar] [CrossRef]
- Perez, M. Gibbs–Thomson effects in phase transformations. Scr. Mater. 2005, 52, 709–712. [Google Scholar] [CrossRef]
- McLean, J.G.; Krishnamachari, B.; Peale, D.R.; Chason, E.; Sethna, J.P.; Cooper, B.H. Decay of isolated surface features driven by the Gibbs-Thomson effect in an analytic model and a simulation. Phys. Rev. B 1997, 55, 1811–1823. [Google Scholar] [CrossRef]
- Krishnamachari, B.; McLean, J.; Cooper, B.; Sethna, J. Gibbs-Thomson formula for small island sizes: Corrections for high vapor densities. Phys. Rev. B 1996, 54, 8899–8907. [Google Scholar] [CrossRef] [PubMed]
- Bergwerff, L.; van Paassen, L.A. Review and Recalculation of Growth and Nucleation Kinetics for Calcite, Vaterite and Amorphous Calcium Carbonate. Crystals 2021, 11, 1318. [Google Scholar] [CrossRef]
- Harsdorff, M. Heterogeneous nucleation and growth of thin films. Thin Solid Film. 1982, 90, 1–14. [Google Scholar] [CrossRef]
- Podkaminer, J.P.; Patzner, J.J.; Davidson, B.A.; Eom, C.B. Real-time and in situ monitoring of sputter deposition with RHEED for atomic layer controlled growth. APL Mater. 2016, 4, 086111. [Google Scholar] [CrossRef]
- Bauer, E.; van der Merwe, J.H. Structure and growth of crystalline superlattices: From monolayer to superlattice. Phys. Rev. B 1986, 33, 3657–3671. [Google Scholar] [CrossRef] [PubMed]
- Das, A.; Apu, M.M.H.; Akter, A.; Al Reza, M.M.; Mia, R. An overview of phase change materials, their production, and applications in textiles. Results Eng. 2025, 25, 103603. [Google Scholar] [CrossRef]
- Marshall, M.S.J.; Castell, M.R. Scanning tunnelling microscopy of epitaxial nanostructures. Chem. Soc. Rev. 2014, 43, 2226. [Google Scholar] [CrossRef]
- Jensen, P. Growth of nanostructures by cluster deposition: Experiments and simple models. Rev. Mod. Phys. 1999, 71, 1695–1735. [Google Scholar] [CrossRef]
- Kaganer, V.M.; Jenichen, B.; Shayduk, R.; Braun, W.; Riechert, H. Kinetic Optimum of Volmer-Weber Growth. Phys. Rev. Lett. 2009, 102, 016103. [Google Scholar] [CrossRef]
- Lorenz, M.; Wei, H.; Jung, F.; Hohenberger, S.; Hochmuth, H.; Grundmann, M.; Patzig, C.; Selle, S.; Höche, T. Two-dimensional Frank–van-der-Merwe growth of functional oxide and nitride thin film superlattices by pulsed laser deposition. J. Mater. Res. 2017, 32, 3936–3946. [Google Scholar] [CrossRef]
- Chen, H.; Wang, X.; Zhang, R. Application and Development Progress of Cr-Based Surface Coating in Nuclear Fuel Elements: II. Current Status and Shortcomings of Performance Studies. Coatings 2020, 10, 835. [Google Scholar] [CrossRef]
- Zhou, K.; Zhou, Y.; Jia, Z.; Ding, G.; Ma, X.-Q.; Niu, W.; Yang, S.; Han, S.-T.; Zhao, J.; Zhou, Y. Single-crystal metal-organic frameworks for electronic and opto-electronic devices. Cell Rep. Phys. Sci. 2023, 4, 101656. [Google Scholar] [CrossRef]
- Baskaran, A.; Smereka, P. Mechanisms of Stranski-Krastanov growth. J. Appl. Phys. 2012, 111, 044321. [Google Scholar] [CrossRef]
- Yu, Y.-M.; Voigt, A.; Guo, X.; Liu, Y. Simultaneous step meandering and bunching instabilities controlled by Ehrlich-Schwoebel barrier and elastic interaction. Appl. Phys. Lett. 2011, 99, 263106. [Google Scholar] [CrossRef]
- Hong, W.; Lee, H.N.; Yoon, M.; Christen, H.M.; Lowndes, D.H.; Suo, Z.; Zhang, Z. Persistent Step-Flow Growth of Strained Films on Vicinal Substrates. Phys. Rev. Lett. 2005, 95, 095501. [Google Scholar] [CrossRef]
- Manser, J.S.; Christians, J.A.; Kamat, P.V. Intriguing Optoelectronic Properties of Metal Halide Perovskites. Chem. Rev. 2016, 116, 12956–13008. [Google Scholar] [CrossRef]
- Itagaki, N.; Nakamura, Y.; Narishige, R.; Takeda, K.; Kamataki, K.; Koga, K.; Hori, M.; Shiratani, M. Growth of single crystalline films on lattice-mismatched substrates through 3D to 2D mode transition. Sci. Rep. 2020, 10, 4669. [Google Scholar] [CrossRef]
- Zhang, Z.; Lagally, M.G. Atomistic Processes in the Early Stages of Thin-Film Growth. Science 1997, 276, 377–383. [Google Scholar] [CrossRef]
- Wrigley, J.D.; Ehrlich, G. Surface Diffusion by an Atomic Exchange Mechanism. Phys. Rev. Lett. 1980, 44, 661–663. [Google Scholar] [CrossRef]
- Dang, Z.; Chang, Y.; Wu, J.; Zhang, Z.; Tang, Z.; Wang, Y. Decoding complexity in chemical vapor deposition processes of two-dimensional materials via atomistic modeling. Phys. Chem. Chem. Phys. 2025, 27, 18821–18854. [Google Scholar] [CrossRef] [PubMed]
- Einax, M.; Dieterich, W.; Maass, P. Colloquium: Cluster growth on surfaces: Densities, size distributions, and morphologies. Rev. Mod. Phys. 2013, 85, 921–939. [Google Scholar] [CrossRef]
- Jeong, S.; Jeong, H. Adatom-dependent diffusion mechanisms on a Ag/Si (111) √3x√3 surface. Phys. Rev. B 2010, 81, 195429. [Google Scholar] [CrossRef]
- Ferrón, J.; Miranda, R.; de Miguel, J.J. Atomic jumps during surface diffusion. Phys. Rev. B 2009, 79, 245407. [Google Scholar] [CrossRef]
- Galdikas, A. Non-monotonous dependence of surface roughness on factors influencing energy of adatoms during thin island film growth. Surf. Sci. 2006, 600, 2705–2710. [Google Scholar] [CrossRef]
- MubarakAli, D.; Kim, S.-M.; Ko, Y.-B.; Kim, J.-W.; Jang, Y.-J.; Lee, S.-Y. Synthesis of Ag-Doped Tetrahedral Amorphous Carbon Coatings and Their Antibiofilm Efficacy for Medical Implant Application. Nanomaterials 2024, 14, 1017. [Google Scholar] [CrossRef]
- Liu, Z.-J.; Shen, Y.G. Temperature effect on surface roughening of thin films. Surf. Sci. 2005, 595, 20–29. [Google Scholar] [CrossRef]
- Ehrlich, G.; Hudda, F.G. Atomic View of Surface Self-Diffusion: Tungsten on Tungsten. J. Chem. Phys. 1966, 44, 1039–1049. [Google Scholar] [CrossRef]
- Politi, P.; Villain, J. Ehrlich-Schwoebel instability in molecular-beam epitaxy: A minimal model. Phys. Rev. B 1996, 54, 5114–5129. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.J.; Huang, H.; Woo, C.H. Schwoebel-Ehrlich barrier: From two to three dimensions. Appl. Phys. Lett. 2002, 80, 3295–3297. [Google Scholar] [CrossRef]
- Li, S.-C.; Han, Y.; Jia, J.-F.; Xue, Q.-K.; Liu, F. Determination of the Ehrlich-Schwoebel barrier in epitaxial growth of thin films. Phys. Rev. B 2006, 74, 195428. [Google Scholar] [CrossRef]
- Gianfrancesco, A.G.; Tselev, A.; Baddorf, A.P.; Kalinin, S.V.; Vasudevan, R.K. The Ehrlich–Schwoebel barrier on an oxide surface: A combined Monte-Carlo and in situ scanning tunneling microscopy approach. Nanotechnology 2015, 26, 455705. [Google Scholar] [CrossRef]
- Myint, P.; Erb, D.; Zhang, X.; Wiegart, L.; Zhang, Y.; Fluerasu, A.; Headrick, R.L.; Facsko, S.; Ludwig, K.F. Measurement of Ehrlich-Schwoebel barrier contribution to the self-organized formation of ordered surface patterns on Ge(001). Phys. Rev. B 2020, 102, 201404. [Google Scholar] [CrossRef]
- Martynec, T.; Karapanagiotis, C.; Klapp, S.H.L.; Kowarik, S. Machine learning predictions of surface migration barriers in nucleation and non-equilibrium growth. Commun. Mater. 2021, 2, 90. [Google Scholar] [CrossRef]
- People, R.; Bean, J.C. Calculation of critical layer thickness versus lattice mismatch for GexSi1−x/Si strained-layer heterostructures. Appl. Phys. Lett. 1985, 47, 322–324. [Google Scholar] [CrossRef]
- Hu, S.M. Misfit dislocations and critical thickness of heteroepitaxy. J. Appl. Phys. 1991, 69, 7901–7903. [Google Scholar] [CrossRef]
- Subramaniam, A. Critical thickness of equilibrium epitaxial thin films using finite element method. J. Appl. Phys. 2004, 95, 8472–8474. [Google Scholar] [CrossRef]
- Wang, T.; Ganguly, K.; Marshall, P.; Xu, P.; Jalan, B. Critical thickness and strain relaxation in molecular beam epitaxy-grown SrTiO3 films. Appl. Phys. Lett. 2013, 103, 212904. [Google Scholar] [CrossRef]
- Lee, S.; Wang, S.D.; Hsueh, C.H. Critical epitaxial film thickness for forming interface dislocations. Mater. Sci. Eng. A 2001, 309–310, 473–477. [Google Scholar] [CrossRef]
- Forrest, S.R. Ultrathin Organic Films Grown by Organic Molecular Beam Deposition and Related Techniques. Chem. Rev. 1997, 97, 1793–1896. [Google Scholar] [CrossRef]
- Trushin, O.; Jalkanen, J.; Granato, E.; Ying, S.C.; Ala-Nissila, T. Atomistic studies of strain relaxation in heteroepitaxial systems. J. Phys. Condens. Matter 2009, 21, 084211. [Google Scholar] [CrossRef]
- Huff, M. Review Paper: Residual Stresses in Deposited Thin-Film Material Layers for Micro- and Nano-Systems Manufacturing. Micromachines 2022, 13, 2084. [Google Scholar] [CrossRef] [PubMed]
- Huang, F.Y. Theory of Strain Relaxation for Epitaxial Layers Grown on Substrate of a Finite Dimension. Phys. Rev. Lett. 2000, 85, 784–787. [Google Scholar] [CrossRef] [PubMed]
- Narayan, J.; Oktyabrsky, S. Formation of misfit dislocations in thin film heterostructures. J. Appl. Phys. 2002, 92, 7122–7127. [Google Scholar] [CrossRef]
- Lin, J.; Kilani, M.; Baharfar, M.; Wang, R.; Mao, G. Understanding the nanoscale phenomena of nucleation and crystal growth in electrodeposition. Nanoscale 2024, 16, 19564–19588. [Google Scholar] [CrossRef]
- Marshall, A.F.; Aubertine, D.B.; Nix, W.D.; McIntyre, P.C. Misfit dislocation dissociation and Lomer formation in low mismatch SiGe/Si heterostructures. J. Mater. Res. 2005, 20, 447–455. [Google Scholar] [CrossRef]
- Izyumskaya, N.F.; Avrutin, V.S.; Vyatkin, A.F. Control over strain relaxation in Si-based heterostructures. Solid-State Electron. 2004, 48, 1265–1278. [Google Scholar] [CrossRef]
- Mano, T.; Ohtake, A.; Kuroda, T. Lattice-Mismatched Epitaxy of InAs on (111)A-Oriented Substrate: Metamorphic Layer Growth and Self-Assembly of Quantum Dots. Phys. Status Solidi 2024, 221, 2300767. [Google Scholar] [CrossRef]
- Nix, W.D.; Clemens, B.M. Crystallite coalescence: A mechanism for intrinsic tensile stresses in thin films. J. Mater. Res. 1999, 14, 3467–3473. [Google Scholar] [CrossRef]
- Windischmann, H. Intrinsic stress in sputter-deposited thin films. Crit. Rev. Solid State Mater. Sci. 1992, 17, 547–596. [Google Scholar] [CrossRef]
- Johlin, E.; Tabet, N.; Castro-Galnares, S.; Abdallah, A.; Bertoni, M.I.; Asafa, T.; Grossman, J.C.; Said, S.; Buonassisi, T. Structural origins of intrinsic stress in amorphous silicon thin films. Phys. Rev. B 2012, 85, 075202. [Google Scholar] [CrossRef]
- Chen, K.-S.; Zhang, X.; Lin, S.-Y. Intrinsic stress generation and relaxation of plasma-enhanced chemical vapor deposited oxide during deposition and subsequent thermal cycling. Thin Solid Film. 2003, 434, 190–202. [Google Scholar] [CrossRef]
- Yang, Y.; Winkler, A.; Karimzadeh, A. A Practical Approach for Determination of Thermal Stress and Temperature-Dependent Material Properties in Multilayered Thin Films. ACS Appl. Mater. Interfaces 2024, 16, 31729–31737. [Google Scholar] [CrossRef] [PubMed]
- Chai, H.; Fox, J. On delamination growth from channel cracks in thin-film coatings. Int. J. Solids Struct. 2012, 49, 3142–3147. [Google Scholar] [CrossRef]
- Toth, F.; Rammerstorfer, F.G.; Cordill, M.J.; Fischer, F.D. Detailed modelling of delamination buckling of thin films under global tension. Acta Mater. 2013, 61, 2425–2433. [Google Scholar] [CrossRef] [PubMed]
- Javeria, U.; Kim, S.J. Investigation of hydrogen embrittlement in steel alloys: Mechanism, factors, advanced methods and materials, applications, challenges, and future directions: A review. J. Mater. Res. Technol. 2025, 38, 1276–1301. [Google Scholar] [CrossRef]
- Liu, S.; Nambu, S. Effect of plastic deformability and fracture behaviour on interfacial toughening mechanism at Fe/Ni interfaces. Int. J. Plast. 2024, 181, 104107. [Google Scholar] [CrossRef]
- Grachev, S.; Hérault, Q.; Wang, J.; Balestrieri, M.; Montigaud, H.; Lazzari, R.; Gozhyk, I. A new method for high resolution curvature measurement applied to stress monitoring in thin films. Nanotechnology 2022, 33, 185701. [Google Scholar] [CrossRef]
- Zhu, C.; Bamidele, E.A.; Shen, X.; Zhu, G.; Li, B. Machine Learning Aided Design and Optimization of Thermal Metamaterials. Chem. Rev. 2024, 124, 4258–4331. [Google Scholar] [CrossRef] [PubMed]
- Marthelot, J.; Roman, B.; Bico, J.; Teisseire, J.; Dalmas, D.; Melo, F. Self-Replicating Cracks: A Collaborative Fracture Mode in Thin Films. Phys. Rev. Lett. 2014, 113, 085502. [Google Scholar] [CrossRef]
- Khachatryan, H.; Lee, S.N.; Kim, K.B.; Kim, M. Deposition of Al Thin Film on Steel Substrate: The Role of Thickness on Crystallization and Grain Growth. Metals 2018, 9, 12. [Google Scholar] [CrossRef]
- González-Solórzano, M.G.; Morales, R.; Ávila, J.R.; Muñiz-Valdés, C.R.; Bastida, A.N. Alumina Nucleation, Growth Kinetics, and Morphology: A Review. Steel Res. Int. 2023, 94, 2200678. [Google Scholar] [CrossRef]
- Ali, H.; Ali, S.; Ali, K.; Ullah, S.; Ismail, P.M.; Humayun, M.; Zeng, C. Impact of the nanoparticle incorporation in enhancing mechanical properties of polymers. Results Eng. 2025, 27, 106151. [Google Scholar] [CrossRef]
- Hong, T.; Guo, C.; Zhang, Y.; Zhan, R.; Zhao, P.; Li, B.; Deng, S. Effects of Substrates on Nucleation, Growth and Electrical Property of Vertical Few-Layer Graphene. Nanomaterials 2022, 12, 971. [Google Scholar] [CrossRef]
- Steward, P.A.; Hearn, J.; Wilkinson, M.C. An overview of polymer latex film formation and properties. Adv. Colloid Interface Sci. 2000, 86, 195–267. [Google Scholar] [CrossRef]
- Bhushan, B.; Jung, Y.C. Wetting, adhesion and friction of superhydrophobic and hydrophilic leaves and fabricatedmicro/nanopatterned surfaces. J. Phys. Condens. Matter 2008, 20, 225010. [Google Scholar] [CrossRef]
- Schmitt, P.; Beladiya, V.; Felde, N.; Paul, P.; Otto, F.; Fritz, T.; Tünnermann, A.; Szeghalmi, A.V. Influence of Substrate Materials on Nucleation and Properties of Iridium Thin Films Grown by ALD. Coatings 2021, 11, 173. [Google Scholar] [CrossRef]
- Fan, Z.; Men, H. An Overview on Atomistic Mechanisms of Heterogeneous Nucleation. Metals 2022, 12, 1547. [Google Scholar] [CrossRef]
- Chowdhury, I.; Ali, M.Y.; Howlader, M.M.R. Advances in etching of 2D nanomaterials: Research challenges and advanced devices. Prog. Eng. Sci. 2025, 2, 100154. [Google Scholar] [CrossRef]
- Colin, J.; Jamnig, A.; Furgeaud, C.; Michel, A.; Pliatsikas, N.; Sarakinos, K.; Abadias, G. In Situ and Real-Time Nanoscale Monitoring of Ultra-Thin Metal Film Growth Using Optical and Electrical Diagnostic Tools. Nanomaterials 2020, 10, 2225. [Google Scholar] [CrossRef]
- Ranguelov, B.S.; Markov, I.V. Adatom diffusion on vicinal surfaces with permeable steps. Cent. Eur. J. Phys. 2009, 7, 350–355. [Google Scholar] [CrossRef]
- Rahaman, I.; Ellis, H.D.; Chang, C.; Mudiyanselage, D.H.; Xu, M.; Da, B.; Fu, H.; Zhao, Y.; Fu, K. Epitaxial Growth of Ga2O3: A Review. Materials 2024, 17, 4261. [Google Scholar] [CrossRef]
- Andrei, F.; Dinescu, M.; Ion, V.; Craciun, F.; Birjega, R.; Scarisoreanu, N.D. Impact of Structural Strain in Perovskite Epitaxial Thin Films on Their Functional Properties. Crystals 2023, 13, 1686. [Google Scholar] [CrossRef]
- Wen, H.; Zhang, H.; Liu, Z.; Liu, C.; Liu, S.; Yang, X.; Liu, F.; Xie, H. Quantitative evaluation of the interface lattice quality of a strain superlattice by strain analysis. Nanoscale 2018, 10, 17567–17575. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Xiang, P.; Liu, M.; Chen, W.; He, Z.; Han, X.; Ni, Y.; Yang, F.; Yao, Y.; Wu, Z.; et al. Effect of compositionally graded AlGaN buffer layer grown by different functions of trimethylaluminum flow rates on the properties of GaN on Si (111) substrates. J. Cryst. Growth 2013, 376, 23–27. [Google Scholar] [CrossRef]
- Yi, B.; Xu, Q.; Liu, W. An overview of substrate stiffness guided cellular response and its applications in tissue regeneration. Bioact. Mater. 2022, 15, 82–102. [Google Scholar] [CrossRef]
- Rahman, M.M.; Khatun, F.; Jahan, I.; Devnath, R.; Bhuiyan, M.A.-A. Cobotics: The Evolving Roles and Prospects of Next-Generation Collaborative Robots in Industry 5.0. J. Robot. 2024, 2024, 2918089. [Google Scholar] [CrossRef]
- Suryani, S.; Chaniago, H. Digital Literacy and Its Impact on Entrepreneurial Intentions: Studies on Vocational Students. Int. J. Adm. Bus. Organ. 2023, 4, 16–22. [Google Scholar] [CrossRef]
- Wang, J.J.; Chang, S.Y.; Ouyang, F.Y. Effect of substrate bias on the microstructure and properties of (AlCrSiNbZr)Nx high entropy nitride thin film. Surf. Coat. Technol. 2020, 393, 125796. [Google Scholar] [CrossRef]
- Qian, W.; Zhao, W.; Qian, T.; Xu, Q. Emergence and growth dynamics of wetting-induced phase separation on soft solids. Phys. Rev. Res. 2024, 6, 033210. [Google Scholar] [CrossRef]
- Vishnoi, M.; Kumar, P.; Murtaza, Q. Surface texturing techniques to enhance tribological performance: A review. Surf. Interfaces 2021, 27, 101463. [Google Scholar] [CrossRef]
- Kuzmik, J.; Pozzovivo, G.; Ostermaier, C.; Strasser, G.; Pogany, D.; Gornik, E.; Carlin, J.F.; Gonschorek, M.; Feltin, E.; Grandjean, N. Analysis of degradation mechanisms in lattice-matched InAlN/GaN high-electron-mobility transistors. J. Appl. Phys. 2009, 106, 124503. [Google Scholar] [CrossRef]
- Chen, X.; Lin, J.; Zhu, J.; Tao, Z.; Qiu, L. Evaluation of film adhesion strength on textured surface: Experiments and mechanisms. Surf. Coat. Technol. 2025, 513, 132452. [Google Scholar] [CrossRef]
- Meza-Arroyo, J.; Ramírez-Bon, R. Organic–Inorganic Hybrid Dielectric Layers for Low-Temperature Thin-Film Transistors Applications: Recent Developments and Perspectives. Technologies 2025, 13, 20. [Google Scholar] [CrossRef]
- Rivera Reséndiz, L.P.; Quiñones Galván, J.G. Thin-Film Deposition: From Fundamental Research to Applications. Micromachines 2024, 15, 1503. [Google Scholar] [CrossRef]
- Plociennik, P.; Zawadzka, A.; Frankowski, R.; Korcala, A. Selected methods of thin films deposition and their applications. In Proceedings of the 18th International Conference on Transparent Optical Networks (ICTON), Trento, Italy, 10–14 July 2016; pp. 1–4. [Google Scholar] [CrossRef]
- Baptista, A.; Silva, F.J.G.; Porteiro, J.; Míguez, J.L.; Pinto, G.; Fernandes, L. On the Physical Vapour Deposition (PVD): Evolution of Magnetron Sputtering Processes for Industrial Applications. Procedia Manuf. 2018, 17, 746–757. [Google Scholar] [CrossRef]
- Martín-Palma, R.J.; Lakhtakia, A. Vapor-Deposition Techniques. In Engineered Biomimicry; Elsevier: Amsterdam, The Netherlands, 2013; pp. 383–398. [Google Scholar]
- Baptista, A.; Silva, F.; Porteiro, J.; Míguez, J.; Pinto, G. Sputtering Physical Vapour Deposition (PVD) Coatings: A Critical Review on Process Improvement and Market Trend Demands. Coatings 2018, 8, 402. [Google Scholar] [CrossRef]
