Numerical Simulation on the Propagation Behaviour of Hydraulic Fractures in Sandstone–Shale Interbeds
Abstract
1. Introduction
2. Numerical Model Building and Validation
2.1. HF Model Building
2.1.1. Solid Mechanics Equations Due to HF Deformation
2.1.2. Fluid Flow Equations Inside the HF
2.1.3. Fluid‒Solid Coupling Method
2.2. HF Model Validation
3. Modelling of HF Propagation
3.1. Geometry Model and Input Parameters
3.2. The Influence of Tensile Strength and Type-I Fracture Toughness
3.3. The Influence of Shale’s Elastic Modulus and Poisson’s Ratio
3.4. The Influence of Interlayer Stress
3.5. The Influence of Fracturing Fluid Injection Rate and Viscosity
4. Conclusions
- (1)
- The higher the tensile strength and the greater the type-I fracture toughness of the shale layer, the more pronounced the inhibitory effect on the propagation of HFs. The smaller the interlayer stress contrast, the higher the fracturing fluid flow rate, and the greater the fracturing fluid viscosity, the easier it is for the HF to vertically penetrate the rock interface.
- (2)
- The propagation of HFs is inversely correlated with shale fracture toughness, tensile strength, and Poisson’s ratio, and directly correlated with elastic modulus. The larger the Poisson’s ratio and the smaller the elastic modulus of the shale layer, the greater the rock fracture toughness and tensile strength, ultimately resulting in a smaller HF.
- (3)
- When the effect of lithological interfaces is considered, an increasing interlayer stress contrast causes the HF to gradually transition from penetrating the interfaces to becoming confined between the two interfaces. When the influence of the lithological interface is not considered, the shape of the HF gradually transforms from a penny-shaped fracture to a blade-shaped fracture.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tan, P.; Jin, Y.; Hou, B.; Zheng, X.; Guo, X.; Gao, J. Experiments and analysis on hydraulic sand fracturing by an improved true tri-axial cell. J. Petrol. Sci. Eng. 2017, 158, 766–774. [Google Scholar] [CrossRef]
- Liao, S.Z.; Hu, J.H.; Zhang, Y. Mechanism of hydraulic fracture vertical propagation in deep shale formation based on elastic–plastic model. Eng. Fract. Mech. 2024, 295, 109806. [Google Scholar] [CrossRef]
- Yang, X.F.; Chang, C.; Cheng, Q.Y.; Xie, W.; Hu, H.; Li, Y.; Huang, Y.; Peng, Y. The influence of rock and natural weak plane properties on the vertical propagation of hydraulic fractures. Processes 2024, 12, 2477. [Google Scholar] [CrossRef]
- Wang, Y.Z. Mechanism and Engineering Application of Vertical Penetration Fracturing in Terrestrial Shale Oil Reservoirs. Ph.D. Thesis, China University of Petroleum, Beijing, China, 2023. [Google Scholar] [CrossRef]
- Zhang, T.J. Study on Fracture Propagation Law of Hydraulic Fracturing in Bedding Formation. Master’s Thesis, Shijiazhuang Tiedao University, Shijiazhuang, China, 2024. [Google Scholar] [CrossRef]
- Li, J.L.; Zhong, Y.; Yan, Y.H.; Huang, T.; Mou, Q.; Yang, B. Mechanism of hydraulic fracture propagation and the uneven propagation behavior of multiple clusters in shale oil reservoirs. Fuel 2025, 395, 135241. [Google Scholar] [CrossRef]