- Saikia, R.; Kakati, B.; Hazarika, T.; Sharma, S.; Rajbongshi, T.; Das, M.; Biswas, S.; Kundu, S.; Mahanta, M.K. Fabrication of Microcrystalline Silicon Thin Film by Ionized Physical Vapor Deposition Process. Crystals 2025, 15, 106. [Google Scholar] [CrossRef]
- Paul, R.; Hossain, M.F.; Muktadir, M.S.; Faisal, K.N. Fabrication of a cost effective thermal evaporation system for thin film deposition. In Proceedings of the 4th International Conference on Advances in Electrical Engineering (ICAEE), Dhaka, Bangladesh, 28–30 September 2017; pp. 703–706. [Google Scholar] [CrossRef]
- Hamid, N.; Suhaimi, S.; Othman, M.Z.; Ismail, W.Z.W. A Review on Thermal Evaporation Method to Synthesis Zinc Oxide as Photocatalytic Material. Nano Hybrids Compos. 2021, 31, 55–63. [Google Scholar] [CrossRef]
- Qaid, S.M.H.; Ghaithan, H.M.; Al-Asbahi, B.A.; Aldwayyan, A.S. Single-Source Thermal Evaporation Growth and the Tuning Surface Passivation Layer Thickness Effect in Enhanced Amplified Spontaneous Emission Properties of CsPb(Br0.5Cl0.5)3 Perovskite Films. Polymers 2020, 12, 2953. [Google Scholar] [CrossRef]
- Wang, B.; Fu, X.; Song, S.; Chu, H.O.; Gibson, D.; Li, C.; Shi, Y.; Wu, Z. Simulation and Optimization of Film Thickness Uniformity in Physical Vapor Deposition. Coatings 2018, 8, 325. [Google Scholar] [CrossRef]
- Butt, M.A. Thin-Film Coating Methods: A Successful Marriage of High-Quality and Cost-Effectiveness—A Brief Exploration. Coatings 2022, 12, 1115. [Google Scholar] [CrossRef]
- Afshari, M. Molecular Beam Epitaxy: Principals, Advantages and Challenges. In Nanofabrication—The Art of Manipulating Matter at the Nanoscale; IntechOpen: London, UK, 2025. [Google Scholar]
- Yushkov, Y.G.; Oks, E.M.; Tyunkov, A.V.; Yushenko, A.Y.; Zolotukhin, D.B. Electron-Beam Deposition of Aluminum Nitride and Oxide Ceramic Coatings for Microelectronic Devices. Coatings 2021, 11, 645. [Google Scholar] [CrossRef]
- Wang, D.; Liu, Z.; Liu, W. Experimental study of the electron beam application for evaporation of cobalt, tin and copper. Vacuum 2023, 209, 111757. [Google Scholar] [CrossRef]
- Depla, D.; Mahieu, S.; Greene, J.E. Sputter Deposition Processes. In Handbook of Deposition Technologies for Films and Coatings; Elsevier: Amsterdam, The Netherlands, 2010; pp. 253–296. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, Q.; Ramachandran, C.S.; Guo, P.; Wang, A. Microstructure and Performance of High-Velocity Oxygen-Fuel Coupled Physical Vapor Deposition (HVOF-PVD) Duplex Protective Coatings: A Review. Coatings 2022, 12, 1395. [Google Scholar] [CrossRef]
- Garg, R.; Gonuguntla, S.; Sk, S.; Iqbal, M.S.; Dada, A.O.; Pal, U.; Ahmadipour, M. Sputtering thin films: Materials, applications, challenges and future directions. Adv. Colloid Interface Sci. 2024, 330, 103203. [Google Scholar] [CrossRef] [PubMed]
- Sabnis, A.G. D.C. Sputtering Process: Its Characterization and its Problems When Applied to Tin-Dioxide Thin-Films. Act. Passiv. Electron. Compon. 1980, 7, 19–22. [Google Scholar] [CrossRef]
- Gulkowski, S.; Krawczak, E. RF/DC Magnetron Sputtering Deposition of Thin Layers for Solar Cell Fabrication. Coatings 2020, 10, 791. [Google Scholar] [CrossRef]
- Panjan, P.; Drnovšek, A.; Gselman, P.; Čekada, M.; Panjan, M. Review of Growth Defects in Thin Films Prepared by PVD Techniques. Coatings 2020, 10, 447. [Google Scholar] [CrossRef]
- Keller, J.H.; Pennebaker, W.B. Electrical Properties of RF Sputtering Systems. IBM J. Res. Dev. 1979, 23, 3–15. [Google Scholar] [CrossRef]
- Thao, C.P.; Kuo, D.-H.; Tuan, T.T.A.; Tuan, K.A.; Vu, N.H.; Via Sa Na, T.T.; Van Nhut, K.; Sau, N. Van The Effect of RF Sputtering Conditions on the Physical Characteristics of Deposited GeGaN Thin Film. Coatings 2019, 9, 645. [Google Scholar] [CrossRef]
- Kang, G.H.; Jung, K.C.; Kim, J.; Kang, J.H.; Kim, I.S.; Kim, Y.H. Growth of High-Quality Perovskite KTa1−xNbxO3 Thin Films by RF Magnetron Co-Sputtering. Coatings 2022, 12, 1787. [Google Scholar] [CrossRef]
- Tchenka, A.; Agdad, A.; Samba Vall, M.C.; Hnawi, S.K.; Narjis, A.; Nkhaili, L.; Ibnouelghazi, E.; Ech-Chamikh, E. Effect of RF Sputtering Power and Deposition Time on Optical and Electrical Properties of Indium Tin Oxide Thin Film. Adv. Mater. Sci. Eng. 2021, 2021, 5556305. [Google Scholar] [CrossRef]
- Hegedüs, N.; Balázsi, C.; Kolonits, T.; Olasz, D.; Sáfrán, G.; Serényi, M.; Balázsi, K. Investigation of the RF Sputtering Process and the Properties of Deposited Silicon Oxynitride Layers under Varying Reactive Gas Conditions. Materials 2022, 15, 6313. [Google Scholar] [CrossRef]
- Kelly, P.; Arnell, R. Magnetron sputtering: A review of recent developments and applications. Vacuum 2000, 56, 159–172. [Google Scholar] [CrossRef]
- Fu, Y.; Peng, J.; He, M.; Shuai, W. DC Magnetron Sputtering Particle Distribution and Energy Simulation Study. In Proceedings of the IEEE 4th International Conference on Electrical Materials and Power Equipment (ICEMPE), Shanghai, China, 7–10 May 2023; pp. 1–4. [Google Scholar]
- Maurya, D.; Sardarinejad, A.; Alameh, K. Recent Developments in R.F. Magnetron Sputtered Thin Films for pH Sensing Applications—An Overview. Coatings 2014, 4, 756–771. [Google Scholar] [CrossRef]
- Padamata, S.K.; Yasinskiy, A.; Yanov, V.; Saevarsdottir, G. Magnetron Sputtering High-Entropy Alloy Coatings: A Mini-Review. Metals 2022, 12, 319. [Google Scholar] [CrossRef]
- Lowkis, B.; Ziaja, J.; Klaus, P.; Krawczyk, D. Effect of magnetron sputtering parameters on dielectric properties of PTFE foil. IEEE Trans. Dielectr. Electr. Insul. 2020, 27, 837–841. [Google Scholar] [CrossRef]
- Sun, L.; Yuan, G.; Gao, L.; Yang, J.; Chhowalla, M.; Gharahcheshmeh, M.H.; Gleason, K.K.; Choi, Y.S.; Hong, B.H.; Liu, Z. Chemical vapour deposition. Nat. Rev. Methods Prim. 2021, 1, 5. [Google Scholar] [CrossRef]
- Ghadai, R.K.; Logesh, K.; Čep, R.; Chohan, J.S.; Kalita, K. Influence of Deposition Time on Titanium Nitride (TiN) Thin Film Coating Synthesis Using Chemical Vapour Deposition. Materials 2023, 16, 4611. [Google Scholar] [CrossRef]
- Choy, K. Chemical vapour deposition of coatings. Prog. Mater. Sci. 2003, 48, 57–170. [Google Scholar] [CrossRef]
- Sabzi, M.; Mousavi Anijdan, S.; Shamsodin, M.; Farzam, M.; Hojjati-Najafabadi, A.; Feng, P.; Park, N.; Lee, U. A Review on Sustainable Manufacturing of Ceramic-Based Thin Films by Chemical Vapor Deposition (CVD): Reactions Kinetics and the Deposition Mechanisms. Coatings 2023, 13, 188. [Google Scholar] [CrossRef]
- Zhao, X.; Wei, C.; Gai, Z.; Yu, S.; Ren, X. Chemical vapor deposition and its application in surface modification of nanoparticles. Chem. Pap. 2020, 74, 767–778. [Google Scholar] [CrossRef]
- Seravalli, L.; Bosi, M. A Review on Chemical Vapour Deposition of Two-Dimensional MoS2 Flakes. Materials 2021, 14, 7590. [Google Scholar] [CrossRef]
- Feng, Z.; Karim, M.R.; Zhao, H. Low pressure chemical vapor deposition of β-Ga2O3 thin films: Dependence on growth parameters. APL Mater. 2019, 7, 022514. [Google Scholar] [CrossRef]
- Chiu, H.; Wu, P. Low-Pressure Chemical Vapor Deposition of Silicon Carbide Thin Films from Organopolysilanes. J. Chin. Chem. Soc. 1991, 38, 231–234. [Google Scholar] [CrossRef]
- Razeghi, M.; Poisson, M.A.; Larivain, J.P.; Duchemin, J.P. Low pressure metalorganic chemical vapor deposition of InP and related compounds. J. Electron. Mater. 1983, 12, 371–395. [Google Scholar] [CrossRef]
- Arif, M.; Ali, H.H.; Khurshid, A.; Sagir, M.; Azhar, U.; Habiba, U.; Tahir, M.B.; Mushtaq, M.A.; Yasin, G. Plasma-assisted advanced nanomaterials for hydrogen production. In Plasma at the Nanoscale; Elsevier: Amsterdam, The Netherlands, 2022; pp. 291–312. [Google Scholar] [CrossRef]
- Sugiura, H.; Kondo, H.; Tsutsumi, T.; Ishikawa, K.; Hori, M. Effects of Ion Bombardment Energy Flux on Chemical Compositions and Structures of Hydrogenated Amorphous Carbon Films Grown by a Radical-Injection Plasma-Enhanced Chemical Vapor Deposition. C 2019, 5, 8. [Google Scholar] [CrossRef]
- Lavagna, L.; Nisticò, R.; Musso, S.; Pavese, M. Functionalization as a way to enhance dispersion of carbon nanotubes in matrices: A review. Mater. Today Chem. 2021, 20, 100477. [Google Scholar] [CrossRef]
- Haldar, N.; Mondal, T.; Ghosh, C.K. Carbon-based coatings: Synthesis and applications. In Comprehensive Materials Processing; Elsevier: Amsterdam, The Netherlands, 2024; pp. 439–455. [Google Scholar] [CrossRef]
- Yang, F.H. Modern metal-organic chemical vapor deposition (MOCVD) reactors and growing nitride-based materials. In Nitride Semiconductor Light-Emitting Diodes (LEDs); Elsevier: Amsterdam, The Netherlands, 2014; pp. 27–65. [Google Scholar] [CrossRef]
- Donkor, E. Chapter 2 Gallium arsenide heterostructures. In Handbook of Advanced Electronic and Photonic Materials and Devices; Acaddemic Press: Cambridge, MA, USA, 2001; pp. 15–62. [Google Scholar] [CrossRef]
- Gan, Y.; Yu, Z.; Gan, J.; Cheng, W.; Li, M. Gold Catalyst-Assisted Metal Organic Chemical Vapor Deposition of Bi-Te-Ni-Cu-Au Complex Thermoelectric Materials on Anodic Aluminum Oxide Nanoporous Template. Coatings 2018, 8, 166. [Google Scholar] [CrossRef]
- Sarangan, A. Nanofabrication. In Fundamentals and Applications of Nanophotonics; Elsevier: Amsterdam, The Netherlands, 2016; pp. 149–184. [Google Scholar] [CrossRef]
- Bhardwaj, R.; Mukherjee, S. Nanoscale UV photodetectors based on ZnO and alloyed ZnO. In Reference Module in Materials Science and Materials Engineering; Elsevier: Amsterdam, The Netherlands, 2018. [Google Scholar] [CrossRef]
- Zhang, K.; Lin, Y.-C.; Robinson, J.A. Synthesis, Properties, and Stacking of Two-Dimensional Transition Metal Dichalcogenides. In Semiconductors and Semimetals; Academic Press: Cambridge, MA, USA, 2016; pp. 189–219. [Google Scholar] [CrossRef]
- Liu, J.; Zheng, S.; Sunden, B.; Shen, H.; Liu, L.; Łach, Ł.; Svyetlichnyy, D. Recent Progress in Heat and Mass Transfer Modeling for Chemical Vapor Deposition Processes. Energies 2024, 17, 3267. [Google Scholar] [CrossRef]
- Fatigati, F.; Di Bartolomeo, M.; Stamatelos, A.M.; Ferrari, A.; Vassallo, A. The Impact of the Common Rail Fuel Injection System on Performance and Emissions of Modern and Future Compression Ignition Engines. Energies 2025, 18, 5259. [Google Scholar] [CrossRef]
- Xu, H.; Li, K.; Tan, Z.; Jia, J.; Wang, L.; Chen, S. Recent Advances in Chemical Vapor Deposition of Hexagonal Boron Nitride on Insulating Substrates. Nanomaterials 2025, 15, 1059. [Google Scholar] [CrossRef]
- Johnson, R.W.; Hultqvist, A.; Bent, S.F. A brief review of atomic layer deposition: From fundamentals to applications. Mater. Today 2014, 17, 236–246. [Google Scholar] [CrossRef]
- Justin Kunene, T.; Kwanda Tartibu, L.; Ukoba, K.; Jen, T.C. Review of atomic layer deposition process, application and modeling tools. Mater. Today Proc. 2022, 62, S95–S109. [Google Scholar] [CrossRef]
- Sharme, R.K.; Quijada, M.; Terrones, M.; Rana, M.M. Thin Conducting Films: Preparation Methods, Optical and Electrical Properties, and Emerging Trends, Challenges, and Opportunities. Materials 2024, 17, 4559. [Google Scholar] [CrossRef]
- Becker, M.; Sierka, M. Atomistic Simulations of Plasma-Enhanced Atomic Layer Deposition. Materials 2019, 12, 2605. [Google Scholar] [CrossRef]
- Zhang, J.; Li, Y.; Cao, K.; Chen, R. Advances in Atomic Layer Deposition. Nanomanufacturing Metrol. 2022, 5, 191–208. [Google Scholar] [CrossRef]
- Woo, H.J.; Lee, W.J.; Koh, E.K.; Il Jang, S.; Kim, S.; Moon, H.; Kwon, S.H. Plasma-Enhanced Atomic Layer Deposition of TiN Thin Films as an Effective Se Diffusion Barrier for CIGS Solar Cells. Nanomaterials 2021, 11, 370. [Google Scholar] [CrossRef]
- Leskelä, M.; Ritala, M. Atomic Layer Deposition Chemistry: Recent Developments and Future Challenges. Angew. Chem. Int. Ed. 2003, 42, 5548–5554. [Google Scholar] [CrossRef] [PubMed]
- Yan, Z.; Liu, S.; Sun, Y.; Wu, R.; Lin, Y.; Kuo, H.C.; Chen, Z.; Wu, T. Atomic layer deposition technology for the development of high-quality, full-colour micro-LED displays. Next Nanotechnol. 2024, 5, 100051. [Google Scholar] [CrossRef]
- Sibanda, D.; Oyinbo, S.T.; Jen, T.-C.; Ibitoye, A.I. A Mini Review on Thin Film Superconductors. Processes 2022, 10, 1184. [Google Scholar] [CrossRef]
- Oke, J.A.; Jen, T.-C. Atomic layer deposition thin film techniques and its bibliometric perspective. Int. J. Adv. Manuf. Technol. 2023, 126, 4811–4825. [Google Scholar] [CrossRef]
- Arthur, J.R. Molecular beam epitaxy. Surf. Sci. 2002, 500, 189–217. [Google Scholar] [CrossRef]
- Vijaya, G.K.; Freundlich, A.; Tang, D.; Smith, D.J. MBE growth of sharp interfaces in dilute-nitride quantum wells with improved nitrogen-plasma design. J. Vac. Sci. Technol. B 2015, 33, 031209. [Google Scholar] [CrossRef]
- Singh, M.; Sun, Y.; Wang, J. Superconductivity in Nanoscale Systems. In Superconductors-Properties, Technology, and Applications; InTech: London, UK, 2012. [Google Scholar]
- Hayakawa, T.; Suyama, T.; Takahashi, K.; Kondo, M.; Yamamoto, S.; Yano, S.; Hijikata, T. Interface disorder in GaAs/AlGaAs quantum wells grown by MBE. Surf. Sci. 1986, 174, 76–81. [Google Scholar] [CrossRef]
- Vogt, P.; Hensling, F.V.E.; Azizie, K.; McCandless, J.P.; Park, J.; DeLello, K.; Muller, D.A.; Xing, H.G.; Jena, D.; Schlom, D.G. Extending the Kinetic and Thermodynamic Limits of Molecular-Beam Epitaxy Utilizing Suboxide Sources or Metal-Oxide-Catalyzed Epitaxy. Phys. Rev. Appl. 2022, 17, 034021. [Google Scholar] [CrossRef]
- Kim, Y.S.; Bansal, N.; Chaparro, C.; Gross, H.; Oh, S. Sr flux stability against oxidation in oxide-molecular-beam-epitaxy environment: Flux, geometry, and pressure dependence. J. Vac. Sci. Technol. A 2010, 28, 271–276. [Google Scholar] [CrossRef]
- Hensling, F.V.E.; Braun, W.; Kim, D.Y.; Majer, L.N.; Smink, S.; Faeth, B.D.; Mannhart, J. State of the art, trends, and opportunities for oxide epitaxy. APL Mater. 2024, 12, 040902. [Google Scholar] [CrossRef]
- Gard, F.; Riley, J.; Leckey, R.; Usher, B. Reflection high-energy electron diffraction (RHEED) study of MBE growth of ZnSe on GaAs (1 1 1)B surfaces. Appl. Surf. Sci. 2001, 181, 94–102. [Google Scholar] [CrossRef]
- Bandopadhyay, K.; Buza, M.; Chen, C.; Materna, A.; Szlachetko, K.; Piotrowski, P.; Surma, H.B.; Borysiuk, J.; Diduszko, R.; Barinov, A.; et al. Self-organized topological insulator heterostructures via eutectic solidification of Bi2Te3-Te. Next Mater. 2024, 5, 100252. [Google Scholar] [CrossRef]
- Aghaei, M.; Fairbrother, A.; Gok, A.; Ahmad, S.; Kazim, S.; Lobato, K.; Oreski, G.; Reinders, A.; Schmitz, J.; Theelen, M.; et al. Review of degradation and failure phenomena in photovoltaic modules. Renew. Sustain. Energy Rev. 2022, 159, 112160. [Google Scholar] [CrossRef]
- Willmott, P.R.; Huber, J.R. Pulsed laser vaporization and deposition. Rev. Mod. Phys. 2000, 72, 315–328. [Google Scholar] [CrossRef]
- Cai, J.; Li, F.; Zhang, X.; Wang, J.; Yu, Z.; Feng, B.; Li, Y. Application of Pulsed Laser Deposition (PLD) Technology in the Preparation of Two-Dimensional (2D) Film Materials. Materials 2025, 18, 2999. [Google Scholar] [CrossRef]
- Schou, J. Physical aspects of the pulsed laser deposition technique: The stoichiometric transfer of material from target to film. Appl. Surf. Sci. 2009, 255, 5191–5198. [Google Scholar] [CrossRef]
- Yu, J.; Han, W.; Suleiman, A.A.; Han, S.; Miao, N.; Ling, F.C. Recent Advances on Pulsed Laser Deposition of Large-Scale Thin Films. Small Methods 2024, 8, 2301282. [Google Scholar] [CrossRef] [PubMed]
- Christen, H.M.; Eres, G. Recent advances in pulsed-laser deposition of complex oxides. J. Phys. Condens. Matter 2008, 20, 264005. [Google Scholar] [CrossRef]
- De Bonis, A.; Teghil, R. Ultra-Short Pulsed Laser Deposition of Oxides, Borides and Carbides of Transition Elements. Coatings 2020, 10, 501. [Google Scholar] [CrossRef]
- Sakai, S.; Takahashi, M.; Motohashi, K.; Yamaguchi, Y.; Yui, N.; Kobayashi, T. Large-area pulsed-laser deposition of dielectric and ferroelectric thin films. J. Vac. Sci. Technol. A 2007, 25, 903–907. [Google Scholar] [CrossRef]
- Vakulov, Z.; Khakhulin, D.; Zamburg, E.; Mikhaylichenko, A.; Smirnov, V.A.; Tominov, R.; Klimin, V.S.; Ageev, O.A. Towards Scalable Large-Area Pulsed Laser Deposition. Materials 2021, 14, 4854. [Google Scholar] [CrossRef]
- Merlo, A.; Léonard, G. Magnetron Sputtering vs. Electrodeposition for Hard Chrome Coatings: A Comparison of Environmental and Economic Performances. Materials 2021, 14, 3823. [Google Scholar] [CrossRef] [PubMed]
- Dijkkamp, D.; Venkatesan, T.; Wu, X.D.; Shaheen, S.A.; Jisrawi, N.; Min-Lee, Y.H.; McLean, W.L.; Croft, M. Preparation of Y-Ba-Cu oxide superconductor thin films using pulsed laser evaporation from high T c bulk material. Appl. Phys. Lett. 1987, 51, 619–621. [Google Scholar] [CrossRef]
- Fernandez, A.; Acharya, M.; Lee, H.; Schimpf, J.; Jiang, Y.; Lou, D.; Tian, Z.; Martin, L.W. Thin-Film Ferroelectrics. Adv. Mater. 2022, 34, 2108841. [Google Scholar] [CrossRef]
- Cesaria, M.; Mazzeo, M.; Quarta, G.; Aziz, M.R.; Nobile, C.; Carallo, S.; Martino, M.; Calcagnile, L.; Caricato, A.P. Pulsed Laser Deposition of CsPbBr3 Films: Impact of the Composition of the Target and Mass Distribution in the Plasma Plume. Nanomaterials 2021, 11, 3210. [Google Scholar] [CrossRef]
- Bäuerle, D.; Dinescu, M.; Dinu, R.; Pedarnig, J.; Heitz, J.; Schwödiauer, R.; Bauer, S.; Bauer-Gogonea, S. Pulsed-Laser Deposition and Characterization of Thin Films. In Piezoelectric Materials: Advances in Science, Technology and Applications; Springer: Berlin/Heidelberg, Germany, 2000; pp. 261–271. [Google Scholar] [CrossRef]
- Ashfold, M.N.R.; Claeyssens, F.; Fuge, G.M.; Henley, S.J. Pulsed laser ablation and deposition of thin films. Chem. Soc. Rev. 2004, 33, 23. [Google Scholar] [CrossRef]
- Chandrasekaran, S.; Jayakumar, A.; Velu, R. A Comprehensive Review on Printed Electronics: A Technology Drift towards a Sustainable Future. Nanomaterials 2022, 12, 4251. [Google Scholar] [CrossRef]
- Mouhamad, Y.; Mokarian-Tabari, P.; Clarke, N.; Jones, R.A.L.; Geoghegan, M. Dynamics of polymer film formation during spin coating. J. Appl. Phys. 2014, 116, 123513. [Google Scholar] [CrossRef]
- Elias, M.; Uddin, M.N.; Saha, J.K.; Hossain, M.A.; Sarker, D.R.; Akter, S.; Siddiquey, I.A.; Uddin, J. A Highly Efficient and Stable Photocatalyst; N-Doped ZnO/CNT Composite Thin Film Synthesized via Simple Sol-Gel Drop Coating Method. Molecules 2021, 26, 1470. [Google Scholar] [CrossRef]
- Zhang, Z.; Peng, F.; Kornev, K. The Thickness and Structure of Dip-Coated Polymer Films in the Liquid and Solid States. Micromachines 2022, 13, 982. [Google Scholar] [CrossRef]
- Bishop, J.E.; Read, C.D.; Smith, J.A.; Routledge, T.J.; Lidzey, D.G. Fully Spray-Coated Triple-Cation Perovskite Solar Cells. Sci. Rep. 2020, 10, 6610. [Google Scholar] [CrossRef]
- Hench, L.L.; West, J.K. The sol-gel process. Chem. Rev. 1990, 90, 33–72. [Google Scholar] [CrossRef]
- Chang, X.; Fan, Y.; Zhao, K.; Fang, J.; Liu, D.; Tang, M.-C.; Barrit, D.; Smilgies, D.-M.; Li, R.; Lu, J.; et al. Perovskite Solar Cells toward Eco-Friendly Printing. Research 2021, 2021, 9671892. [Google Scholar] [CrossRef]
- Ma, Y.; Liu, C.; Zhang, M.; Mai, Y. Review on the effects of solvent physical properties on the performance of slot-die coated perovskite solar cells. Surf. Sci. Technol. 2024, 2, 25. [Google Scholar] [CrossRef]
- Afre, R.A.; Pugliese, D. Perovskite Solar Cells: A Review of the Latest Advances in Materials, Fabrication Techniques, and Stability Enhancement Strategies. Micromachines 2024, 15, 192. [Google Scholar] [CrossRef]
- Jaafar, A.; Hecker, C.; Árki, P.; Joseph, Y. Sol-Gel Derived Hydroxyapatite Coatings for Titanium Implants: A Review. Bioengineering 2020, 7, 127. [Google Scholar] [CrossRef]
- Shin Thant, K.K.; Seriwattanachai, C.; Jittham, T.; Thamangraksat, N.; Sakata, P.; Kanjanaboos, P. Comprehensive Review on Slot-Die-Based Perovskite Photovoltaics: Mechanisms, Materials, Methods, and Marketability. Adv. Energy Mater. 2025, 15, 2403088. [Google Scholar] [CrossRef]
- Kim, J.; Kim, H.; Han, G.H.; Hong, S.; Park, J.; Bang, J.; Kim, S.Y.; Ahn, S.H. Electrodeposition: An efficient method to fabricate self-supported electrodes for electrochemical energy conversion systems. Exploration 2022, 2, 20210077. [Google Scholar] [CrossRef]
- Lee, S.A.; Yang, J.W.; Choi, S.; Jang, H.W. Nanoscale electrodeposition: Dimension control and 3D conformality. Exploration 2021, 1, 20210012. [Google Scholar] [CrossRef]
- Miao, M.; Duan, H.; Luo, J.; Wang, X. Recent progress and prospect of electrodeposition-type catalysts in carbon dioxide reduction utilizations. Mater. Adv. 2022, 3, 6968–6987. [Google Scholar] [CrossRef]
- Shaikh, A.V.; Mane, R.S.; Joo, O.S.; Han, S.H.; Pathan, H.M. Electrochemical deposition of cadmium selenide films and their properties: A review. J. Solid State Electrochem. 2017, 21, 2517–2530. [Google Scholar] [CrossRef]
- Saha, S.; Johnson, M.; Altayaran, F.; Wang, Y.; Wang, D.; Zhang, Q. Electrodeposition Fabrication of Chalcogenide Thin Films for Photovoltaic Applications. Electrochem 2020, 1, 286–321. [Google Scholar] [CrossRef]
- Kim, H.; Kim, J.; Guo, W.; Han, G.H.; Hong, S.; Kim, S.Y.; Ahn, S.H. Performance Correlation of Self-Supported Electrodes in Half-Cell and Single-Cell Tests for Water Electrolysis. ACS Sustain. Chem. Eng. 2020, 8, 15815–15821. [Google Scholar] [CrossRef]
- Kim, Y.; Jun, S.E.; Lee, G.; Nam, S.; Jang, H.W.; Park, S.H.; Kwon, K.C. Recent Advances in Water-Splitting Electrocatalysts Based on Electrodeposition. Materials 2023, 16, 3044. [Google Scholar] [CrossRef]
- Singh, V.; Kuthe, S.; Skorodumova, N.V. Electrode Fabrication Techniques for Li Ion Based Energy Storage System: A Review. Batteries 2023, 9, 184. [Google Scholar] [CrossRef]
- Pérez Mendoza, A.E.; Schmidt, A.; Zarbin, A.J.G.; Winnischofer, H. Review of Nanoscale Approaches for Tailoring Electrode Materials for Advanced Energy Storage Systems. ACS Appl. Nano Mater. 2024, 7, 23295–23320. [Google Scholar] [CrossRef]
- Profijt, H.B.; Potts, S.E.; van de Sanden, M.C.M.; Kessels, W.M.M. Plasma-Assisted Atomic Layer Deposition: Basics, Opportunities, and Challenges. J. Vac. Sci. Technol. A 2011, 29, 050801. [Google Scholar] [CrossRef]
- Knoops, H.C.M.; Faraz, T.; Arts, K.; Kessels, W.M.M. (Erwin) Status and prospects of plasma-assisted atomic layer deposition. J. Vac. Sci. Technol. A 2019, 37, 030902. [Google Scholar] [CrossRef]
- Cu, D.T.; Ko, K.-Y.; Cho, W.-H.; Lee, C.-T.; Li, M.-C.; Kuo, C.-C. Development of an innovative low-temperature PEALD process for stress-compensated TiO2 and SiO2 multilayer anti-reflective coatings. Discov. Nano 2025, 20, 53. [Google Scholar] [CrossRef]
- Knoops, H.C.M.; Langereis, E.; van de Sanden, M.C.M.; Kessels, W.M.M. Conformality of Plasma-Assisted ALD: Physical Processes and Modeling. J. Electrochem. Soc. 2010, 157, G241. [Google Scholar] [CrossRef]
- George, S.M. Atomic Layer Deposition: An Overview. Chem. Rev. 2010, 110, 111–131. [Google Scholar] [CrossRef]
- Sengupta, S.; Aggarwal, R.; Raula, M. A review on chemical bath deposition of metal chalcogenide thin films for heterojunction solar cells. J. Mater. Res. 2023, 38, 142–153. [Google Scholar] [CrossRef]
- Boyle, D.S.; Bayer, A.; Heinrich, M.R.; Robbe, O.; O’Brien, P. Novel approach to the chemical bath deposition of chalcogenide semiconductors. Thin Solid Film. 2000, 361–362, 150–154. [Google Scholar] [CrossRef]
- Piqué, A. The Matrix-Assisted Pulsed Laser Evaporation (MAPLE) process: Origins and future directions. Appl. Phys. A 2011, 105, 517–528. [Google Scholar] [CrossRef]
- Patz, T.M.; Doraiswamy, A.; Narayan, R.J.; Menegazzo, N.; Kranz, C.; Mizaikoff, B.; Zhong, Y.; Bellamkonda, R.; Bumgardner, J.D.; Elder, S.H.; et al. Matrix assisted pulsed laser evaporation of biomaterial thin films. Mater. Sci. Eng. C 2007, 27, 514–522. [Google Scholar] [CrossRef]
- Caricato, A.P.; Luches, A. Applications of the matrix-assisted pulsed laser evaporation method for the deposition of organic, biological and nanoparticle thin films: A review. Appl. Phys. A 2011, 105, 565–582. [Google Scholar] [CrossRef]
- Califano, V.; Bloisi, F.; Vicari, L.R.M.; Bretcanu, O.; Boccaccini, A.R. Matrix-assisted pulsed laser evaporation of poly(D,L-lactide) for biomedical applications: Effect of near infrared radiation. J. Biomed. Opt. 2008, 13, 014028. [Google Scholar] [CrossRef]
- Wells, R.A.; Johnson, H.; Lhermitte, C.R.; Kinge, S.; Sivula, K. Roll-to-Roll Deposition of Semiconducting 2D Nanoflake Films of Transition Metal Dichalcogenides for Optoelectronic Applications. ACS Appl. Nano Mater. 2019, 2, 7705–7712. [Google Scholar] [CrossRef]
- Hiltunen, J.; Liedert, C.; Hiltunen, M.; Huttunen, O.-H.; Hiitola-Keinänen, J.; Aikio, S.; Harjanne, M.; Kurkinen, M.; Hakalahti, L.; Lee, L.P. Roll-to-roll fabrication of integrated PDMS–paper microfluidics for nucleic acid amplification. Lab Chip 2018, 18, 1552–1559. [Google Scholar] [CrossRef]
- Liedert, C.; Rannaste, L.; Kokkonen, A.; Huttunen, O.-H.; Liedert, R.; Hiltunen, J.; Hakalahti, L. Roll-to-Roll Manufacturing of Integrated Immunodetection Sensors. ACS Sens. 2020, 5, 2010–2017. [Google Scholar] [CrossRef] [PubMed]
- Maize, K.; Mi, Y.; Cakmak, M.; Shakouri, A. Real-Time Metrology for Roll-To-Roll and Advanced Inline Manufacturing: A Review. Adv. Mater. Technol. 2023, 8, 2200173. [Google Scholar] [CrossRef]
- Passmore, C.; Wu, K.E.; Howse, J.R.; Panoutsos, G.; Ebbens, S.J. Surrogate-assisted optimization of roll-to-roll slot die coating. Sci. Rep. 2025, 15, 29185. [Google Scholar] [CrossRef]
- Txintxurreta, J.; G-Berasategui, E.; Ortiz, R.; Hernández, O.; Mendizábal, L.; Barriga, J. Indium Tin Oxide Thin Film Deposition by Magnetron Sputtering at Room Temperature for the Manufacturing of Efficient Transparent Heaters. Coatings 2021, 11, 92. [Google Scholar] [CrossRef]
- Devanarayanan, V.K.; Deepa, S.; Jassi, J.; Salim, A. Spray-pyrolysed tin doped zinc oxide thin films-analysis based on microstructural, optical and morphological characterizations. Results Surf. Interfaces 2025, 20, 100624. [Google Scholar] [CrossRef]
- Taylor, A.D.; Sun, Q.; Goetz, K.P.; An, Q.; Schramm, T.; Hofstetter, Y.; Litterst, M.; Paulus, F.; Vaynzof, Y. A general approach to high-efficiency perovskite solar cells by any antisolvent. Nat. Commun. 2021, 12, 1878. [Google Scholar] [CrossRef]
- Barnes, M.C.; Kim, D.-Y.; Ahn, H.S.; Lee, C.O.; Hwang, N.M. Deposition mechanism of gold by thermal evaporation: Approach by charged cluster model. J. Cryst. Growth 2000, 213, 83–92. [Google Scholar] [CrossRef]
- Min, D.; Shen, J.; Lai, S.; Chen, J. Effect of heat input on the microstructure and mechanical properties of tungsten inert gas arc butt-welded AZ61 magnesium alloy plates. Mater. Charact. 2009, 60, 1583–1590. [Google Scholar] [CrossRef]
- Li, X.; Cai, W.; An, J.; Kim, S.; Nah, J.; Yang, D.; Piner, R.; Velamakanni, A.; Jung, I.; Tutuc, E.; et al. Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils. Science 2009, 324, 1312–1314. [Google Scholar] [CrossRef]
- Hashimoto, Y.; Kohara, N.; Negami, T.; Nishitani, N.; Wada, T. Chemical bath deposition of Cds buffer layer for GIGS solar cells. Sol. Energy Mater. Sol. Cells 1998, 50, 71–77. [Google Scholar] [CrossRef]
- Guo, R.; Dahal, B.; Thapa, A.; Poudel, Y.R.; Liu, Y.; Li, W. Ambient processed (110) preferred MAPbI 3 thin films for highly efficient perovskite solar cells. Nanoscale Adv. 2021, 3, 2056–2064. [Google Scholar] [CrossRef]
- Głowacki, M.; Solarz, P.; Ryba-Romanowski, W.; Martín, I.R.; Diduszko, R.; Berkowski, M. Europium and potassium co-doped strontium metaborate single crystals grown by the Czochralski method. J. Cryst. Growth 2017, 457, 107–111. [Google Scholar] [CrossRef]
- Besra, L.; Liu, M. A review on fundamentals and applications of electrophoretic deposition (EPD). Prog. Mater. Sci. 2007, 52, 1–61. [Google Scholar] [CrossRef]
- Kurniawan, J.; Ventrici de Souza, J.F.; Dang, A.T.; Liu, G.; Kuhl, T.L. Preparation and Characterization of Solid-Supported Lipid Bilayers Formed by Langmuir–Blodgett Deposition: A Tutorial. Langmuir 2018, 34, 15622–15639. [Google Scholar] [CrossRef] [PubMed]
- Saha, J.K.; Bukke, R.N.; Mude, N.N.; Jang, J. Significant improvement of spray pyrolyzed ZnO thin film by precursor optimization for high mobility thin film transistors. Sci. Rep. 2020, 10, 8999. [Google Scholar] [CrossRef] [PubMed]
- Hou, X.; Choy, K.-L. Processing and Applications of Aerosol-Assisted Chemical Vapor Deposition. Chem. Vap. Depos. 2006, 12, 583–596. [Google Scholar] [CrossRef]
- Shi, Y. Hot Wire Chemical Vapor Deposition Chemistry in the Gas Phase and on the Catalyst Surface with Organosilicon Compounds. Acc. Chem. Res. 2015, 48, 163–173. [Google Scholar] [CrossRef]
- Oliveira, O.N.; Caseli, L.; Ariga, K. The Past and the Future of Langmuir and Langmuir–Blodgett Films. Chem. Rev. 2022, 122, 6459–6513. [Google Scholar] [CrossRef]
- Marinov, G.; Alexieva, G.; Lazarova, K.; Gergova, R.; Ivanov, P.; Babeva, T. Optimization of Electrospray Deposition Conditions of ZnO Thin Films for Ammonia Sensing. Nanomaterials 2024, 14, 1008. [Google Scholar] [CrossRef]
- Sowade, E.; Ramon, E.; Mitra, K.Y.; Martínez-Domingo, C.; Pedró, M.; Pallarès, J.; Loffredo, F.; Villani, F.; Gomes, H.L.; Terés, L.; et al. All-inkjet-printed thin-film transistors: Manufacturing process reliability by root cause analysis. Sci. Rep. 2016, 6, 33490. [Google Scholar] [CrossRef]
- Christiansen, T.L.; Hansen, O.; Jensen, J.A.; Thomsen, E.V. Thermal Oxidation of Structured Silicon Dioxide. ECS J. Solid State Sci. Technol. 2014, 3, N63–N68. [Google Scholar] [CrossRef]
- Groner, M.D.; Fabreguette, F.H.; Elam, J.W.; George, S.M. Low-Temperature Al2O3 Atomic Layer Deposition. Chem. Mater. 2004, 16, 639–645. [Google Scholar] [CrossRef]
- Castillo-Saenz, J.; Nedev, N.; Valdez-Salas, B.; Curiel-Alvarez, M.; Mendivil-Palma, M.I.; Hernandez-Como, N.; Martinez-Puente, M.; Mateos, D.; Perez-Landeros, O.; Martinez-Guerra, E. Properties of Al2O3 Thin Films Grown by PE-ALD at Low Temperature Using H2O and O2 Plasma Oxidants. Coatings 2021, 11, 1266. [Google Scholar] [CrossRef]
- Zhu, Z.; Merdes, S.; Ylivaara, O.M.E.; Mizohata, K.; Heikkilä, M.J.; Savin, H. Al2O3 Thin Films Prepared by a Combined Thermal-Plasma Atomic Layer Deposition Process at Low Temperature for Encapsulation Applications. Phys. Status Solidi 2020, 217, 1900237. [Google Scholar] [CrossRef]
- Sun, C.Q.; Huang, Y.; Zhang, X. Hydration of Hofmeister ions. Adv. Colloid Interface Sci. 2019, 268, 1–24. [Google Scholar] [CrossRef]
- Carvalho, I.; Curado, M.; Palacio, C.; Carvalho, S.; Cavaleiro, A. Ag release from sputtered Ag/a:C nanocomposite films after immersion in pure water and NaCl solution. Thin Solid Film. 2019, 671, 85–94. [Google Scholar] [CrossRef]
- Fabbri, E.; Nachtegaal, M.; Binninger, T.; Cheng, X.; Kim, B.-J.; Durst, J.; Bozza, F.; Graule, T.; Schäublin, R.; Wiles, L.; et al. Dynamic surface self-reconstruction is the key of highly active perovskite nano-electrocatalysts for water splitting. Nat. Mater. 2017, 16, 925–931. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Li, M.; Chen, Z.; Shao, S.; Gu, W.; Gu, Y.; Fang, Y.; Zhao, J. Large area roll-to-roll printed semiconducting carbon nanotube thin films for flexible carbon-based electronics. Nanoscale 2023, 15, 5317–5326. [Google Scholar] [CrossRef]
- Park, S.H.; Lei, L.; D’Souza, D.; Zipkin, R.; DiMartini, E.T.; Atzampou, M.; Lallow, E.O.; Shan, J.W.; Zahn, J.D.; Shreiber, D.I.; et al. Efficient electrospray deposition of surfaces smaller than the spray plume. Nat. Commun. 2023, 14, 4896. [Google Scholar] [CrossRef]
- Chakrabarti, B.K.; Gençten, M.; Bree, G.; Dao, A.H.; Mandler, D.; Low, C.T.J. Modern practices in electrophoretic deposition to manufacture energy storage electrodes. Int. J. Energy Res. 2022, 46, 13205–13250. [Google Scholar] [CrossRef]
- Babu, R.V.; Fernandes, J.M.; Kovendhan, M.; Purushothamreddy, N.; Muniramaiah, R.; Arockiakumar, R.; Karthiselva, N.S.; Joseph, D.P. Investigation of structural, optical, electrical and mechanical properties of transparent conducting ‘Ag’ electrodes. Phys. B Condens. Matter 2021, 607, 412690. [Google Scholar] [CrossRef]
- Whiteside, P.; Chininis, J.; Hunt, H. Techniques and Challenges for Characterizing Metal Thin Films with Applications in Photonics. Coatings 2016, 6, 35. [Google Scholar] [CrossRef]
- Zhang, K.; Robinson, J. Doping of Two-Dimensional Semiconductors: A Rapid Review and Outlook. MRS Adv. 2019, 4, 2743–2757. [Google Scholar] [CrossRef]
- Moumen, A.; Kumarage, G.C.W.; Comini, E. P-Type Metal Oxide Semiconductor Thin Films: Synthesis and Chemical Sensor Applications. Sensors 2022, 22, 1359. [Google Scholar] [CrossRef]
- Tumarkin, A.; Sapego, E.; Gagarin, A.; Bogdan, A.; Karamov, A.; Serenkov, I.; Sakharov, V. SrTiO3 Thin Films on Dielectric Substrates for Microwave Applications. Coatings 2023, 14, 3. [Google Scholar] [CrossRef]
- Yan, J.; Sun, C.; Tan, F.; Hu, X.; Chen, P.; Qu, S.; Zhou, S.; Xu, J. Electropolymerized poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) film on ITO glass and its application in photovoltaic device. Sol. Energy Mater. Sol. Cells 2010, 94, 390–394. [Google Scholar] [CrossRef]
- Swalen, J.D.; Santo, R.; Tacke, M.; Fischer, J. Properties of Polymeric Thin Films by Integrated Optical Techniques. IBM J. Res. Dev. 1977, 21, 168–175. [Google Scholar] [CrossRef]
- Aldhaher, A.; Rabiee, N.; Iravani, S. Exploring the synergistic potential of MXene-MOF hybrid composites: A perspective on synthesis, properties, and applications. Hybrid Adv. 2024, 5, 100131. [Google Scholar] [CrossRef]
- Socol, M.; Preda, N. Hybrid Nanocomposite Thin Films for Photovoltaic Applications: A Review. Nanomaterials 2021, 11, 1117. [Google Scholar] [CrossRef] [PubMed]
- Yao, B.; Wei, X.; Zhang, Y.; Correia, P.; Wu, R.; Song, S.; Trintis, I.; Wang, H.; Wang, H. Accelerated Degradation Testing and Failure Mechanism Analysis of Metallized Film Capacitors for AC Filtering. IEEE Trans. Power Electron. 2024, 39, 6256–6270. [Google Scholar] [CrossRef]
- Yetik, G.; Troglia, A.; Farokhipoor, S.; van Vliet, S.; Momand, J.; Kooi, B.J.; Bliem, R.; Frenken, J.W.M. Ultrathin, sputter-deposited, amorphous alloy films of ruthenium and molybdenum. Surf. Coat. Technol. 2022, 445, 128729. [Google Scholar] [CrossRef]
- Roshen, W.A. Thin Amorphous Films for Power Magnetic Components. In Proceedings of the APEC 07-Twenty-Second Annual IEEE Applied Power Electronics Conference and Exposition, Anaheim, CA, USA, 25 February–1 March 2007; pp. 63–70. [Google Scholar] [CrossRef]
- Shervin, K.; Kharel, K.; Freundlich, A. Crystalline Ge thin films on glass by Al-induced crystallization. In Proceedings of the 2016 IEEE 43rd Photovoltaic Specialists Conference (PVSC), Portland, OR, USA, 5–10 June 2016; pp. 1091–1094. [Google Scholar] [CrossRef]
- Phiri, R.; Mavinkere Rangappa, S.; Siengchin, S.; Oladijo, O.P.; Ozbakkaloglu, T. Advances in lightweight composite structures and manufacturing technologies: A comprehensive review. Heliyon 2024, 10, e39661. [Google Scholar] [CrossRef]
- Vannozzi, L.; Mariotti, G.; Ricotti, L. Nanocomposite thin films based on polyethylene vinyl acetate and piezoelectric nanomaterials. In Proceedings of the 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Berlin, Germany, 23–27 July 2019; pp. 1050–1053. [Google Scholar] [CrossRef]
- Chen, Q.; Yang, K.; Feng, Y.; Liang, L.; Chi, M.; Zhang, Z.; Chen, X. Recent advances in thermal-conductive insulating polymer composites with various fillers. Compos. Part A Appl. Sci. Manuf. 2024, 178, 107998. [Google Scholar] [CrossRef]
- Kim, D.-Y.; Lee, D.-H.; Namkoong, U. Conductive Thin-Film Structure for EMP Protection of Operational Infrastructure Facilities: Measurement and Verification up to 18 GHz. IEEE Trans. Electromagn. Compat. 2024, 66, 869–878. [Google Scholar] [CrossRef]
- Butt, M.; Fomchenkov, S.; Ullah, A.; Habib, M.; Ali, R. Modelling of multilayer dielectric filters based on TiO2/SiO2 and TiO2/MgF2 for flourescence microscopy imaging. Comput. Opt. 2016, 40, 674–678. [Google Scholar] [CrossRef]
- Li, D.G.; Watson, A.C. Optical thin film optimization design using genetic algorithms. In Proceedings of the IEEE International Conference on Intelligent Processing Systems (Cat. No.97TH8335), Beijing, China, 28–31 October 1997; Volume 1, pp. 132–136. [Google Scholar] [CrossRef]
- Martin, L.W.; Rappe, A.M. Thin-film ferroelectric materials and their applications. Nat. Rev. Mater. 2016, 2, 16087. [Google Scholar] [CrossRef]
- qin Gao, R.; Zhu, L. feng Preparation and Photo-Catalytic Activity of Supported TiO2 Composites. In Proceedings of the 4th International Conference on Bioinformatics and Biomedical Engineering, Chengdu, China, 18–20 June 2010; pp. 1–4. [Google Scholar] [CrossRef]