- Lu, Y.R.; Cai, Z.; Huang, D.; Yao, X.; Ma, Q.; Chen, D. Peridynamic modeling and analysis of interfacial crack propagation by hydraulic fracturing in layered shale. Comput. Geotech. 2025, 184, 107280. [Google Scholar] [CrossRef]
- Zhao, Y.X.; Wang, L.; Ma, K.; Zhang, F. Numerical simulation of hydraulic fracturing and penetration law in continental shale reservoirs. Processes 2022, 10, 2364. [Google Scholar] [CrossRef]
- Ju, Y.; Liu, P.; Chen, J.L.; Yang, Y.; Ranjith, P.G. CDEM-based analysis of the 3D initiation and propagation of hydrofracturing cracks in heterogeneous glutenites. Nat. Gas. Sci. Eng. 2016, 35, 614–623. [Google Scholar] [CrossRef]
- Zheng, H.; Li, F.X.; Wang, D. Numerical Investigation of Complex Hydraulic Fracture Propagation in Shale Formation. Processes 2024, 12, 2630. [Google Scholar] [CrossRef]
- Fu, S.H.; Hou, B.; Xia, Y.; Chen, M.; Wang, S.; Tan, P. The study of hydraulic fracture height growth in coal measure shale strata with complex geologic characteristics. J. Petrol. Sci. Eng. 2022, 211, 110164. [Google Scholar] [CrossRef]
- Gao, Y.; Qin, Q.P.; Bian, X.B.; Wang, X.; Xu, W.; Zhao, Y. Propagation law of hydraulic fractures in continental shale reservoirs with sandstone–shale interaction. Processes 2024, 12, 2931. [Google Scholar] [CrossRef]
- Tang, J.Z.; Wu, K.; Zeng, B.; Huang, H.; Hu, X.; Guo, X.; Zuo, L. Investigate effects of weak bedding interfaces on fracture geometry in unconventional reservoirs. J. Petrol. Sci. Eng. 2018, 165, 992–1009. [Google Scholar] [CrossRef]
- Ma, P.C.; Tang, S.F. Simulation of key influencing factors of hydraulic fracturing fracture Propagation in a shale reservoir based on the displacement discontinuity method. Processes 2024, 12, 1000. [Google Scholar] [CrossRef]
- Hou, Z.K.; Cheng, H.L.; Sun, S.W.; Chen, J.; Qi, D.Q.; Liu, Z.B. Crack propagation and hydraulic fracturing in different lithologies. Appl. Geophys. 2019, 16, 243–251. [Google Scholar] [CrossRef]
- Yang, L.Z.; Wang, X.Y.; Niu, T. Propagation characteristics of multi-cluster hydraulic fracturing in shale reservoirs with natural fractures. Appl. Sci. 2025, 15, 4418. [Google Scholar] [CrossRef]
- Zhuo, R.Y.; Ma, X.F.; Li, J.M.; Zhang, S.; Zou, Y.; Ma, J. Study on the effect of fluid viscosity and injection rate on the geometry of hydraulic fractures penetrating through laminae planes and the proppant distribution in deep shale oil reservoirs. Rock Mech. Rock. Eng. 2024, 58, 2763–2780. [Google Scholar] [CrossRef]
- Khormali, A.; Ahmadi, S.; Aleksandrov, N.A. Analysis of reservoir rock permeability changes due to solid precipitation during waterflooding using artificial neural network. J. Pet. Explor. Prod. Technol. 2025, 15, 17. [Google Scholar] [CrossRef]
- Huang, L.K.; Liu, J.J.; Zhang, F.S.; Fu, H.; Zhu, H.; Damjanac, B. 3D lattice modeling of hydraulic fracture initiation and near-wellbore propagation for different perforation models. J. Petrol. Sci. Eng. 2020, 191, 107169. [Google Scholar] [CrossRef]
- Huang, B.X.; Liu, J.W. Experimental investigation of the effect of bedding planes on hydraulic fracturing under true triaxial stress. Rock Mech. Rock. Eng. 2017, 50, 2627–2643. [Google Scholar] [CrossRef]