- Rychły-Gruszecka, J.; Marciniak, J.; Snarski-Adamski, J.; Meixner, J.; Marciniak, W.; Rusz, J.; Werwiński, M. Structural and Magnetic Properties of Ultrathin Films Calculated from First-Principles. In Proceedings of the IEEE International Magnetic Conference-Short Papers (INTERMAG Short Papers), Rio de Janeiro, Brazil, 5–10 May 2024; pp. 1–2. [Google Scholar] [CrossRef]
- Zaidi, S.J.A.; Park, J.C.; Han, J.W.; Choi, J.H.; Ali, M.A.; Basit, M.A.; Park, T.J. Interfaces in Atomic Layer Deposited Films: Opportunities and Challenges. Small Sci. 2023, 3, 2300060. [Google Scholar] [CrossRef]
- Rubin, S.; Mizrachi, D.; Friedman, N.; Edri, H.; Golan, T. The World of Advanced Thin Films: Design Fabrication Applications. Fusion Multidiscip. Res. Int. J. 2023, 4, 393–406. [Google Scholar] [CrossRef]
- Zhu, Z.; Liu, Y.; Sawada, Y.; Saito, N. Two-Dimensional Crystal Growth of MoS2 Thin Films from Sodium Dodecyl Sulfate Micellar Solutions and Wettability Between Solution and Substrate. Coatings 2024, 15, 4. [Google Scholar] [CrossRef]
- Melendez-Rodriguez, B.; Torres-Giner, S.; Angulo, I.; Pardo-Figuerez, M.; Hilliou, L.; Escuin, J.M.; Cabedo, L.; Nevo, Y.; Prieto, C.; Lagaron, J.M. High-Oxygen-Barrier Multilayer Films Based on Polyhydroxyalkanoates and Cellulose Nanocrystals. Nanomaterials 2021, 11, 1443. [Google Scholar] [CrossRef]
- Salomäki, M.; Kauppila, J.; Kankare, J.; Lukkari, J. Oxidative Layer-By-Layer Multilayers Based on Metal Coordination: Influence of Intervening Graphene Oxide Layers. Langmuir 2018, 34, 13171–13182. [Google Scholar] [CrossRef]
- Noguchi, Y.; Matsuo, H. Polarization and Dielectric Properties of BiFeO3-BaTiO3 Superlattice-Structured Ferroelectric Films. Nanomaterials 2021, 11, 1857. [Google Scholar] [CrossRef]
- Sizov, F.F.; Rogalski, A. Semiconductor superlattices and quantum wells for infrared optoelectronics. Prog. Quantum Electron. 1993, 17, 93–164. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, W.; Wang, B.; Zheng, Y. Ultrathin Ferroelectric Films: Growth, Characterization, Physics and Applications. Materials 2014, 7, 6377–6485. [Google Scholar] [CrossRef]
- McPeak, K.M.; Jayanti, S.V.; Kress, S.J.P.; Meyer, S.; Iotti, S.; Rossinelli, A.; Norris, D.J. Plasmonic Films Can Easily Be Better: Rules and Recipes. ACS Photonics 2015, 2, 326–333. [Google Scholar] [CrossRef] [PubMed]
- Wilk, G.D.; Wallace, R.M.; Anthony, J.M. High-κ gate dielectrics: Current status and materials properties considerations. J. Appl. Phys. 2001, 89, 5243–5275. [Google Scholar] [CrossRef]
- Li, Z.; Klein, T.R.; Kim, D.H.; Yang, M.; Berry, J.J.; van Hest, M.F.A.M.; Zhu, K. Scalable fabrication of perovskite solar cells. Nat. Rev. Mater. 2018, 3, 18017. [Google Scholar] [CrossRef]
- Kamiya, T.; Nomura, K.; Hosono, H. Present status of amorphous In–Ga–Zn–O thin-film transistors. Sci. Technol. Adv. Mater. 2010, 11, 044305. [Google Scholar] [CrossRef]
- Sawatzki-Park, M.; Wang, S.-J.; Kleemann, H.; Leo, K. Highly Ordered Small Molecule Organic Semiconductor Thin-Films Enabling Complex, High-Performance Multi-Junction Devices. Chem. Rev. 2023, 123, 8232–8250. [Google Scholar] [CrossRef]
- Egger, D.A.; Rappe, A.M.; Kronik, L. Hybrid Organic–Inorganic Perovskites on the Move. Acc. Chem. Res. 2016, 49, 573–581. [Google Scholar] [CrossRef]
- Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.; Zhang, Y.; Dubonos, S.V.; Grigorieva, I.V.; Firsov, A.A. Electric Field Effect in Atomically Thin Carbon Films. Science 2004, 306, 666–669. [Google Scholar] [CrossRef]
- Žutić, I.; Fabian, J.; Sarma, S.D. Spintronics: Fundamentals and applications. Rev. Mod. Phys. 2004, 76, 323–410. [Google Scholar] [CrossRef]
- Chavan, G.T.; Kim, Y.; Khokhar, M.Q.; Hussain, S.Q.; Cho, E.-C.; Yi, J.; Ahmad, Z.; Rosaiah, P.; Jeon, C.-W. A Brief Review of Transparent Conducting Oxides (TCO): The Influence of Different Deposition Techniques on the Efficiency of Solar Cells. Nanomaterials 2023, 13, 1226. [Google Scholar] [CrossRef]
- Park, M.H.; Lee, Y.H.; Mikolajick, T.; Schroeder, U.; Hwang, C.S. Review and perspective on ferroelectric HfO2-based thin films for memory applications. MRS Commun. 2018, 8, 795–808. [Google Scholar] [CrossRef]
- Ding, R.; Li, W.; Wang, X.; Gui, T.; Li, B.; Han, P.; Tian, H.; Liu, A.; Wang, X.; Liu, X.; et al. A brief review of corrosion protective films and coatings based on graphene and graphene oxide. J. Alloys Compd. 2018, 764, 1039–1055. [Google Scholar] [CrossRef]
- Snyder, G.J.; Toberer, E.S. Complex thermoelectric materials. Nat. Mater. 2008, 7, 105–114. [Google Scholar] [CrossRef] [PubMed]
- Wuttig, M.; Yamada, N. Phase-change materials for rewriteable data storage. Nat. Mater. 2007, 6, 824–832. [Google Scholar] [CrossRef] [PubMed]
- Wuttig, M.; Bhaskaran, H.; Taubner, T. Phase-change materials for non-volatile photonic applications. Nat. Photonics 2017, 11, 465–476. [Google Scholar] [CrossRef]
- Bose, S.; Robertson, S.F.; Bandyopadhyay, A. Surface modification of biomaterials and biomedical devices using additive manufacturing. Acta Biomater. 2018, 66, 6–22. [Google Scholar] [CrossRef]
- Lee, M. Millimetre-scale thin-film batteries on a charge. Nat. Electron. 2019, 2, 550. [Google Scholar] [CrossRef]
- Bates, C.M.; Maher, M.J.; Janes, D.W.; Ellison, C.J.; Willson, C.G. Block Copolymer Lithography. Macromolecules 2014, 47, 2–12. [Google Scholar] [CrossRef]
- Balaish, M.; Gonzalez-Rosillo, J.C.; Kim, K.J.; Zhu, Y.; Hood, Z.D.; Rupp, J.L.M. Processing thin but robust electrolytes for solid-state batteries. Nat. Energy 2021, 6, 227–239. [Google Scholar] [CrossRef]
- Dalavi, D.S.; Devan, R.S.; Patil, R.A.; Patil, R.S.; Ma, Y.-R.; Sadale, S.B.; Kim, I.; Kim, J.-H.; Patil, P.S. Efficient electrochromic performance of nanoparticulate WO3 thin films. J. Mater. Chem. C 2013, 1, 3722. [Google Scholar] [CrossRef]
- Li, X.-M.; Reinhoudt, D.; Crego-Calama, M. What do we need for a superhydrophobic surface? A review on the recent progress in the preparation of superhydrophobic surfaces. Chem. Soc. Rev. 2007, 36, 1350. [Google Scholar] [CrossRef] [PubMed]
- Miyamoto, Y.; Kaysser, W.A.; Rabin, B.H.; Kawasaki, A.; Ford, R.G. (Eds.) Functionally Graded Materials; Materials Technology Series; Springer: Boston, MA, USA, 1999; Volume 5, ISBN 978-0-412-60760-8. [Google Scholar]
- Ohtomo, A.; Hwang, H.Y. A high-mobility electron gas at the LaAlO3/SrTiO3 heterointerface. Nature 2004, 427, 423–426. [Google Scholar] [CrossRef] [PubMed]
- Hasan, M.Z.; Kane, C.L. Colloquium: Topological insulators. Rev. Mod. Phys. 2010, 82, 3045–3067. [Google Scholar] [CrossRef]
- García de Arquer, F.P.; Talapin, D.V.; Klimov, V.I.; Arakawa, Y.; Bayer, M.; Sargent, E.H. Semiconductor quantum dots: Technological progress and future challenges. Science 2021, 373, eaaz8541. [Google Scholar] [CrossRef]
- Oke, J.A.; Jen, T.-C. Atomic layer deposition and other thin film deposition techniques: From principles to film properties. J. Mater. Res. Technol. 2022, 21, 2481–2514. [Google Scholar] [CrossRef]
- Sharma, A.; Madhu, C.; Singh, J. Performance Evaluation of Thin Film Transistors: History, Technology Development and Comparison: A Review. Int. J. Comput. Appl. 2014, 89, 36–40. [Google Scholar] [CrossRef]
- Mirshojaeian Hosseini, M.; Nawrocki, R. A Review of the Progress of Thin-Film Transistors and Their Technologies for Flexible Electronics. Micromachines 2021, 12, 655. [Google Scholar] [CrossRef]
- Kwon, H.; Yoo, H.; Nakano, M.; Takimiya, K.; Kim, J.-J.; Kim, J.K. Gate-tunable gas sensing behaviors in air-stable ambipolar organic thin-film transistors. RSC Adv. 2020, 10, 1910–1916. [Google Scholar] [CrossRef]
- Shaikh, M.T.A.S.; Prasad, C.V.; Kim, K.J.; Rim, Y.S. The critical role of materials and device geometry on performance of RRAM and memristor: Review. Mater. Today Phys. 2025, 56, 101715. [Google Scholar] [CrossRef]
- Cui, J.; Liu, H.; Cao, Q. Prospects and challenges of electrochemical random-access memory for deep-learning accelerators. Curr. Opin. Solid State Mater. Sci. 2024, 32, 101187. [Google Scholar] [CrossRef]
- Raut, H.K.; Ganesh, V.A.; Nair, A.S.; Ramakrishna, S. Anti-reflective coatings: A critical, in-depth review. Energy Environ. Sci. 2011, 4, 3779. [Google Scholar] [CrossRef]
- Loi, M.; Villani, A.; Paciolla, F.; Mulè, G.; Paciolla, C. Challenges and Opportunities of Light-Emitting Diode (LED) as Key to Modulate Antioxidant Compounds in Plants. A Review. Antioxidants 2020, 10, 42. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Gao, H.; Wang, J.; Yeung, F.S.Y.; Lin, S.; Li, X.; Liao, S.; Luo, D.; Kwok, H.S.; Liu, B. Organic Light-Emitting Diodes with Ultrathin Emitting Nanolayers. Electronics 2023, 12, 3164. [Google Scholar] [CrossRef]
- Lee, S.-C.; Kim, T.; Park, W.-S. Liquid Crystal Displays with Variable Viewing Angles Using Electric-Field-Driven Liquid Crystal Lenses as Diffusers. Appl. Sci. 2020, 10, 667. [Google Scholar] [CrossRef]
- Wu, Y.-E.; Tsai, C.-H.; Chen, L.-Y.; Chen, F.-C.; Kuo, H.-C. Current Landscape of Micro-LED Display Industrialization. Nanomaterials 2025, 15, 693. [Google Scholar] [CrossRef] [PubMed]
- Ravikumar, K.; Dangate, M.S. Advancements in stretchable organic optoelectronic devices and flexible transparent conducting electrodes: Current progress and future prospects. Heliyon 2024, 10, e33002. [Google Scholar] [CrossRef] [PubMed]
- Babu Krishna Moorthy, S. (Ed.) Thin Film Structures in Energy Applications; Springer International Publishing: Cham, Switzerland, 2015; ISBN 978-3-319-14773-4. [Google Scholar]
- Kim, S.; Hoang, V.Q.; Bark, C.W. Silicon-Based Technologies for Flexible Photovoltaic (PV) Devices: From Basic Mechanism to Manufacturing Technologies. Nanomaterials 2021, 11, 2944. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Li, C. Research on Copper Indium Gallium Selenide (CIGS) Thin-Film Solar Cells. In Proceedings of the 2nd International Conference on Energy, Environment and Resources (ICEER 2021), Ningbo, China, 26–28 March 2021. [Google Scholar] [CrossRef]
- Ye, M.; Hong, X.; Zhang, F.; Liu, X. Recent advancements in perovskite solar cells: Flexibility, stability and large scale. J. Mater. Chem. A 2016, 4, 6755–6771. [Google Scholar] [CrossRef]
- El-Amin, A.A.; Ibrahim, A. Dependence of electrical and structural properties on the thickness of n-type μc-Si thin-film silicon solar cells grown by linear facing target sputtering. Int. J. Ambient Energy 2014, 35, 211–218. [Google Scholar] [CrossRef]
- Behera, S.; Panda, C.K.; Lee, S.; Kim, I.; Lee, H.-J.; Hwang, J.; Yoon, S.-G.; Kim, D.W.; Jang, S.C.; Hong, W.; et al. Pioneering energy storage using facing-target sputtered Al2O3 protection layer on Ni-rich NCM622 cathode for high-efficiency all-solid-state thin-film batteries. Chem. Eng. J. 2025, 522, 167123. [Google Scholar] [CrossRef]
- Liu, X.; Jiang, Y.; Wang, Y.; Pan, L. Design Principles and Development Status of Flexible Integrated Thin and Lightweight Zinc-Ion Batteries. Batteries 2024, 10, 200. [Google Scholar] [CrossRef]
- Tanhaei, M.; Mozammel, M. Yttria-stabilized zirconia thin film electrolyte deposited by EB-PVD on porous anode support for SOFC applications. Ceram. Int. 2017, 43, 3035–3042. [Google Scholar] [CrossRef]
- Park, C.; Kim, Y.H.; Jeong, H.; Won, B.-R.; Jeon, H.; Myung, J. Development of robust YSZ thin-film electrolyte by RF sputtering and anode support design for stable IT-SOFC. Ceram. Int. 2023, 49, 32953–32961. [Google Scholar] [CrossRef]
- Li, X.; Li, P.; Wu, Z.; Luo, D.; Yu, H.-Y.; Lu, Z.-H. Review and perspective of materials for flexible solar cells. Mater. Rep. Energy 2021, 1, 100001. [Google Scholar] [CrossRef]
- Alberi, K.; Berry, J.J.; Cordell, J.J.; Friedman, D.J.; Geisz, J.F.; Kirmani, A.R.; Larson, B.W.; McMahon, W.E.; Mansfield, L.M.; Ndione, P.F.; et al. A roadmap for tandem photovoltaics. Joule 2024, 8, 658–692. [Google Scholar] [CrossRef]
- Li, Z.; Mi, B.; Ma, X.; Liu, P.; Ma, F.; Zhang, K.; Chen, X.; Li, W. Review of thin-film resistor sensors: Exploring materials, classification, and preparation techniques. Chem. Eng. J. 2023, 477, 147029. [Google Scholar] [CrossRef]
- Ajith, V.C.; Swarna, P.A.; Vinutha, M.P.; Prashantha, M.; Sudeep, K. Promising nanomaterials for biosensing applications: A review of nanomaterials, sensor design strategies, and sensing mechanisms. Ionics 2025, 31, 7647–7691. [Google Scholar]
- Sureshkumar, N.; Dutta, A. Environmental Gas Sensors Based on Nanostructured Thin Films. In Multilayer Thin Films-Versatile Applications for Materials Engineering; IntechOpen: London, UK, 2020. [Google Scholar]
- Wang, J.; Wang, R. Development of Gas Sensors and Their Applications in Health Safety, Medical Detection, and Diagnosis. Chemosensors 2025, 13, 190. [Google Scholar] [CrossRef]
- Chesler, P.; Hornoiu, C. MOX-Based Resistive Gas Sensors with Different Types of Sensitive Materials (Powders, Pellets, Films), Used in Environmental Chemistry. Chemosensors 2023, 11, 95. [Google Scholar] [CrossRef]
- Niranjana, S.; Kriti, P.; Sumathra, M.; Reddy, A.M. Fluorescent Nucleic Acid Biosensors: A Comparative Study of DNA and RNA-Based Sensing Platforms. In Proceedings of the 8th International Conference on Computational System and Information Technology for Sustainable Solutions (CSITSS), Bengaluru, India, 7–9 November 2024; pp. 1–7. [Google Scholar] [CrossRef]
- Naresh, V.; Lee, N. A Review on Biosensors and Recent Development of Nanostructured Materials-Enabled Biosensors. Sensors 2021, 21, 1109. [Google Scholar] [CrossRef] [PubMed]
- Topor, C.-V.; Puiu, M.; Bala, C. Strategies for Surface Design in Surface Plasmon Resonance (SPR) Sensing. Biosensors 2023, 13, 465. [Google Scholar] [CrossRef]
- Santo, D.; Castro, J.D.; Cruz, S.; Carvalho, I.; Cavaleiro, A.; Carvalho, S. Customisation of PVD coatings for biomedical devices. Surf. Coat. Technol. 2025, 512, 132277. [Google Scholar] [CrossRef]
- Amirtharaj Mosas, K.K.; Chandrasekar, A.R.; Dasan, A.; Pakseresht, A.; Galusek, D. Recent Advancements in Materials and Coatings for Biomedical Implants. Gels 2022, 8, 323. [Google Scholar] [CrossRef]
- Borandeh, S.; van Bochove, B.; Teotia, A.; Seppälä, J. Polymeric drug delivery systems by additive manufacturing. Adv. Drug Deliv. Rev. 2021, 173, 349–373. [Google Scholar] [CrossRef]
- Ali, S.M.; Noghanian, S.; Khan, Z.U.; Alzahrani, S.; Alharbi, S.; Alhartomi, M.; Alsulami, R. Wearable and Flexible Sensor Devices: Recent Advances in Designs, Fabrication Methods, and Applications. Sensors 2025, 25, 1377. [Google Scholar] [CrossRef]
- Abdullah, M.; Hosain, M.M.; Hassan Parvez, M.M.; Haque Motayed, M.S. Prospects and challenges of thin film coating materials and their applications. Inorg. Chem. Commun. 2025, 175, 114117. [Google Scholar] [CrossRef]
- Chung, K.H.; Liu, G.T.; Duh, J.G.; Wang, J.H. Biocompatibility of a titanium–aluminum nitride film coating on a dental alloy. Surf. Coat. Technol. 2004, 188–189, 745–749. [Google Scholar] [CrossRef]
- Roy, A.; Bennett, A.; Pruitt, L. Feasibility of using diamond-like carbon films in total joint replacements: A review. J. Mater. Sci. Mater. Med. 2024, 35, 47. [Google Scholar] [CrossRef]
- Rajak, D.K.; Kumar, A.; Behera, A.; Menezes, P.L. Diamond-Like Carbon (DLC) Coatings: Classification, Properties, and Applications. Appl. Sci. 2021, 11, 4445. [Google Scholar] [CrossRef]
- Wei, Y.; Wu, Q.; Meng, H.; Zhang, Y.; Cao, C. Recent advances in photocatalytic self-cleaning performances of TiO2-based building materials. RSC Adv. 2023, 13, 20584–20597. [Google Scholar] [CrossRef]
- Li, F.; Liu, G.; Liu, F.; Yang, S. A review of self-cleaning photocatalytic surface: Effect of surface characteristics on photocatalytic activity for NO. Environ. Pollut. 2023, 327, 121580. [Google Scholar] [CrossRef] [PubMed]
- Li, W.-L.; Fu, P.; Lin, W.-T.; Zhang, Z.-L.; Luo, X.-W.; Yu, Y.-H.; Xu, Z.-K.; Wan, L.-S. High-performance thin-film composite (TFC) membranes with 2D nanomaterial interlayers: An overview. Results Eng. 2024, 21, 101932. [Google Scholar] [CrossRef]
- Nataraj, S.K.; Roy, S.; Patil, M.B.; Nadagouda, M.N.; Rudzinski, W.E.; Aminabhavi, T.M. Cellulose acetate-coated α-alumina ceramic composite tubular membranes for wastewater treatment. Desalination 2011, 281, 348–353. [Google Scholar] [CrossRef]
- Law, A.M.; Jones, L.O.; Walls, J.M. The performance and durability of Anti-reflection coatings for solar module cover glass—A review. Sol. Energy 2023, 261, 85–95. [Google Scholar] [CrossRef]
- Reid, O.G.; Yang, M.; Kopidakis, N.; Zhu, K.; Rumbles, G. Grain-Size-Limited Mobility in Methylammonium Lead Iodide Perovskite Thin Films. ACS Energy Lett. 2016, 1, 561–565. [Google Scholar] [CrossRef]
- Machkih, K.; Oubaki, R.; Makha, M. A Review of CIGS Thin Film Semiconductor Deposition via Sputtering and Thermal Evaporation for Solar Cell Applications. Coatings 2024, 14, 1088. [Google Scholar] [CrossRef]
- Scarpulla, M.A.; McCandless, B.; Phillips, A.B.; Yan, Y.; Heben, M.J.; Wolden, C.; Xiong, G.; Metzger, W.K.; Mao, D.; Krasikov, D.; et al. CdTe-based thin film photovoltaics: Recent advances, current challenges and future prospects. Sol. Energy Mater. Sol. Cells 2023, 255, 112289. [Google Scholar] [CrossRef]
- Chen, Z.; Li, W.; Li, R.; Zhang, Y.; Xu, G.; Cheng, H. Fabrication of Highly Transparent and Conductive Indium–Tin Oxide Thin Films with a High Figure of Merit via Solution Processing. Langmuir 2013, 29, 13836–13842. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.J. Realizing Thin-Film Encapsulation’s Benefits for Large-Scale OLED Panels. Inf. Disp. 2021, 37, 6–9. [Google Scholar] [CrossRef]
- Dutta, T.; Noushin, T.; Tabassum, S.; Mishra, S.K. Road Map of Semiconductor Metal-Oxide-Based Sensors: A Review. Sensors 2023, 23, 6849. [Google Scholar] [CrossRef]
- Yang, S.; Lei, G.; Xu, H.; Lan, Z.; Wang, Z.; Gu, H. Metal Oxide Based Heterojunctions for Gas Sensors: A Review. Nanomaterials 2021, 11, 1026. [Google Scholar] [CrossRef]
- Chakravorty, A.; Roy, S. A review of photocatalysis, basic principles, processes, and materials. Sustain. Chem. Environ. 2024, 8, 100155. [Google Scholar] [CrossRef]
- Ghamarpoor, R.; Fallah, A.; Jamshidi, M. A Review of Synthesis Methods, Modifications, and Mechanisms of ZnO/TiO2 -Based Photocatalysts for Photodegradation of Contaminants. ACS Omega 2024, 9, 25457–25492. [Google Scholar] [CrossRef]
- Wu, T.; Dai, W.; Ke, M.; Huang, Q.; Lu, L. All-Solid-State Thin Film μ-Batteries for Microelectronics. Adv. Sci. 2021, 8, 2100774. [Google Scholar] [CrossRef]
- Xiao, Y.; Jiang, B.; Zhang, Z.; Ke, S.; Jin, Y.; Wen, X.; Ye, C. A review of memristor: Material and structure design, device performance, applications and prospects. Sci. Technol. Adv. Mater. 2023, 24, 2162323. [Google Scholar] [CrossRef]
- Buffolo, M.; Caria, A.; Piva, F.; Roccato, N.; Casu, C.; De Santi, C.; Trivellin, N.; Meneghesso, G.; Zanoni, E.; Meneghini, M. Defects and Reliability of GaN-Based LEDs: Review and Perspectives. Phys. Status Solidi 2022, 219, 2100727. [Google Scholar] [CrossRef]
- Wu, H.; Lin, X.; Shuai, Q.; Zhu, Y.; Fu, Y.; Liao, X.; Wang, Y.; Wang, Y.; Cheng, C.; Liu, Y.; et al. Ultra-high brightness Micro-LEDs with wafer-scale uniform GaN-on-silicon epilayers. Light Sci. Appl. 2024, 13, 284. [Google Scholar] [CrossRef]
- Cao, Z.; Li, S.; Pan, Y.; Zhao, J.; Ye, S.; Zhang, X.; Zhao, W. Characterization of Magnetic Thin Films and Spintronic Devices Using Magneto-optic Kerr Microscopy. Adv. Devices Instrum. 2024, 5, 0060. [Google Scholar] [CrossRef]
- Ai, Q.; Fang, Q.; Liang, J.; Xu, X.; Zhai, T.; Gao, G.; Guo, H.; Han, G.; Ci, L.; Lou, J. Lithium-conducting covalent-organic-frameworks as artificial solid-electrolyte-interphase on silicon anode for high performance lithium ion batteries. Nano Energy 2020, 72, 104657. [Google Scholar] [CrossRef]
- Tang, Z.; Liu, S.; Chen, N.; Luo, M.; Wu, J.; Zheng, Y. Gold nanoclusters treat intracellular bacterial infections: Eliminating phagocytic pathogens and regulating cellular immune response. Colloids Surf. B Biointerfaces 2021, 205, 111899. [Google Scholar] [CrossRef] [PubMed]
- Lindner, T.; Löbel, M.; Hunger, R.; Berger, R.; Lampke, T. Boriding of HVOF-sprayed Inconel 625 coatings. Surf. Coat. Technol. 2020, 404, 126456. [Google Scholar] [CrossRef]
- Cui, Y.; Ke, Y.; Liu, C.; Chen, Z.; Wang, N.; Zhang, L.; Zhou, Y.; Wang, S.; Gao, Y.; Long, Y. Thermochromic VO2 for Energy-Efficient Smart Windows. Joule 2018, 2, 1707–1746. [Google Scholar] [CrossRef]
- Campuzano, S.; Pedrero, M.; Nikoleli, G.; Pingarrón, J.M.; Nikolelis, D.P.; Tzamtzis, N.; Psychoyios, V.N. ZnO and Graphene Microelectrode Applications in Biosensing. In Biosensors Nanotechnology; Wiley: Hoboken, NJ, USA, 2014; pp. 1–35. [Google Scholar] [CrossRef]
- An, X.; Zhang, L.; Wen, B.; Gu, Z.; Liu, L.-M.; Qu, J.; Liu, H. Boosting photoelectrochemical activities of heterostructured photoanodes through interfacial modulation of oxygen vacancies. Nano Energy 2017, 35, 290–298. [Google Scholar] [CrossRef]
- Tong, H.; Jiang, Y.; Xia, L. Enhancing photoelectrochemical water oxidation activity of BiVO4 photoanode through the Co-catalytic effect of Ni(OH)2 and carbon quantum dots. Int. J. Hydrogen Energy 2023, 48, 36694–36706. [Google Scholar] [CrossRef]
- Ling, H.; Liu, S.; Zheng, Z.; Yan, F. Organic Flexible Electronics. Small Methods 2018, 2, 1800070. [Google Scholar] [CrossRef]
- Sandeep, S.; Pinto, R.M.R.; Rudresh, J.; Gund, V.; Nagaraja, K.K.; Vinayakumar, K.B. Piezoelectric aluminum nitride thin films for CMOS compatible MEMS: Sputter deposition and doping. Crit. Rev. Solid State Mater. Sci. 2025, 50, 161–188. [Google Scholar] [CrossRef]
- Sun, S.; Tang, C.; Jiang, Y.; Wang, D.; Chang, X.; Lei, Y.; Wang, N.; Zhu, Y. Flexible and rechargeable electrochromic aluminium-ion battery based on tungsten oxide film electrode. Sol. Energy Mater. Sol. Cells 2020, 207, 110332. [Google Scholar] [CrossRef]
- Wang, C.; Liu, Z.; Wang, L.; Dong, X.; Zhang, J.; Wang, G.; Han, S.; Meng, X.; Zheng, A.; Xiao, F.-S. Importance of Zeolite Wettability for Selective Hydrogenation of Furfural over Pd@Zeolite Catalysts. ACS Catal. 2018, 8, 474–481. [Google Scholar] [CrossRef]
- Tiwari, B.; Babu, T.; Choudhary, R.N.P. Piezoelectric lead zirconate titanate as an energy material: A review study. Mater. Today Proc. 2021, 43, 407–412. [Google Scholar] [CrossRef]
- Usha, K.S.; Lee, S.Y. Fast-switching electrochromic smart windows based on WO3 doped NiO thin films. J. Alloys Compd. 2024, 1009, 176774. [Google Scholar] [CrossRef]
- Fan, Z.; Chen, J.; Wang, J. Ferroelectric HfO2-based materials for next-generation ferroelectric memories. J. Adv. Dielectr. 2016, 6, 1630003. [Google Scholar] [CrossRef]
- Taha, M.; Agha, A.; Anwer, S.; Saleh, H.; Pappa, A.; Abu-Nada, E.; Alazzam, A. Fabrication and Optimization of Ti3C2Tx MXene Thin Films for Next-Generation Lab-on-Chip Devices. Adv. Mater. Interfaces 2025, 12, 2500205. [Google Scholar] [CrossRef]
- Chang, Y.-H.; Zhang, W.; Zhu, Y.; Han, Y.; Pu, J.; Chang, J.-K.; Hsu, W.-T.; Huang, J.-K.; Hsu, C.-L.; Chiu, M.-H.; et al. Monolayer MoSe 2 Grown by Chemical Vapor Deposition for Fast Photodetection. ACS Nano 2014, 8, 8582–8590. [Google Scholar] [CrossRef]
- Nayana, K.; Sunitha, A.P. MoS2−x/GCD-MoS2−x nanostructures for tuning the overpotential of Volmer-Heyrovsky reaction of electrocatalytic hydrogen evolution. Int. J. Hydrogen Energy 2024, 55, 422–431. [Google Scholar] [CrossRef]
- Liang, Y.; Wang, X.; An, W.; Li, Y.; Hu, J.; Cui, W. A g-C3N4@ppy-rGO 3D structure hydrogel for efficient photocatalysis. Appl. Surf. Sci. 2019, 466, 666–672. [Google Scholar] [CrossRef]
- Thoen, D.J.; Bos, B.G.C.; Haalebos, E.A.F.; Klapwijk, T.M.; Baselmans, J.J.A.; Endo, A. Superconducting NbTiN Thin Films with Highly Uniform Properties over a 100 mm diameter Wafer. IEEE Trans. Appl. Supercond. 2016, 27, 1500505. [Google Scholar] [CrossRef]
- Moradi, S.; Kundu, S.; Saidaminov, M.I. High-Throughput Synthesis of Thin Films for the Discovery of Energy Materials: A Perspective. ACS Mater. Au 2022, 2, 516–524. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Zuo, C.; Angmo, D.; Weerasinghe, H.; Gao, M.; Yang, J. Fully Roll-to-Roll Processed Efficient Perovskite Solar Cells via Precise Control on the Morphology of PbI2:CsI Layer. Nano-Micro Lett. 2022, 14, 79. [Google Scholar] [CrossRef]
- Poodt, P.; Cameron, D.C.; Dickey, E.; George, S.M.; Kuznetsov, V.; Parsons, G.N.; Roozeboom, F.; Sundaram, G.; Vermeer, A. Spatial atomic layer deposition: A route towards further industrialization of atomic layer deposition. J. Vac. Sci. Technol. A 2012, 30, 010802. [Google Scholar] [CrossRef]
- Kuo, C.H.; Mcleod, A.J.; Lee, P.C.; Huang, J.; Kashyap, H.; Wang, V.; Yun, S.U.; Zhang, Z.; Spiegelman, J.; Kanjolia, R.; et al. Low-Resistivity Titanium Nitride Thin Films Fabricated by Atomic Layer Deposition with TiCl4 and Metal–Organic Precursors in Horizontal Vias. ACS Appl. Electron. Mater. 2023, 5, 4094–4102. [Google Scholar] [CrossRef]
- Yamaguchi, H.; Eda, G.; Mattevi, C.; Kim, H.K.; Chhowalla, M. Highly Uniform 300 mm Wafer-Scale Deposition of Single and Multilayered Chemically Derived Graphene Thin Films. ACS Nano 2009, 4, 524–528. [Google Scholar] [CrossRef]
- Chirilǎ, A.; Buecheler, S.; Pianezzi, F.; Bloesch, P.; Gretener, C.; Uhl, A.R.; Fella, C.; Kranz, L.; Perrenoud, J.; Seyrling, S.; et al. Highly efficient Cu(In,Ga)Se2 solar cells grown on flexible polymer films. Nat. Mater. 2011, 10, 857–861. [Google Scholar] [CrossRef]
- Nomura, K.; Ohta, H.; Takagi, A.; Kamiya, T.; Hirano, M.; Hosono, H. Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors. Nature 2004, 432, 488–492. [Google Scholar] [CrossRef]
- Vale, J.P.; Sekkat, A.; Gheorghin, T.; Sevim, S.; Mavromanolaki, E.; Flouris, A.D.; Pané, S.; Muñoz-Rojas, D.; Puigmartí-Luis, J.; Sotto Mayor, T. Can We Rationally Design and Operate Spatial Atomic Layer Deposition Systems for Steering the Growth Regime of Thin Films? J. Phys. Chem. C 2023, 127, 9425–9436. [Google Scholar] [CrossRef] [PubMed]
- Cremers, V.; Puurunen, R.L.; Dendooven, J. Conformality in atomic layer deposition: Current status overview of analysis and modelling. Appl. Phys. Rev. 2019, 6, 021302. [Google Scholar] [CrossRef]
- Muñoz-Rojas, D.; Nguyen, V.H.; Masse de la Huerta, C.; Aghazadehchors, S.; Jiménez, C.; Bellet, D. Spatial Atomic Layer Deposition (SALD), an emerging tool for energy materials. Application to new-generation photovoltaic devices and transparent conductive materials. Comptes Rendus Phys. 2017, 18, 391–400. [Google Scholar] [CrossRef]
- Dong, L.; Qiu, S.; García Cerrillo, J.; Wagner, M.; Kasian, O.; Feroze, S.; Jang, D.; Li, C.; M Le Corre, V.; Zhang, K.; et al. Fully printed flexible perovskite solar modules with improved energy alignment by tin oxide surface modification. Energy Environ. Sci. 2024, 17, 7097–7106. [Google Scholar] [CrossRef]
- He, W.; Zhao, Y.; Xiong, Y. Bilayer Polyaniline–WO3 Thin-Film Sensors Sensitive to NO2. ACS Omega 2020, 5, 9744–9751. [Google Scholar] [CrossRef]
- Oliver, J.B. Impact of deposition-rate fluctuations on thin-film thickness and uniformity. Opt. Lett. 2016, 41, 5182–5185. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Li, M.; Shi, J.; Huang, H.; Li, Z. Evaluation and Characterization of High-Uniformity SiNx Thin Film with Controllable Refractive Index by Home-Made Cat-CVD Based on Orthogonal Experiments. Molecules 2025, 30, 1091. [Google Scholar] [CrossRef]
- Hong, W.; Park, C.; Shim, G.W.; Yang, S.Y.; Choi, S.Y. Wafer-Scale Uniform Growth of an Atomically Thin MoS2 Film with Controlled Layer Numbers by Metal–Organic Chemical Vapor Deposition. ACS Appl. Mater. Interfaces 2021, 13, 50497–50504. [Google Scholar] [CrossRef] [PubMed]
- Lin, T.-C.; Wu, J.-Y.; Mendez, A.J.J.; Salazar, N.; Hsu, H.-L.; Huang, W.-C.; Lin, T.-C.; Wu, J.-Y.; Joseph, A.; Mendez, J.; et al. A Study of MgZnO Thin Film for Hydrogen Sensing Application. Materials 2024, 17, 3677. [Google Scholar] [CrossRef]
- Yoon, S.; Ko, S.H. Advances in nanomaterial thin-film temperature sensors: Materials and applications. Nanoscale 2025, 17, 15592–15604. [Google Scholar] [CrossRef] [PubMed]
- Bolli, E.; Fornari, A.; Bellucci, A.; Mastellone, M.; Valentini, V.; Mezzi, A.; Polini, R.; Santagata, A.; Trucchi, D.M. Room-Temperature O3 Detection: Zero-Bias Sensors Based on ZnO Thin Films. Crystals 2024, 14, 90. [Google Scholar] [CrossRef]
- Liu, J.; Xu, L.; Zhou, X.; Zhao, F.; Wang, Y.; Wang, S.; Lv, W.; Sun, D.; Chen, Q. 3D-Printed Conformal Thin Film Thermocouple Arrays for Distributed High-Temperature Measurements. Coatings 2024, 14, 967. [Google Scholar] [CrossRef]
- Pang, X.; Zhang, Q.; Shao, Y.; Liu, M.; Zhang, D.; Zhao, Y. A Flexible Pressure Sensor Based on Magnetron Sputtered MoS2. Sensors 2021, 21, 1130. [Google Scholar] [CrossRef]
- Zhu, C.; Zhou, T.; Xia, H.; Zhang, T. Flexible Room-Temperature Ammonia Gas Sensors Based on PANI-MWCNTs/PDMS Film for Breathing Analysis and Food Safety. Nanomaterials 2023, 13, 1158. [Google Scholar] [CrossRef]
- Petrushenko, S.I.; Fijalkowski, M.; Adach, K.; Fedonenko, D.; Shepotko, Y.M.; Dukarov, S.V.; Sukhov, V.M.; Khrypunova, A.L.; Klochko, N.P. Low-Temperature, Highly Sensitive Ammonia Sensors Based on Nanostructured Copper Iodide Layers. Chemosensors 2025, 13, 29. [Google Scholar] [CrossRef]
- Wilson, R.L.; Simion, C.E.; Blackman, C.S.; Carmalt, C.J.; Stanoiu, A.; Di Maggio, F.; Covington, J.A. The Effect of Film Thickness on the Gas Sensing Properties of Ultra-Thin TiO2 Films Deposited by Atomic Layer Deposition. Sensors 2018, 18, 735. [Google Scholar] [CrossRef]
- Di Zazzo, L.; Ganesh Moorthy, S.; Meunier-Prest, R.; Lesniewska, E.; Di Natale, C.; Paolesse, R.; Bouvet, M. Ammonia and Humidity Sensing by Phthalocyanine–Corrole Complex Heterostructure Devices. Sensors 2023, 23, 6773. [Google Scholar] [CrossRef]
- Yang, H.; Shen, B.; Liu, X.; Jin, C.; Zhou, T. A Study on the Gas/Humidity Sensitivity of the High-Frequency SAW CO Gas Sensor Based on Noble-Metal-Modified Metal Oxide Film. Sensors 2023, 23, 2487. [Google Scholar] [CrossRef] [PubMed]
- Nasriddinov, A.; Shatalova, T.; Maksimov, S.; Li, X.; Rumyantseva, M. Humidity Effect on Low-Temperature NH3 Sensing Behavior of In2O3/rGO Composites under UV Activation. Sensors 2023, 23, 1517. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, S.; Park, Y.; Okuda, H.; Ono, S.; Korposh, S.; Lee, S.W. Fabrication of humidity-resistant optical fiber sensor for ammonia sensing using diazo resin-photocrosslinked films with a porphyrin-polystyrene binary mixture. Sensors 2021, 21, 6176. [Google Scholar] [CrossRef]
- Du, B.; Mu, X.; Liu, S.; Guo, L.; Liu, Z.; Feng, S.; Xu, J.; Tong, Z.; Qi, Z. A New Strategy for Real-Time Humidity Detection: Polymer-Coated Optical Waveguide Sensor. Chemosensors 2022, 10, 63. [Google Scholar] [CrossRef]
- Ivanishcheva, A.P.; Sysoev, V.V.; Abdullin, K.A.; Nesterenko, A.V.; Khubezhov, S.A.; Petrov, V.V. The Application of Combined Visible and Ultraviolet Irradiation to Improve the Functional Characteristics of Gas Sensors Based on ZnO/SnO2 and ZnO/Au Nanorods. Chemosensors 2023, 11, 200. [Google Scholar] [CrossRef]
- Lee, A.; Shekhirev, M.; Anayee, M.; Gogotsi, Y. Multi-year study of environmental stability of Ti3C2Tx MXene films. Graphene 2D Mater. 2024, 9, 77–85. [Google Scholar] [CrossRef]
- Xu, Y.; Wu, B.; Hou, C.; Li, Y.; Wang, H.; Zhang, Q. High Thermoelectric Performance in Ti3C2Tx MXene/Sb2Te3 Composite Film for Highly Flexible Thermoelectric Devices. Glob. Chall. 2024, 8, 2300032. [Google Scholar] [CrossRef] [PubMed]
- Hu, B.; Shi, X.L.; Cao, T.; Liu, S.; Zhang, M.; Lyu, W.; Yin, L.; Tesfamichael, T.; Liu, Q.; Chen, Z.G. High-Performing Flexible Mg3Bi2 Thin-Film Thermoelectrics. Adv. Sci. 2024, 11, 2409788. [Google Scholar] [CrossRef]
- Abdelkarem, K.; Saad, R.; El Sayed, A.M.; Fathy, M.I.; Shaban, M.; Hamdy, H. Design of high-sensitivity La-doped ZnO sensors for CO2 gas detection at room temperature. Sci. Rep. 2023, 13, 18398. [Google Scholar] [CrossRef]
- Zhou, Z.; Zheng, Y.; Yang, Y.; Zhang, W.; Zou, M.; Nan, C.W.; Lin, Y.H. Enhanced Thermoelectric Performance of ZnO-Based Thin Films via Interface Engineering. Crystals 2022, 12, 1351. [Google Scholar] [CrossRef]
- Lennon, C.T.; Shu, Y.; Brennan, J.C.; Namburi, D.K.; Varghese, V.; Hemakumara, D.T.; Longchar, L.A.; Srinath, S.; Hadfield, R.H. High-uniformity atomic layer deposition of superconducting niobium nitride thin films for quantum photonic integration. Mater. Quantum Technol. 2023, 3, 045401. [Google Scholar] [CrossRef]
- Park, S.Y.; Ha, M.T.; Kim, K.H.; Van Lich, L.; Shin, Y.J.; Jeong, S.M.; Kwon, S.H.; Bae, S.Y. Enhanced thickness uniformity of large-scale α-Ga2O3 epilayers grown by vertical hot-wall mist chemical vapor deposition. Ceram. Int. 2022, 48, 5075–5082. [Google Scholar] [CrossRef]
- Tien, C.L.; Cheng, K.S. Improving Thickness Uniformity of Amorphous Oxide Films Deposited on Large Substrates by Optical Flux Mapping. Appl. Sci. 2022, 12, 11878. [Google Scholar] [CrossRef]
- Gudmundsson, J.T.; Brenning, N.; Lundin, D.; Helmersson, U. High power impulse magnetron sputtering discharge. J. Vac. Sci. Technol. A 2012, 30, 030801. [Google Scholar] [CrossRef]
- Lee, T.Y.; Chen, P.T.; Huang, C.C.; Chen, H.C.; Chen, L.Y.; Lee, P.T.; Chen, F.C.; Horng, R.H.; Kuo, H.C. Advances in core technologies for semiconductor manufacturing: Applications and challenges of atomic layer etching, neutral beam etching and atomic layer deposition. Nanoscale Adv. 2025, 7, 2796–2817. [Google Scholar] [CrossRef]
- Schweizer, P.; Vogl, L.M.; Maeder, X.; Utke, I.; Michler, J. Optimizing Atomic Layer Deposition Processes with Nanowire-Assisted TEM Analysis. Adv. Mater. Interfaces 2024, 11, 2301064. [Google Scholar] [CrossRef]
- Nguyen, V.H.; Sekkat, A.; Jiménez, C.; Muñoz, D.; Bellet, D.; Muñoz-Rojas, D. Impact of precursor exposure on process efficiency and film properties in spatial atomic layer deposition. Chem. Eng. J. 2021, 403, 126234. [Google Scholar] [CrossRef]
- Hoye, R.L.Z.; Muñoz-Rojas, D.; Sun, Z.; Okcu, H.; Asgarimoghaddam, H.; Macmanus-Driscoll, J.L.; Musselman, K.P. Spatial Atomic Layer Deposition for Energy and Electronic Devices. PRX Energy 2025, 4, 017002. [Google Scholar] [CrossRef]
- Illiberi, A.; Cobb, B.; Sharma, A.; Grehl, T.; Brongersma, H.; Roozeboom, F.; Gelinck, G.; Poodt, P. Spatial Atmospheric Atomic Layer Deposition of InxGayZnzO for Thin Film Transistors. ACS Appl. Mater. Interfaces 2015, 7, 3671–3675. [Google Scholar] [CrossRef]
- Kipkirui, N.G.; Lin, T.T.; Kiplangat, R.S.; Lee, J.W.; Chen, S.H. HiPIMS and RF magnetron sputtered Al0.5CoCrFeNi2Ti0.5 HEA thin-film coatings: Synthesis and characterization. Surf. Coat. Technol. 2022, 449, 128988. [Google Scholar] [CrossRef]
- Suliali, N.J.; Goosen, W.E.; Janse van Vuuren, A.; Olivier, E.J.; Bakhit, B.; Högberg, H.; Darakchieva, V.; Botha, J.R. Ti thin films deposited by high-power impulse magnetron sputtering in an industrial system: Process parameters for a low surface roughness. Vacuum 2022, 195, 110698. [Google Scholar] [CrossRef]
- Rong, Y.; Hu, Y.; Mei, A.; Tan, H.; Saidaminov, M.I.; Il Seok, S.; McGehee, M.D.; Sargent, E.H.; Han, H. Challenges for commercializing perovskite solar cells. Science 2018, 361, eaat8235. [Google Scholar] [CrossRef]
- Weber, M.; Boysen, N.; Graniel, O.; Sekkat, A.; Dussarrat, C.; Wiff, P.; Devi, A.; Muñoz-Rojas, D. Assessing the Environmental Impact of Atomic Layer Deposition (ALD) Processes and Pathways to Lower It. ACS Mater. Au 2023, 3, 274–298. [Google Scholar] [CrossRef]
- Maalouf, A.; Okoroafor, T.; Jehl, Z.; Babu, V.; Resalati, S. A comprehensive review on life cycle assessment of commercial and emerging thin-film solar cell systems. Renew. Sustain. Energy Rev. 2023, 186, 113652. [Google Scholar] [CrossRef]
- Frenzel, M.; Mikolajczak, C.; Reuter, M.A.; Gutzmer, J. Quantifying the relative availability of high-tech by-product metals–The cases of gallium, germanium and indium. Resour. Policy 2017, 52, 327–335. [Google Scholar] [CrossRef]
- Choi, C.H.; Eun, J.; Cao, J.; Lee, S.; Zhao, F. Global strategic level supply planning of materials critical to clean energy technologies—A case study on indium. Energy 2018, 147, 950–964. [Google Scholar] [CrossRef]
- Bretos, I.; Jiménez, R.; Ricote, J.; Calzada, M.L. Low-temperature crystallization of solution-derived metal oxide thin films assisted by chemical processes. Chem. Soc. Rev. 2018, 47, 291–308. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.H.; Kil, H.J.; Lee, S.; Park, J.; Park, J.W. Interfacial Delamination at Multilayer Thin Films in Semiconductor Devices. ACS Omega 2022, 7, 25219–25228. [Google Scholar] [CrossRef] [PubMed]