- Whittaker, B.N.; Singh, R.N.; Sun, G. Rock Fracture Mechanics: Principles, Design and Applications; Elsevier: Amsterdam, The Netherlands, 1992; ISBN 0444896848. [Google Scholar]
- Deng, H.F.; Zhu, M.; Li, J.L.; Wang, Y. Study of mode-I fracture toughness and its correlation with strength parameters of sandstone. Rock. And. Soil Mech. 2012, 33, 3585–3591. [Google Scholar] [CrossRef]
Parameters | Value | Parameters | Value |
---|---|---|---|
Density (g/cm3) | 3.10 | Fracturing fluid injection rate (m3/min) | 10.00 |
Elastic modulus (GPa) | 0.72 | Maximum horizontal principal stress (MPa) | 36.00 |
Poisson’s ratio (dimensionless) | 0.13 | Minimum horizontal principal stress (MPa) | 32.00 |
Uniaxial compressive strength (MPa) | 6.27 | Vertical principal stress (MPa) | 38.00 |
Rock tensile strength (MPa) | 1.65 | Interface friction angle (°) | 31.29 |
Type-I fracture toughness (MPa·m1/2) | 1.32 | Interface cohesion (MPa) | 2.54 |
Fracturing fluid viscosity (mPa·s) | 3.00 | Interface tensile strength (MPa) | 0.43 |
Fracturing fluid density (g/cm3) | 1.20 |
Parameters | Sandstone | Shale | Parameters | Value |
---|---|---|---|---|
Density (g/cm3) | 2.3 | 2.7 | Fracturing fluid density (g/cm3) | 1.2 |
Elastic modulus (GPa) | 25.0 | 14.0 | Fracturing fluid viscosity (mPa·s) | 3.00 |
Poisson’s ratio (dimensionless) | 0.2 | 0.3 | Fracturing fluid injection rate (m3/min) | 10.00 |
Uniaxial compressive strength (MPa) | 200.0 | 100.0 | Interface tensile strength (MPa) | 0.50 |
Tensile strength St (MPa) | 4.8 | 2.0 | Interface cohesion (MPa) | 0.90 |
Type-I fracture toughness KIC (MPa·m1/2) | 0.3 | 0.8 | Interface friction angle (°) | 30.00 |
Porosity (%) | 2.0 | 6.0 | Interface opening degree (m) | 0.0001 |
Permeability (mD) | 0.3 | 0.6 | ||
Maximum horizontal principal stress (MPa) | 22.0 | 20.0 | ||
Minimum horizontal principal stress (MPa) | 17.0 | 15.0 | ||
Vertical principal stress (MPa) | 25.0 | 25.0 |
Rock | Reference | Empirical Formula | KIC (MPa·m1/2) | St (MPa) |
---|---|---|---|---|
shale | Ref. [21] | 0.3 | 0.275 | |
0.7 | 4.015 | |||
1.1 | 7.755 | |||
1.5 | 11.495 | |||
sandstone | Ref. [22] | 0.219 | 3.5 | |
0.313 | 5.0 | |||
0.406 | 6.5 | |||
0.500 | 8.0 |
Interlayer Stress Contrast (MPa) | Maximum Horizontal Principal Stress (MPa) | Minimum Horizontal Principal Stress (MPa) | Vertical Principal Stress (MPa) |
---|---|---|---|
1 | 21 | 16 | 25 |
2 | 22 | 17 | 25 |
4 | 24 | 19 | 25 |
8 | 28 | 23 | 25 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, S.; Li, Y.; Cheng, W. Numerical Simulation on the Propagation Behaviour of Hydraulic Fractures in Sandstone–Shale Interbeds. Processes 2025, 13, 3318. https://doi.org/10.3390/pr13103318
Li S, Li Y, Cheng W. Numerical Simulation on the Propagation Behaviour of Hydraulic Fractures in Sandstone–Shale Interbeds. Processes. 2025; 13(10):3318. https://doi.org/10.3390/pr13103318
Chicago/Turabian StyleLi, Shasha, Yunyang Li, and Wan Cheng. 2025. "Numerical Simulation on the Propagation Behaviour of Hydraulic Fractures in Sandstone–Shale Interbeds" Processes 13, no. 10: 3318. https://doi.org/10.3390/pr13103318
APA StyleLi, S., Li, Y., & Cheng, W. (2025). Numerical Simulation on the Propagation Behaviour of Hydraulic Fractures in Sandstone–Shale Interbeds. Processes, 13(10), 3318. https://doi.org/10.3390/pr13103318