- Sebastiani, M.; Rossi, E.; Mughal, M.Z.; Benedetto, A.; Jacquet, P.; Salvati, E.; Korsunsky, A.M. Nano-Scale Residual Stress Profiling in Thin Multilayer Films with Non-Equibiaxial Stress State. Nanomaterials 2020, 10, 853. [Google Scholar] [CrossRef]
- Liang, L.; Hu, R.; Wang, J.; Huang, A.; Pang, S. A thermal fluid mechanical model of stress evolution for wire feeding-based laser additive manufacturing. J. Manuf. Process. 2021, 69, 602–612. [Google Scholar] [CrossRef]
- Jiang, B.; Chen, Y.; Fang, A.; Liu, B.; Liu, Y.; Liang, H.; Lu, X. Surface stress evolution in through silicon via wafer during a backside thinning process. IEEE Trans. Semicond. Manuf. 2019, 32, 589–595. [Google Scholar] [CrossRef]
- Burtman, V.; Ofir, Y.; Yitzchaik, S. In Situ Spectroscopic Ellipsometry Monitoring of Multilayer Growth Dynamics via Molecular Layer Epitaxy. Langmuir 2001, 17, 2137–2142. [Google Scholar] [CrossRef]
- Colosimo, B.M.; Cavalli, S.; Grasso, M. A cost model for the economic evaluation of in-situ monitoring tools in metal additive manufacturing. Int. J. Prod. Econ. 2020, 223, 107532. [Google Scholar] [CrossRef]
- Jula, P.; Spanos, C.J.; Leachman, R.C. Comparing the economic impact of alternative metrology methods in semiconductor manufacturing. IEEE Trans. Semicond. Manuf. 2002, 15, 454–463. [Google Scholar] [CrossRef]
- Plikusiene, I.; Maciulis, V.; Ramanavicius, A.; Ramanaviciene, A. Spectroscopic Ellipsometry and Quartz Crystal Microbalance with Dissipation for the Assessment of Polymer Layers and for the Application in Biosensing. Polymers 2022, 14, 1056. [Google Scholar] [CrossRef]
- Kim, D.; Hwang, G.; Hwang, G.; Choi, S.; Dembele, V.; Kheiryzadehkhanghah, S.; Choi, I.; Kim, C.S.; Kim, D. Large scale thin film thickness uniformity extraction based on dynamic spectroscopic ellipsometry. In Proceedings of the Optical Technology and Measurement for Industrial Applications Conference, Yokohama, Japan, 19–22 April 2021; Volume 11927, pp. 70–71. [Google Scholar] [CrossRef]
- Wen, S.; Xue, X.; Wang, S.; Ni, Y.; Sun, L.; Yang, Y. Metasurface array for single-shot spectroscopic ellipsometry. Light Sci. Appl. 2024, 13, 88. [Google Scholar] [CrossRef]
- Nele, L.; Mattera, G.; Yap, E.W.; Vozza, M.; Vespoli, S. Towards the application of machine learning in digital twin technology: A multi-scale review. Discov. Appl. Sci. 2024, 6, 502. [Google Scholar] [CrossRef]
- Thopil, G.A.; Sachse, C.E.; Lalk, J.; Thopil, M.S. Techno-economic performance comparison of crystalline and thin film PV panels under varying meteorological conditions: A high solar resource southern hemisphere case. Appl. Energy 2020, 275, 115041. [Google Scholar] [CrossRef]
- Heikkinen, I.T.S.; Repo, P.; Vähänissi, V.; Pasanen, T.; Malinen, V.; Savin, H. Efficient surface passivation of black silicon using spatial atomic layer deposition. Energy Procedia 2017, 124, 282–287. [Google Scholar] [CrossRef]
- Wu, Q.; Yu, Q.; He, G.; Wang, W.; Lu, J.; Yao, B.; Liu, S.; Fang, Z. Interface Optimization and Performance Enhancement of Er2O3-Based MOS Devices by ALD-Derived Al2O3 Passivation Layers and Annealing Treatment. Nanomaterials 2023, 13, 1740. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.M.; Kim, D.G.; Kim, Y.S.; Kim, M.; Park, J.S. Atomic layer deposition for nanoscale oxide semiconductor thin film transistors: Review and outlook. Int. J. Extrem. Manuf. 2023, 5, 012006. [Google Scholar] [CrossRef]
- Heydari Gharahcheshmeh, M. Fabrication of Conjugated Conducting Polymers by Chemical Vapor Deposition (CVD) Method. Nanomaterials 2025, 15, 452. [Google Scholar] [CrossRef]
- Rönn, J.-O.; Virtanen, S.; Maydannik, P.; Niiranen, K.; Sneck, S. Spatial atomic layer deposition: A new revolution in ultra-fast production of conformal oxide-based optical coatings. In Advances in Optical Thin Films VIII; SPIE: Bellingham, WA, USA, 2024; PC1302005. [Google Scholar] [CrossRef]
- Parvazian, E.; Watson, T. The roll-to-roll revolution to tackle the industrial leap for perovskite solar cells. Nat. Commun. 2024, 15, 3983. [Google Scholar] [CrossRef]
- PPiedade, A.; Romeu, F.; Branco, R.; V Morais, P. Thin Films for Medical and Environmental Applications. In Methods for Film Synthesis and Coating Procedures; IntechOpen: London, UK, 2020. [Google Scholar] [CrossRef]
- Philip, A.; Mai, L.; Ghiyasi, R.; Devi, A.; Karppinen, M. Low-temperature ALD/MLD growth of alucone and zincone thin films from non-pyrophoric precursors. Dalt. Trans. 2022, 51, 14508–14516. [Google Scholar] [CrossRef]
- Kim, S.; Choi, H.; Choi, S. A study on the crystallographic orientation with residual stress and electrical property of Al films deposited by sputtering. Thin Solid Film. 1998, 322, 298–302. [Google Scholar] [CrossRef]
- Sun, Y.; Li, G.; Sun, W.; Zhou, X. Research progress on the formation, detection methods and application in photocatalytic reduction of CO2 of oxygen vacancy. J. CO2 Util. 2023, 67, 102344. [Google Scholar] [CrossRef]
- Raizada, P.; Soni, V.; Kumar, A.; Singh, P.; Parwaz Khan, A.A.; Asiri, A.M.; Thakur, V.K.; Nguyen, V.-H. Surface defect engineering of metal oxides photocatalyst for energy application and water treatment. J. Mater. 2021, 7, 388–418. [Google Scholar] [CrossRef]
- Clay, P.L.; Baxter, E.F.; Cherniak, D.J.; Kelley, S.P.; Thomas, J.B.; Watson, E.B. Two diffusion pathways in quartz: A combined UV-laser and RBS study. Geochim. Cosmochim. Acta 2010, 74, 5906–5925. [Google Scholar] [CrossRef]
- Smith, R.W.; Srolovitz, D.J. Void formation during film growth: A molecular dynamics simulation study. J. Appl. Phys. 1996, 79, 1448–1457. [Google Scholar] [CrossRef]
- Zarin, I.; Arissi, G.; Barias, E.; Hoque, M.J.; Ma, J.; Rabbi, K.F.; Miljkovic, N. Characterization of nanoscale pinhole defects in hydrophobic coatings using copper electrodeposition. Appl. Phys. Lett. 2023, 123, 231602. [Google Scholar] [CrossRef]
- Gao, Z.; Jiang, Y.; Meng, Y.; Du, M.; Liu, F. A Review of the Fabrication of Pinhole-Free Thin Films Based on Electrodeposition Technology: Theory, Methods and Progress. Molecules 2024, 29, 5615. [Google Scholar] [CrossRef] [PubMed]
- Gulati, K.; Adachi, T. Profiling to Probing: Atomic force microscopy to characterize nano-engineered implants. Acta Biomater. 2023, 170, 15–38. [Google Scholar] [CrossRef]
- Asano, N.; Lu, J.; Asahina, S.; Takami, S. Direct Observation Techniques Using Scanning Electron Microscope for Hydrothermally Synthesized Nanocrystals and Nanoclusters. Nanomaterials 2021, 11, 908. [Google Scholar] [CrossRef]
- Malatesta, M. Transmission Electron Microscopy as a Powerful Tool to Investigate the Interaction of Nanoparticles with Subcellular Structures. Int. J. Mol. Sci. 2021, 22, 12789. [Google Scholar] [CrossRef]
- Wu, Y.; Wang, D.; Liu, J.; Cai, H.; Zhang, Y. Atomic Force Microscope Study of Ag-Conduct Polymer Hybrid Films: Evidence for Light-Induced Charge Separation. Nanomaterials 2020, 10, 1819. [Google Scholar] [CrossRef] [PubMed]
- Znaidi, L.; Diyagh, H.; Benaicha, I.; Bouri, N.; El Gana, L.; El Farri, H.; Oukacha, K.; Fahoume, M.; Nouneh, K. Effect of bath temperature on physical properties of thin films CuO using the SILAR method: Photocatalytic properties and numerical investigation. Chem. Phys. Impact 2025, 11, 100901. [Google Scholar] [CrossRef]
- Suo, J.; Yang, B.; Hagfeldt, A. Passivation Strategies through Surface Reconstruction toward Highly Efficient and Stable Perovskite Solar Cells on n-i-p Architecture. Energies 2021, 14, 4836. [Google Scholar] [CrossRef]
- Ghaderi, M.; Bi, H.; Dam-Johansen, K. Advanced materials for smart protective coatings: Unleashing the potential of metal/covalent organic frameworks, 2D nanomaterials and carbonaceous structures. Adv. Colloid Interface Sci. 2024, 323, 103055. [Google Scholar] [CrossRef]
- Fuenmayor, C.A.; Baron-Cangrejo, O.G.; Salgado-Rivera, P.A. Encapsulation of Carotenoids as Food Colorants via Formation of Cyclodextrin Inclusion Complexes: A Review. Polysaccharides 2021, 2, 454–476. [Google Scholar] [CrossRef]
- Nissinen, E.; Anghelescu-Hakala, A.; Hämäläinen, R.; Kivinen, P.; Somorowsky, F.; Avellan, J.; Koppolu, R. Upscaled Multilayer Dispersion Coating Application for Barrier Packaging: PLAX and bioORMOCER®. Coatings 2025, 15, 214. [Google Scholar] [CrossRef]
- Hanika, M.; Langowski, H.-C.; Moosheimer, U.; Peukert, W. Inorganic Layers on Polymeric Films–Influence of Defects and Morphology on Barrier Properties. Chem. Eng. Technol. 2003, 26, 605–614. [Google Scholar] [CrossRef]
- Yang, G.; Hirsch, D.; Li, J.; Liu, Y.; Frost, F.; Hong, Y. Energy dependence of morphologies on photoresist surfaces under Ar+ ion bombardment with normal incidence. Appl. Surf. Sci. 2020, 523, 146510. [Google Scholar] [CrossRef]
- Al Nasim, M.N.E.A.; Chun, D.-M. Formation of few-layer graphene flake structures from graphite particles during thin film coating using dry spray deposition method. Thin Solid Film. 2017, 622, 34–40. [Google Scholar] [CrossRef]
- Venkatraman, M.S.; Bosco, I.G.; Cole, I.S.; Emmanuel, B. Models for Corrosion of Metals under Thin Electrolyte Layers. ECS Trans. 2011, 35, 1. [Google Scholar] [CrossRef]
- Terry, P.W.; Baver, D.A.; Gupta, S. Role of stable eigenmodes in saturated local plasma turbulence. Phys. Plasmas 2006, 13, 022307. [Google Scholar] [CrossRef]
- Zhao, E.; Sutton, A.K.; Haugerud, B.M.; Cressler, J.D.; Marshall, P.W.; Reed, R.A.; El-Kareh, B.; Balster, S.; Yasuda, H. The effects of radiation on 1/f noise in complementary (npn+pnp) SiGe HBTs. IEEE Trans. Nucl. Sci. 2004, 51, 3243–3249. [Google Scholar] [CrossRef]
- Witt, C.; Volkert, C.A.; Arzt, E. Electromigration-induced Cu motion and precipitation in bamboo Al–Cu interconnects. Acta Mater. 2003, 51, 49–60. [Google Scholar] [CrossRef]
- Price, J.J.; Xu, T.; Zhang, B.; Lin, L.; Koch, K.W.; Null, E.L.; Reiman, K.B.; Paulson, C.A.; Kim, C.-G.; Oh, S.-Y.; et al. Nanoindentation Hardness and Practical Scratch Resistance in Mechanically Tunable Anti-Reflection Coatings. Coatings 2021, 11, 213. [Google Scholar] [CrossRef]
- Kim, H. Recent Advances in Halide Perovskite Material Classes for Field-Effect Transistors. J. Sci. Adv. Mater. Devices 2025, 10, 101000. [Google Scholar] [CrossRef]
- Vakili, M.; Koutník, P.; Kohout, J.; Gholami, Z. Analysis, Assessment, and Mitigation of Stress Corrosion Cracking in Austenitic Stainless Steels in the Oil and Gas Sector: A Review. Surfaces 2024, 7, 589–642. [Google Scholar] [CrossRef]
- Aspnes, D.E. Spectroscopic ellipsometry—Past, present, and future. Thin Solid Film. 2014, 571, 334–344. [Google Scholar] [CrossRef]
- Cao, G.H.; Oertel, C.-G.; Schaarschuch, R.; Skrotzki, W.; Russell, A.M. TEM study of the martensitic phases in the ductile DyCu and YCu intermetallic compounds. Acta Mater. 2017, 132, 345–353. [Google Scholar] [CrossRef]
- Klenam, D.E.P.; Oghenevweta, J.; Soboyejo, W.O. Fatigue of Micro-Electro-Mechanical Systems (Mems) Thin Films. In Comprehensive Structural Integrity; Elsevier: Amsterdam, The Netherlands, 2023; pp. 286–310. [Google Scholar] [CrossRef]
- Hlushko, K.; Ziegelwanger, T.; Reisinger, M.; Todt, J.; Meindlhumer, M.; Beuer, S.; Rommel, M.; Greving, I.; Flenner, S.; Kopeček, J.; et al. Intragranular thermal fatigue of Cu thin films: Near-grain boundary hardening, strain localization and voiding. Acta Mater. 2023, 253, 118961. [Google Scholar] [CrossRef]
- Misiurev, D.; Holcman, V. Modeling of Magnetic Films: A Scientific Perspective. Materials 2024, 17, 1436. [Google Scholar] [CrossRef]
- Doust Mohammadi, M.; Abbas, F.; Louis, H.; Ikenyirimba, O.J.; Mathias, G.E.; Shafiq, F. Advancing optoelectronic performance of organic solar cells: Computational modeling of non-fullerene donor based on end-capped triphenyldiamine (TPDA) molecules. Comput. Theor. Chem. 2023, 1226, 114201. [Google Scholar] [CrossRef]
- van Mourik, T.; Bühl, M.; Gaigeot, M.-P. Density functional theory across chemistry, physics and biology. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2014, 372, 20120488. [Google Scholar] [CrossRef]
- Islam, M.A.; Rahman, S.M.M.; Mim, J.J.; Khan, S.; Khan, F.; Patwary, M.A.I.; Hossain, N. Applications of molecular dynamics in nanomaterial design and characterization—A review. Chem. Eng. J. Adv. 2025, 22, 100731. [Google Scholar] [CrossRef]
- Patil, S.P.; Heider, Y.; Hernandez Padilla, C.A.; Cruz-Chú, E.R.; Markert, B. A comparative molecular dynamics-phase-field modeling approach to brittle fracture. Comput. Methods Appl. Mech. Eng. 2016, 312, 117–129. [Google Scholar] [CrossRef]
- Mobarak, M.H.; Mimona, M.A.; Islam, M.A.; Hossain, N.; Zohura, F.T.; Imtiaz, I.; Rimon, M.I.H. Scope of machine learning in materials research—A review. Appl. Surf. Sci. Adv. 2023, 18, 100523. [Google Scholar] [CrossRef]
- Tran, V.T.; Mai, H.V.; Nguyen, H.M.; Duong, D.C.; Vu, V.H.; Hoang, N.N.; Van Nguyen, M.; Mai, T.A.; Tong, H.D.; Nguyen, H.Q.; et al. Machine-learning reinforcement for optimizing multilayered thin films: Applications in designing broadband antireflection coatings. Appl. Opt. 2022, 61, 3328. [Google Scholar] [CrossRef] [PubMed]
- Alhashmi, A.; Kanoun, M.B.; Goumri-Said, S. Machine Learning for Halide Perovskite Materials ABX3 (B = Pb, X = I, Br, Cl) Assessment of Structural Properties and Band Gap Engineering for Solar Energy. Materials 2023, 16, 2657. [Google Scholar] [CrossRef] [PubMed]
- Ahsan, M.M.; Raman, S.; Liu, Y.; Siddique, Z. Defect analysis of 3D printed object using transfer learning approaches. Expert Syst. Appl. 2024, 253, 124293. [Google Scholar] [CrossRef]
- Buratti, Y.; Javier, G.M.N.; Abdullah-Vetter, Z.; Dwivedi, P.; Hameiri, Z. Machine learning for advanced characterisation of silicon photovoltaics: A comprehensive review of techniques and applications. Renew. Sustain. Energy Rev. 2024, 202, 114617. [Google Scholar] [CrossRef]
- Szymański, P.; Markowicz, M.; Mikiciuk-Olasik, E. Adaptation of High-Throughput Screening in Drug Discovery—Toxicological Screening Tests. Int. J. Mol. Sci. 2011, 13, 427–452. [Google Scholar] [CrossRef]
- Talley, K.R.; White, R.; Wunder, N.; Eash, M.; Schwarting, M.; Evenson, D.; Perkins, J.D.; Tumas, W.; Munch, K.; Phillips, C.; et al. Research data infrastructure for high-throughput experimental materials science. Patterns 2021, 2, 100373. [Google Scholar] [CrossRef] [PubMed]
- Papadimitriou, I.; Gialampoukidis, I.; Vrochidis, S.; Kompatsiaris, I. AI methods in materials design, discovery and manufacturing: A review. Comput. Mater. Sci. 2024, 235, 112793. [Google Scholar] [CrossRef]
- Michael, S.; Auld, D.; Klumpp, C.; Jadhav, A.; Zheng, W.; Thorne, N.; Austin, C.P.; Inglese, J.; Simeonov, A. A Robotic Platform for Quantitative High-Throughput Screening. Assay Drug Dev. Technol. 2008, 6, 637–657. [Google Scholar] [CrossRef]
- Paulson, J.A.; Tsay, C. Bayesian optimization as a flexible and efficient design framework for sustainable process systems. Curr. Opin. Green Sustain. Chem. 2025, 51, 100983. [Google Scholar] [CrossRef]
- Martin, H.G.; Radivojevic, T.; Zucker, J.; Bouchard, K.; Sustarich, J.; Peisert, S.; Arnold, D.; Hillson, N.; Babnigg, G.; Marti, J.M.; et al. Perspectives for self-driving labs in synthetic biology. Curr. Opin. Biotechnol. 2023, 79, 102881. [Google Scholar] [CrossRef]
- MacLeod, B.P.; Parlane, F.G.L.; Morrissey, T.D.; Häse, F.; Roch, L.M.; Dettelbach, K.E.; Moreira, R.; Yunker, L.P.E.; Rooney, M.B.; Deeth, J.R.; et al. Self-driving laboratory for accelerated discovery of thin-film materials. Sci. Adv. 2020, 6, eaaz8867. [Google Scholar] [CrossRef]
- Wen, H.; Weng, B.; Wang, B.; Xiao, W.; Liu, X.; Wang, Y.; Zhang, M.; Huang, H. Advancements in Transparent Conductive Oxides for Photoelectrochemical Applications. Nanomaterials 2024, 14, 591. [Google Scholar] [CrossRef]
- Han, C.; Dong, X.; Zhang, W.; Huang, X.; Gong, L.; Su, C. Intelligent Systems for Inorganic Nanomaterial Synthesis. Nanomaterials 2025, 15, 631. [Google Scholar] [CrossRef]
- Ma, T.; Ma, M.; Guo, L.J. Optical multilayer thin film structure inverse design: From optimization to deep learning. iScience 2025, 28, 112222. [Google Scholar] [CrossRef]
- Leung, T.L.; Ahmad, I.; Syed, A.A.; Ng, A.M.C.; Popović, J.; Djurišić, A.B. Stability of 2D and quasi-2D perovskite materials and devices. Commun. Mater. 2022, 3, 63. [Google Scholar] [CrossRef]
- Lanza, M.; Smets, Q.; Huyghebaert, C.; Li, L.-J. Yield, variability, reliability, and stability of two-dimensional materials based solid-state electronic devices. Nat. Commun. 2020, 11, 5689. [Google Scholar] [CrossRef]
- Liu, Y.; Weiss, N.O.; Duan, X.; Cheng, H.-C.; Huang, Y.; Duan, X. Van der Waals heterostructures and devices. Nat. Rev. Mater. 2016, 1, 16042. [Google Scholar] [CrossRef]
- Liang, Q.; Zhang, Q.; Zhao, X.; Liu, M.; Wee, A.T.S. Defect Engineering of Two-Dimensional Transition-Metal Dichalcogenides: Applications, Challenges, and Opportunities. ACS Nano 2021, 15, 2165–2181. [Google Scholar] [CrossRef]
- Xu, X.; Guo, T.; Kim, H.; Hota, M.K.; Alsaadi, R.S.; Lanza, M.; Zhang, X.; Alshareef, H.N. Growth of 2D Materials at the Wafer Scale. Adv. Mater. 2022, 34, 2108258. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Dong, J.; Ding, F. Strategies, Status, and Challenges in Wafer Scale Single Crystalline Two-Dimensional Materials Synthesis. Chem. Rev. 2021, 121, 6321–6372. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Park, J.-H.; Vitale, S.A.; Ge, W.; Jung, G.S.; Wang, J.; Mohamed, M.; Zhang, T.; Ashok, M.; Xue, M.; et al. Low-thermal-budget synthesis of monolayer molybdenum disulfide for silicon back-end-of-line integration on a 200 mm platform. Nat. Nanotechnol. 2023, 18, 456–463. [Google Scholar] [CrossRef]
- O’Brien, K.P.; Naylor, C.H.; Dorow, C.; Maxey, K.; Penumatcha, A.V.; Vyatskikh, A.; Zhong, T.; Kitamura, A.; Lee, S.; Rogan, C.; et al. Process integration and future outlook of 2D transistors. Nat. Commun. 2023, 14, 6400. [Google Scholar] [CrossRef]
- Rajput, N.S.; Kotbi, A.; Kaja, K.; Jouiad, M. Long-term aging of CVD grown 2D-MoS2 nanosheets in ambient environment. npj Mater. Degrad. 2022, 6, 75. [Google Scholar] [CrossRef]
- Yi, K.; Wu, Y.; An, L.; Deng, Y.; Duan, R.; Yang, J.; Zhu, C.; Gao, W.; Liu, Z. Van der Waals Encapsulation by Ultrathin Oxide for Air-Sensitive 2D Materials. Adv. Mater. 2024, 36, 2403494. [Google Scholar] [CrossRef]
- Thakur, M.; Cai, N.; Zhang, M.; Teng, Y.; Chernev, A.; Tripathi, M.; Zhao, Y.; Macha, M.; Elharouni, F.; Lihter, M.; et al. High durability and stability of 2D nanofluidic devices for long-term single-molecule sensing. npj 2D Mater. Appl. 2023, 7, 11. [Google Scholar] [CrossRef]
- Sulleiro, M.V.; Dominguez-Alfaro, A.; Alegret, N.; Silvestri, A.; Gómez, I.J. 2D Materials towards sensing technology: From fundamentals to applications. Sens. Bio-Sens. Res. 2022, 38, 100540. [Google Scholar] [CrossRef]
- Idoko, F.A.; Ezeamii, G.C.; Ojochogwu, O.J. Green chemistry in manufacturing: Innovations in reducing environmental impact. World J. Adv. Res. Rev. 2024, 23, 2826–2841. [Google Scholar] [CrossRef]
- Olawade, D.B.; Ige, A.O.; Olaremu, A.G.; Ijiwade, J.O.; Adeola, A.O. The synergy of artificial intelligence and nanotechnology towards advancing innovation and sustainability—A mini-review. Nano Trends 2024, 8, 100052. [Google Scholar] [CrossRef]
- Kuo, C.-C.; Huang, P.-J. Repeatability and reproducibility study of thin film optical measurement system. Opt. Int. J. Light Electron Opt. 2013, 124, 3489–3493. [Google Scholar] [CrossRef]
- Maware, C.; Muvunzi, R.; Machingura, T.; Daniyan, I. Examining the Progress in Additive Manufacturing in Supporting Lean, Green and Sustainable Manufacturing: A Systematic Review. Appl. Sci. 2024, 14, 6041. [Google Scholar] [CrossRef]
- Powalla, M.; Paetel, S.; Ahlswede, E.; Wuerz, R.; Wessendorf, C.D.; Magorian Friedlmeier, T.; Powalla, M.; Paetel, S.; Ahlswede, E.; Wuerz, R.; et al. Thin-film solar cells exceeding 22% solar cell efficiency: An overview on CdTe-, Cu(In,Ga)Se2-, and perovskite-based materials. Appl. Phys. Rev. 2018, 5, 041602. [Google Scholar] [CrossRef]
- Ma, F.; Zhao, Y.; Qu, Z.; You, J. Developments of Highly Efficient Perovskite Solar Cells. Acc. Mater. Res. 2023, 4, 716–725. [Google Scholar] [CrossRef]
- Whitaker, J.B.; Klein, T.R.; Kim, D.H.; Li, Z.; Dou, B.; Berry, J.J.; Hest, M.F.A.M.V.; Zhu, K. Scalable Deposition of Polycrystalline Perovskite Thin Films towards High-Efficiency and Large-Area Perovskite Photovoltaics. In Proceedings of the IEEE 7th World Conference on Photovoltaic Energy Conversion (WCPEC 2018)—A Joint Conference of the 45th IEEE Photovoltaic Specialists Conference, 28th Photovoltaic Science & Engineering Conference (PVSEC), and 34th European Photovoltaic Solar Energy Conference & Exhibition (EU PVSEC), Waikoloa Village, HW, USA, 10–15 June 2018; pp. 2808–2811. [Google Scholar] [CrossRef]
- Deyu, G.K.; Wenskat, M.; Díaz-Palacio, I.G.; Blick, R.H.; Zierold, R.; Hillert, W. Recent advances in atomic layer deposition of superconducting thin films: A review. Mater. Horiz. 2025, 12, 5594–5626. [Google Scholar] [CrossRef]

























| Deposition Technique | Underlying Principle | Typical Growth Rate | Typical Temperature Range (°C) | Film Quality and Control | Scalability/Industrial Adoption | Representative Experimental Examples | Ref. |
|---|---|---|---|---|---|---|---|
| Magnetron PVD (sputtering) | Sputter ejection of atoms from target → gas-phase transport → condensation (vacuum, line-of-sight). | ~0.1–10 nm·min−1 (power and geometry-dependent). | RT–400 °C typical (substrate heating optional). | Good nm-scale thickness control; limited conformality on deep/high-AR features. | Very high—industrial for large-area coatings and displays. | ITO example: RF sputtering on glass/PET, substrate T 100–300 °C, Ar/O2 pressure ~1–10 mTorr; tune O2 flow for resistivity/thickness. | [236,237] |
| Thermal/E-beam evaporation (PVD) | Resistive or e-beam heating evaporates source; vapor condenses on substrate under vacuum. | ~10–100 nm·min−1 (thermal); variable for e-beam. | RT–400 °C (post-anneal often used). | Excellent for metals and organics; particulate/shadowing issues possible. | High—common in labs and industry for metals/organics. | Au on SiO2: thermal evaporation at RT; deposition rate controlled to <1 nm·s−1 for smooth films; post-anneal 200–400 °C to tune grain size. | [238,239,240] |
| CVD/MOCVD/PECVD | Gas-phase precursors react/decompose at substrate → film growth (thermal or plasma-assisted). | ~1–100 nm·min−1 (process dependent; epitaxy slower). | 200–1200 °C (PECVD/MOCVD variants may be lower, ~100–600 °C). | Excellent uniformity and conformality (gas diffusion limited); epitaxial quality achievable in MOCVD. | Very high—backbone of semiconductor fabs. | Graphene on Cu (CVD): growth at ~1000 °C in CH4/H2 flow; control of pCH4 and time tunes domain size/nucleation. GaN MOCVD: T ~900–1100 °C, controlled V/III ratio for epitaxy. | [238,241] |
| ALD/PEALD | Sequential self-limiting surface reactions deposit ~one monolayer per cycle (Å precision); plasma variants lower T. | Growth per cycle ~0.3–1.0 Å/cycle (nm·min−1 depends on cycle time; 1–5 nm·min−1 possible with fast cycles). | 50–350 °C typical; PEALD can be <100 °C. | Å-level thickness precision; excellent conformality even on high-AR features. | Medium → High (industrial uptake for conformal coatings in microelectronics and energy). | Al2O3 ALD (TMA/H2O): typical pulse 0.01–0.1 s, purge 5–30 s, growth ~1 Å/cycle at 150–250 °C. HfO2 ALD (TEMAH/H2O): pulses and purge times per refs; substrate Si/SiO2. | [242] |
| MBE/PA-MBE | UHV effusion/evaporation sources produce atomic/molecular beams; epitaxial, layer-by-layer growth with precise flux control. | ~0.01–0.1 nm·s−1 (monolayer/min scale; tool dependent). | RT–900 °C (semiconductor MBE often 300–800 °C). | Exceptional crystalline quality and abrupt interfaces; monolayer control. | Low—high cost, low throughput; mainly research/specialized devices. | GaAs/AlGaAs MBE: substrate ~580–620 °C, BEPs (beam equivalent pressures) tuned; growth rates ~1 µm·hr−1 (device recipes in SI). | [243,244] |
| PLD | Laser ablation of the target forms a plasma plume; condensed species deposit on the substrate—stoichiometric transfer for complex targets. | Per pulse ~0.05–0.2 nm/pulse; with rep rates (1–100 Hz) → tens to hundreds nm·min−1 depending on repetition and coupling. | RT–900 °C (oxide PLD commonly 400–800 °C); oxygen ambient often 10−4–1 Torr. | Good stoichiometry for multicomponent oxides; uniformity sensitive to plume geometry and substrate size. | Moderate—widespread in research; limited large-wafer industrial adoption. | YBCO PLD: laser fluence ~1–2 J·cm−2, O2 pressure ~100–400 mTorr, substrate T 700–800 °C—yields epitaxial superconducting films. | [245] |
| Solution processing and printing (spin-coat, spray, sol–gel, inkjet, roll-to-roll) | Deposit precursor inks/sols; convert to solid via drying/annealing or solvent engineering; printing allows patterned deposition. | Thickness per pass: few nm → µm (varies by formulation and technique); R2R speeds in m·min−1. | RT deposition; post-anneal typically 50–300 °C (system-dependent). | Large-area and flexible substrate compatibility; film uniformity depends on solvent and drying kinetics. | Very high—roll-to-roll printing is industrial for flexible electronics and coatings. | Perovskite spin-coat (high-efficiency): 2-step spin (1000 rpm 10 s → 5000 rpm 30 s), anti-solvent drip (e.g., chlorobenzene) ~5 s before end, anneal 100 °C 10–30 min. Sol–gel TiO2: dip/spray then 300–500 °C anneal for anatase. | [238] |
| Electrodeposition/Electrochemical methods | Electrochemical reduction/oxidation of ionic species deposits a film onto conductive substrates (Faradaic control). | nm·min−1 → µm·min−1 (current density dependent); typical lab rates ~1–100 nm·min−1. | Usually RT–100 °C (aqueous baths); some baths are heated. | Good conformality on complex three-dimensional shapes for conductive substrates; thickness control via charge. | High—mature industrial plating, battery electrode manufacture. | Ni plating (Watts bath): current density 1–5 A·dm−2 → deposition rates from tens to hundreds nm·min−1; substrate Cu/steel with pre-treatment. Electrodeposited MnOx: controlled potential deposition for battery electrodes. | [246] |
| Hybrid/emerging (PEALD, MAPLE, CBD, laser/ink hybrids) | Combines plasma, laser, or solution methods to enable low-T deposition, preserve organics, or enable specialized chemistries. | Varies: PEALD ~ALD growth per cycle (~Å/cycle); MAPLE and laser techniques depend on pulse parameters. | RT → 500 °C depending on method (PEALD often <150 °C). | Enables deposition on delicate substrates, low-T organics; conformality depends on method. | Medium → growing (PEALD industrializing; R2R hybrids scaling). | PEALD Al2O3 on polymer: plasma pulses at ~80–150 °C produce conformal films. MAPLE for organics: RT deposition preserving biomolecule functionality; laser fluence tuned. | [246] |
| Spray pyrolysis | Aerosolized precursor droplets impinge on a heated substrate; solvent evaporates, precursor thermally decomposes → oxide film. | Typical deposition: tens of nm per pass (depends on droplet flux and precursor). | ~250–450 °C (e.g., ZnO often ~350 °C). | Simple, low-cost oxide film formation; grainy/porous microstructure unless optimized. | Highly scalable for large-area oxide coatings. | ZnO spray pyrolysis: 0.1 M zinc acetate in methanol, substrate ~350 °C; films annealed post-deposition to tune crystallinity. | [247] |
| Spin-coating (detailed as standalone) | Centrifugal spreading of liquid precursor yields a uniform thin wet film; solvent evaporation and annealing form a solid film. | Thickness per coat: few nm → hundreds nm (speed and concentration dependent). | RT deposit; anneal often 50–200 °C (perovskites ~100 °C). | High uniformity for flat substrates; limited conformality on complex three-dimensional features. | Very high for R&D and small-area production; roll-to-roll adaptations exist. | MAPbI3 spin recipe: 1000 rpm 10 s → 5000 rpm 30 s, anti-solvent drip (e.g., CB) at ~5 s before end, anneal 100 °C for 10–30 min → compact perovskite film. | [238] |
| Aerosol-Assisted CVD (AACVD/electrospray CVD) | Aerosol droplets/mist of precursor are carried to the hot substrate, where the solvent evaporates and decomposition deposits a film. | Growth rates comparable to some CVD variants: ~1–100 nm·min−1 (process-dependent). | 200–600 °C typical for many oxides; depends on precursor decomposition temp. | Good stoichiometric control, easy doping; good for complex oxides and doped films. | Medium → promising for scalable oxide coatings. | AACVD tin-doped oxide: precursor aerosol of Ga acetylacetonate; substrate T tuned per chemistry | [248] |
| CBD | Substrate immersed in aqueous precursor bath; controlled supersaturation/complexation yields thin film by heterogeneous precipitation. | Typical deposition times: minutes → hours; thickness nm → µm depending on time/concentration. | RT—100 °C (aqueous baths), often 60–90 °C for CdS/CdSe films. | Very low cost; conformal on complex shapes; composition control by bath chemistry. | High—used in PV buffer layers and simple oxide coatings at scale. | CdS buffer (CBD): cadmium salt + thiourea + ammonia; bath ~70 °C, deposition tens of minutes to yield ~50 nm CdS buffer. | [242] |
| Hot-Wire (Catalytic) CVD (HWCVD/cat-CVD) | Heated filament thermally decomposes precursor gas near substrate → deposition (filament acts as catalyst). | Deposition rates variable; often tens → hundreds nm·min−1 for silicon films. | Filament ~1800–2200 °C; substrate ~200–500 °C depending on material. | Good low-pressure deposition of silicon and nitrides; gentle for some organics. | Medium—used in a-Si:H production and research for large-area PV. | a-Si:H HWCVD: SiH4 decomposed on hot wire (~1800 °C), substrate ~200–300 °C, deposition rates tuned by gas flow. | [249] |
| Electrophoretic Deposition (EPD) | Charged particles in a colloid move under an electric field and deposit on a substrate; drying/annealing yields a consolidated film. | Deposition rates depend on field and concentration: nm·min−1 → µm·min−1 (fast for thick films). | RT deposit; post-anneal often 300–1000 °C for ceramics. | Excellent for thick, dense ceramic coatings on complex shapes; scalable. | High—industrial for ceramics and functional electrodes. | Ceramic EPD: suspension of ceramic nanoparticles (e.g., alumina, ZrO2) deposited onto conductive substrate at 10–100 V for tens of seconds → µm-thick films after sintering. | [245] |
| Langmuir–Blodgett (LB) deposition | Transfer of organized molecular monolayers from air–water interface to solid substrate via controlled dipping → ordered ultrathin films. | Monolayers per transfer (≈ a single molecular layer per dip); multilayers by repeated transfer. | RT (aqueous subphase); post-transfer anneals, minimal/solvent-based treatments at low T. | Highly ordered molecular films and controlled orientation; ideal for organic/biological monolayers. | Low → medium (specialized applications); technique is niche but powerful for molecular films. | LB lipid/organic films: controlled surface pressure (mN·m−1) and dipping speed; transfer yields compact monolayers on glass/silicon substrates for sensors. | [250] |
| Electrospray/Electrospray Deposition (ESD) | Electrohydrodynamic atomization produces charged droplets that deposit as thin films or patterns; good for aerosols, patterns, and biomolecules. | Nm → µm per pass, depending on feed rate and passes; high spatial resolution possible. | RT deposition; substrate heating optional (up to ~100 °C) to aid solvent evaporation. | Versatile patterning and coating of complex geometries; parameter-sensitive (voltage, flow). | Growing adoption in sensors, coatings and functional films (lab → pilot). | ZnO electrospray: precursor feed 10–15 µL·min−1, emitter voltage ~3–10 kV, substrate temp tuned; yields mesoporous films for sensors. | [251] |
| Inkjet printing (drop-on-demand) | Digital, drop-on-demand deposition of functional inks for patterned thin films and printed electronics. | Thickness per pass few nm → µm; printing throughput depends on droplet frequency and web speed (R2R). | RT deposition; anneal ≤ 150 °C for many printed electronics (polymer substrates). | Direct patterning, maskless, scalable; resolution depends on droplet size and substrate wetting. | High—widely used in printed electronics and prototyping; R2R scaling feasible. | All-inkjet printed TFTs: printed Ag electrodes and semiconductor inks on PET at ≤150 °C; sintering at 120–150 °C for nanoparticle inks. | [252] |
| Thermal oxidation (Si → SiO2) | High-T oxidation of silicon in dry/wet O2 to grow dense SiO2 thermal oxide on Si wafers. | Growth rates follow Deal–Grove kinetics; typical growth: tens → hundreds nm in 900–1100 °C for dry/wet oxidation times. | 900–1150 °C (wet oxidation faster growth rates; dry yields denser oxide). | Highest quality SiO2 dielectric (dense, pinhole-free) with excellent electrical properties; thickness control via time and ambient conditions. | Very high—fundamental to silicon microelectronics; industrialized. | Dry/wet oxidation recipes: dry O2 at 1000–1100 °C for thin gate oxides; wet oxidation at ~950 °C for thicker oxide growth. | [253] |
| Method | Unique Strength | Typical Parameters | Representative Applications | Current Challenges | Ref. |
|---|---|---|---|---|---|
| ALD | Å-level precision, defect-free conformality | Growth: ~0.9 Å/cycle; T: 33–300 °C | High-k dielectrics, protective coatings, battery electrodes | Slow deposition rates; costly precursors | [254] |
| PEALD | Enables low-T ALD with plasma activation | Growth: ~1.0 Å/cycle; T: 70–150 °C; plasma power 100–200 W | Flexible substrates, organic-compatible devices | Plasma damage; scale-up plasma uniformity | [255,256] |
| MAPLE | Gentle deposition of fragile/organic molecules | Rate: ~0.05–0.2 nm/pulse; cryogenic target ~80–100 K | Organic photovoltaics, biosensors, hybrid coatings | Low throughput; particulates; cryogenic target requirement | [257,258] |
| Roll-to-Roll (R2R) printing | High-throughput, continuous large-area deposition | Web speed: 1–10 m·min−1; thickness: 100 nm–10 µm | Perovskite solar modules, wearable sensors, flexible displays | Uniformity, ink/solvent optimization, and mechanical durability | [259,260] |
| Spray Pyrolysis | Low-cost oxide film deposition | Growth: tens of nm per cycle; substrate T: 300–450 °C | ZnO, TiO2, SnO2 transparent films | Porosity, roughness, reproducibility | [247] |
| CBD | Simple aqueous solution-based deposition | Bath T: 60–90 °C; growth: 50–200 nm in 30–60 min | CdS buffer for thin film solar cells, ZnS, Cu2O films | Stoichiometry and adhesion control | [242] |
| Electrospray Deposition (ESD) | Nano-droplet control → porous nanostructured films | Droplet size: 50–500 nm; bias: 3–10 kV; RT deposition | Gas sensors, photocatalysis, porous coatings | Droplet stability; low industrial maturity | [261] |
| Inkjet/3D Printing | Digital, additive, mask-free deposition | Drop volume: 1–100 pL; resolution: 20–50 µm; anneal ≤ 150 °C | Printed TFTs, flexible circuits, biomedical sensors | Coffee-ring effect; drying defects; resolution limits | [252] |
| EPD | Thick ceramic/nanoparticle coatings on complex shapes | Growth: nm–µm·min−1; bias: 10–100 V; RT deposition | Ceramic membranes, biomedical coatings, and solid electrolytes | Cracking on drying; sintering requirement | [262] |
| Category of Thin Films | Representative Materials | Key Properties | Typical Deposition/Processing Routes | Representative Applications | Ref. |
|---|---|---|---|---|---|
| Metallic thin films | Au, Ag, Cu, Al; alloy films (NiFe, CoFe) | Very high electrical and thermal conductivity; plasmonic response for noble metals; good reflectivity; ductile | Thermal/e-beam evaporation, DC/RF magnetron sputtering, PLD, electroplating | Interconnects, plasmonics, MIR/IR mirrors, contacts | [293] |
| Dielectric/insulating films | SiO2, Al2O3, HfO2, SiNx | Wide bandgap; high resistivity; high breakdown field (HfO2: high-k gate dielectrics) | ALD, CVD, thermal oxidation, sputtering | Gate oxides, passivation, optical coatings | [294] |
| Semiconducting thin films (inorganic) | Si, GaAs, CdTe, Cu(In,Ga)Se2, metal-oxides; halide perovskites (CH3NH3PbI3) | Tunable band gaps, carrier mobility range (low to high), and absorption coefficients vary widely | MBE, CVD, sputtering, thermal evaporation, solution processing (perovskites) | Photovoltaics, photodetectors, transistors | [295] |
| Amorphous oxide semiconductors (AOS) | a-IGZO (In–Ga–Zn–O), a-InOx | Moderate mobility (1–20 cm2/Vs typical), transparent, low-temperature processing | RF magnetron sputtering, pulsed DC sputtering, sol–gel + anneal | TFT backplanes, transparent electronics | [296] |
| Conducting/functional polymers | PEDOT:PSS, P3HT, PTAA | Tunable conductivity (doped vs. neutral), mechanical flexibility, and low-temperature processing | Spin-coat, inkjet printing, doctor blade, vapor deposition of oligomers | Flexible electronics, electrodes, and organic solar cells | [297] |
| Hybrid organic–inorganic films | MOFs, hybrid perovskites (organic cation + metal halide) | Combined inorganic electronic/optical functionality and organic processibility; tunable optoelectronic properties | Solution processing, vapor-assisted deposition, spin coating, ALD hybrids | LEDs, solar cells, sensors, catalysis | [298] |
| Two-dimensional material films | Graphene, MoS2, WS2, h-BN (monolayers → few-layer films) | Atomically thin, high mobility (graphene), direct/indirect bandgap (TMDCs), strong excitonic effects | CVD (large area), mechanical exfoliation, MBE, transfer | Photonics, flexible electronics, sensors, transparent electrodes | [299] |
| Magnetic thin films | Fe, Co, Ni, CoFeB, multilayers (Co/Pt, Co/Pd) | High saturation magnetization, anisotropy engineering in thin films, and exchange coupling | Sputtering, MBE, PLD, electrodeposition | Spintronics, Magnetoresistive Random-Access Memory(MRAM), sensors, microwave devices | [300] |
| Superconducting thin films | Nb, NbN, YBa2Cu3O7 (YBCO), Fe-based superconductors | Zero DC resistance below Tc, critical current density, and magnetic field sensitivity in films | Pulsed laser deposition (YBCO), MBE, sputtering | Quantum circuits, detectors (SNSPD), magnets | [174] |
| TCOs | ITO (In2O3:Sn), AZO (Al-doped ZnO), FTO | High optical transparency (visible) + reasonable conductivity (103–104 S/cm) | Sputtering, pulsed DC, CVD, sol–gel + anneal | Displays, photovoltaics, EMI windows | [301] |
| Ferroelectric/piezoelectric films | PZT, BaTiO3, (HfO2-based ferroelectric films) | Switchable polarization, piezoelectric coefficients, remanent polarization | PLD, CSD (chemical solution deposition), MOCVD, ALD for HfO2 | Sensors, memories (FeRAM), actuators | [302] |
| Protective/barrier coatings | DLC, ceramic oxides (Al2O3, TiO2), graphene-based coatings | High hardness, chemical inertness, corrosion/barrier properties | PVD (sputtering), CVD, ALD, solution and sol–gel, graphene transfer | Corrosion protection, wear resistance, barriers | [303] |
| Thermoelectric thin films | Bi2Te3, PbTe, skutterudites (thin film forms) | High Seebeck coefficient, low thermal conductivity (engineered), figure-of-merit (ZT) | Sputtering, MBE, PLD, electrodeposition | Micro-coolers, energy harvesting | [304] |
| Phase-change/chalcogenide thin films | Ge2Sb2Te5 (GST), GeTe, Sb2Te3 | Large, reversible optical/electrical contrast upon amorphous ↔ crystalline switching; fast switching | Sputtering, PLD, thermal evaporation; nanoscale patterning | Nonvolatile memory (PCM), photonic switches | [305,306] |
| Biocompatible/bio-functional films | TiO2, hydroxyapatite, PEGylated polymer films, antibacterial Ag-doped films | Bio-inert or bioactive surfaces, controlled adhesion, antibacterial function | Sol–gel, sputtering, plasma polymerization, ALD | Implants, biosensors, tissue engineering | [307] |
| Energy-storage thin films (batteries and capacitors) | LiCoO2, LiNiMnCo oxides (thin cathodes), LiPON electrolytes, RuO2 (pseudo-capacitance) | Electrochemical capacity per area, ionic conductivity (solid electrolytes), cycle stability | PLD/ALD for LiPON, sputtering, electrodeposition, solution deposit | Thin film solid-state batteries, microbatteries, supercapacitors | [308] |
| Photonic and plasmonic films | Dielectric stacks, metal films, plasmonic metasurfaces | High refractive-index contrast, engineered dispersion, resonant field enhancement | E-beam evaporation, sputtering, lithography + lift-off, nanoimprint | Reflectors, filters, modulators, biosensing | [293] |
| Self-assembled/block-copolymer films | PS-b-PMMA, PS-b-P2VP block copolymers (thin film BCP) | Nanoscale periodic patterns (10–100 nm) via microphase separation | Spin-coat + thermal/solvent annealing, graphoepitaxy, directed assembly | Nanopatterning, lithography templates, photonic templates | [309] |
| Ionic-conducting thin films (solid electrolytes) | LiPON, garnet Li7La3Zr2O12 (thin films), NASICON-type films | High ionic conductivity, electronic blocking behavior, and electrochemical stability window | PLD (LiPON), sputtering, ALD,/solution routes for oxide electrolytes | Thin film solid-state batteries, memristors, ionic devices | [310] |
| Electrochromic thin films | WO3, NiO, V2O5 | Reversible optical modulation under (de-)intercalation, coloration efficiency | Sputtering, sol–gel, PLD, electrodeposition | Smart windows, displays, variable-reflectance optics | [311] |
| Superhydrophobic/anti-fouling films | Hierarchical polymeric or micro/nano-textured surfaces, fluorinated coatings | Very large contact angle (>150°), low hysteresis, self-cleaning | Spray, plasma texturing, lithography + coating, CVD | Anti-icing, self-cleaning, biomedical anti-adhesion surfaces | [312] |
| Functionally graded thin films/coatings | Gradients of ceramic/metal composition (e.g., Al2O3–Ti), graded porosity | Gradual property change (hardness, thermal expansion) reduces delamination/mismatch stress | Thermal spray (APS), plasma spraying, additive manufacturing, graded PVD stacks | Thermal barrier coatings, wear-resistant graded surfaces | [313] |
| Oxide-electronics/complex oxide films | SrTiO3, LaAlO3, manganites (La1−xCaxMnO3) | Strongly correlated phenomena: 2DEG, MIT, superconductivity; tunable by strain/stoichiometry | PLD, MBE, sputtering with UHV anneal | Novel oxide electronics, memristive devices, oxide transistors | [314] |
| Topological insulator thin films | Bi2Se3, Bi2Te3, Sb2Te3 | Topologically protected surface states, spin–momentum locking; thickness-dependent transport | MBE (layer-by-layer), sputtering, MOCVD | Low-dissipation electronics, spintronics, quantum devices | [315] |
| Colloidal quantum-dot thin films | PbS, CdSe, InP, InAs QD films | Size-tunable optical gaps, strong PL, and film dielectric strongly depend on packing. | Spin coating, dip coating, blade coating, inkjet, roll-to-roll printing | QD-LEDs (QD-LED), photodetectors, down-converters | [316] |
| Application Area | Thin Film Materials and Architectures | Primary Function/Mechanism | Key Performance Indicators (Kpis) | Comments | Ref. |
|---|---|---|---|---|---|
| Photovoltaics (Solar Energy Conversion) | Methylammonium/cesium halide perovskite thin films | Light absorption and charge transport | power conversion efficiency (PCE), open-circuit voltage (V_OC), stability | High absorption, tunable bandgap, stability, and Pb toxicity remain challenges | [361] |
| CIGS Solar Cells | Cu(In,Ga)Se2 thin film absorbers | Direct bandgap absorption, tunable composition | PCE, fill factor (FF), external quantum efficiency (EQE) | Flexible, scalable, compositional control is critical | [362] |
| CdTe Solar Cells | CdTe/CdS thin films | Robust light harvesting | PCE ~22%, lifetime | Mature, cost-effective; Cd toxicity and V_OC limitations | [363] |
| TCOs | ITO, Al:ZnO, BaSnO3 | Conductive, transparent electrode | Sheet resistance, transmittance | Industrial standard; indium scarcity, brittle on flex | [301] |
| Flexible Transparent Electrodes | Solution-processed ITO, hybrid composites | Transparent flexible contact | Resistivity, bending cycles | Flexible and lightweight; conductivity–mechanical trade-off | [364] |
| OLED Encapsulation | Multilayer ALD/polymer stacks | Barrier to O2/H2O | WVTR, lifetime | Enables flexible OLEDs; scaling ultra-low WVTR remains difficult | [365] |
| Metal-Oxide Gas Sensors | SnO2, ZnO, WO3 thin films | Adsorption-induced resistance change | Sensitivity, limit of detection (LOD), response time | High sensitivity, selectivity, and humidity cross-talk | [366] |
| Heterojunction Gas Sensors | WO3/ZnO, ZnO/SnO2 | Built-in fields enhance sensing | Selectivity factor, response factor | Improved selectivity, lower operating T; and reproducibility | [367] |
| Photocatalysis | TiO2 thin films (anatase, doped) | Light-driven redox | Degradation rate, apparent quantum efficiency (AQE) | Robust, stable; poor visible absorption | [368] |
| Photocatalytic Heterojunctions | TiO2/ZnO bilayers | Band engineering for visible response | H2 evolution, degradation % | Extended absorption, stability, and scalability | [369] |
| Thin Film Solid-State Microbatteries | LiCoO2 cathodes, LiPON electrolyte | Li-ion transport | Areal capacity, cycle life | Compact, high power; low areal energy density | [370] |
| Memristors (Neuromorphic Devices) | HfO2, TiO2, CeO2 thin films | Resistive switching | ON/OFF ratio, endurance | CMOS-compatible; variability and retention challenges | [371] |
| Light-Emitting Diodes (LEDs) | GaN/InGaN QWs | Radiative recombination | IQE, EQE, brightness | High efficiency; defect control needed | [372] |
| Micro-LED Displays | GaN micro-LEDs on Si/sapphire | Ultra-bright micro displays | Pixel size, luminance | AR/VR potential; integration bottlenecks | [373] |
| Spintronics | FM/HM bilayers, Heusler alloys | Spin currents and MR effects | Spin Hall angle, coercivity | Low-power; interface/DMI control needed | [374] |
| Thermoelectrics | Nanostructured Bi2Te3 superlattices | Phonon scattering reduction | Seebeck, ZT | Tailored interfaces; integration issues | [375] |
| Transparent Heaters | Ag meshes, doped oxide thin films | Joule heating + transparency | Sheet R, heating rate | Transparent heating; efficiency and cycling durability | [375] |
| Optical Coatings | SiO2/TiO2 multilayers | Antireflection/optical tuning | Reflectance %, bandwidth | Tunable optics; durability concern | [375] |
| Biomedical Coatings | TiO2, ZnO, Ag-doped | Antimicrobial, antifouling | Bacterial reduction %, cytotoxicity | Thin, conformal; long-term biocompatibility | [376] |
| Protective Hard Coatings | DLC, TiN, nanoceramics | Wear/corrosion resistance | Hardness, wear rate | Excellent hardness; stress management issues | [377] |
| Smart Windows (Thermochromics) | VO2 thin films | Metal–insulator transition | Transition T, modulation efficiency | Energy saving; high T_c challenge | [378] |
| Biosensors | ZnO, graphene films | Transduce biomolecule binding | Sensitivity, LOD | High surface-to-volume; reproducibility issues | [379] |
| Supercapacitors | RuO2, MnO2 thin films | Pseudocapacitive storage | Capacitance, cycle stability | High power; cost/stability trade-off | [380] |
| Photoelectrochemical Water Splitting | Hematite, BiVO4 thin films | Photoanodes for O2 evolution | Photocurrent density, onset potential | Abundant, stable; poor conductivity | [381] |
| Flexible Electronics | Organic semiconductors, oxide TFTs | Low-cost flexible circuits | Carrier mobility, bending cycles | Printable, lightweight; environmental stability is limiting | [382] |
| MEMS | AlN, PZT thin films | Actuation and sensing | Resonant frequency, Q factor | CMOS compatible; stress management | [383] |
| Energy-Efficient Coatings | IR-reflective TiO2/SiO2 | Control heat gain | Solar reflectance, emissivity | Energy savings; deposition cost concern | [384] |
| Catalysis (Electrochemical) | Pt thin films, NiFe oxides | Electrocatalysis (HER/OER) | Overpotential, stability | High activity, cost, and scaling challenges | [385] |
| Piezoelectric Energy Harvesting | Lead zirconate titanate (PZT), AlN thin films | Convert strain into voltage | Piezoelectric coefficient d33, output power | CMOS compatibility, miniaturized devices | [386] |
| Electrochromic Devices | WO3, NiO thin films | Voltage-controlled optical modulation | Optical contrast, switching speed | Smart windows; durability under cycling | [387] |
| Ferroelectric Memories | HfO2-based ferroelectric thin films | Polarization switching for nonvolatile memory | Remanent polarization (µC/cm2), endurance cycles | Scalable ferroelectric; retention issues remain | [388] |
| MXene-Based Devices | Ti3C2Tx thin films | Conductive films for energy/storage | Sheet resistance, capacitance | High conductivity, hydrophilicity; oxidation is limiting | [389] |
| Quantum Materials (2D films) | MoS2, WSe2 monolayers | Layer-dependent bandgap, quantum transport | Mobility, photodetection efficiency | Extreme miniaturization; reproducibility issues | [390] |
| Hydrogen Evolution Catalysis | MoS2 thin films | Catalysis of the hydrogen evolution reaction (HER) | Overpotential, turnover frequency | Abundant, layered catalyst; edge-site engineering needed | [391] |
| Smart Coatings (Self-Cleaning) | TiO2 thin films with surface functionalization | Photocatalytic self-cleaning | Contact angle, degradation rate | Maintains transparency, reduces soiling, durability issue | [392] |
| Failure Mode | Cause in Thin Films | Standard Test Method | Mitigation Strategy | Ref. |
|---|---|---|---|---|
| Delamination/Adhesion Loss | High residual stress, poor film–substrate bonding, CTE mismatch | Scratch test (ASTM C1624), peel test (ASTM D903), four-point bend adhesion test | Adhesion-promoting interlayers (Ti, Cr), ALD seed layers, graded interfaces | [482] |
| Cracking | Tensile stress, cyclic bending in flexible thin films, thermal expansion mismatch | In situ bending fatigue (ASTM F1683), nanoindentation with stress | Stress relaxation via multilayers, ductile interlayers, and optimized deposition | [483] |
| Wear/Abrasion | Surface contact wear in protective optical/electronic thin films | Taber abrasion (ASTM D4060), pin-on-disk (ASTM G99) | Hard nanocomposite films (TiN, DLC), surface texturing | [377] |
| Corrosion/Oxidation | Moisture or O2 penetration through thin oxide or metal films | Salt spray (ASTM B117), potentiodynamic polarization (ASTM G5) | Dense ALD barrier layers (Al2O3, SiN), passivation coatings | [484] |
| Electrical Breakdown | High field-induced dielectric failure in thin oxides | Time-dependent dielectric breakdown (TDDB, JEDEC JESD92) | High-k dielectrics, defect passivation, multilayer dielectrics | [485] |
| Moisture Ingress | Encapsulation/barrier layer failure in OLED or PV thin films | Water vapor transmission rate (WVTR, ASTM F1249), MOCON test | Hybrid multilayer barriers, ALD inorganic coatings | [365] |
| Mechanical Fatigue (Flexible Thin Films) | Cyclic bending, stretching in flexible electronics | Dynamic bending (IEC 62899), fatigue tester with thin film coupons | Ductile electrodes (Ag nanowires, graphene), strain-engineered substrates | [364] |
| Thermal Instability | Grain growth, phase segregation in polycrystalline thin films | High-temperature annealing, in situ XRD | Dopants for stabilization, capping layers, low-T growth | [363] |
| Radiation Damage | UV/ionizing radiation-induced degradation of thin dielectrics and semiconductors | UV aging (ASTM G154), ion-beam exposure | Radiation-hard oxides, UV-blocking coatings | [486] |
| Electromigration | Current-driven atom migration in thin metal interconnects | Accelerated EM tests (JEDEC JESD61A), four-point probe | Alloyed Cu/Al films, bamboo grain structures, diffusion barriers | [487] |
| Optical Degradation | UV-induced photo-oxidation in optical thin films | UV weathering (ASTM G155), solar simulator | Protective overcoats, doping for UV stability | [488] |
| Ion Migration (Perovskite Thin Films) | Halide vacancy diffusion under bias/heat | Current–voltage hysteresis, bias-stress | Mixed-cation perovskites, ion-blocking interlayers | [489] |
| Blistering/Buckling | Trapped gases or compressive stress in deposited thin films | Thermal cycling, profilometry | Degassing, stress-graded coatings, and adhesion layers | [392] |
| Stress Corrosion Cracking | Thin metallic/oxide films under simultaneous stress and corrosion | Slow strain rate (ASTM G129), thin film fracture tests | Corrosion-resistant alloys, protective capping | [490] |
| Thermal Shock Failure | Rapid heating/cooling in thin coatings on substrates | Thermal shock (ASTM C1525), quench cycling | Buffer layers, thermal expansion-matched substrates | [483] |
| Interdiffusion at Interfaces | Atom migration across thin film heterojunctions | SIMS depth profiling, XPS, annealing | Diffusion barriers (TiN, Al2O3), low-T deposition | [491] |
| Creep (Metallic Thin Films) | Time-dependent deformation at elevated T | Nanoindentation creep, elevated-T creep rigs | Alloying, nanocrystalline stabilization | [492] |
| Mechanical Fatigue in MEMS Thin Films | Cyclic loading in resonators and actuators | Resonator lifetime testing, ASTM E466 fatigue | Residual stress reduction, epitaxial quality control | [493] |
| Thermal Fatigue | Repeated thermal cycling of thin films | JEDEC JESD22-A104D | Low-CTE mismatch films, compliant buffer layers | [494] |
| Environmental Degradation (Humidity + UV) | Synergistic damage in outdoor thin film devices | Damp-heat (IEC 61215), UV soak | Hybrid encapsulation, UV-blocking thin film overcoats | [384] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arun, A.P.; Sreenivasan, N.; Patil, J.H.; Kusanur, R.; Ramachandraiah, H.L.; Ramakrishna, M. Thin Films for Next Generation Technologies: A Comprehensive Review of Fundamentals, Growth, Deposition Strategies, Applications, and Emerging Frontiers. Processes 2025, 13, 3846. https://doi.org/10.3390/pr13123846
Arun AP, Sreenivasan N, Patil JH, Kusanur R, Ramachandraiah HL, Ramakrishna M. Thin Films for Next Generation Technologies: A Comprehensive Review of Fundamentals, Growth, Deposition Strategies, Applications, and Emerging Frontiers. Processes. 2025; 13(12):3846. https://doi.org/10.3390/pr13123846
Chicago/Turabian StyleArun, Ajith P., Niranjana Sreenivasan, Jagadish H. Patil, Raviraj Kusanur, Hemanth L. Ramachandraiah, and Mahesh Ramakrishna. 2025. "Thin Films for Next Generation Technologies: A Comprehensive Review of Fundamentals, Growth, Deposition Strategies, Applications, and Emerging Frontiers" Processes 13, no. 12: 3846. https://doi.org/10.3390/pr13123846
APA StyleArun, A. P., Sreenivasan, N., Patil, J. H., Kusanur, R., Ramachandraiah, H. L., & Ramakrishna, M. (2025). Thin Films for Next Generation Technologies: A Comprehensive Review of Fundamentals, Growth, Deposition Strategies, Applications, and Emerging Frontiers. Processes, 13(12), 3846. https://doi.org/10.3390/pr13123846

