Noise Identification in Acoustic Emission (AE) Inspection of Oil Tank Bottom Corrosion Based on Multi-Domain Features and BES-SVM Algorithm
Abstract
1. Introduction
2. Experimental Section
2.1. Experimental Equipment
2.2. Noise Simulation
2.3. Experimental Procedure
- (1)
- Preparation: First, 3 wt% NaCl solution was used as the corrosive liquid and added to the tank, completely covering the bottom and reaching a sufficient liquid level. Then, AE sensors were fixed to the polished points with a magnetic fixture and coupling agent.
- (2)
- Parameter settings: The sensitivity of the AE inspection system was tested by breaking pencil lead on the oil tank wall. Then, the liquid in the oil tank was kept still for background noise acquisition, which helped set the AE signal threshold for testing. Table 1 provides the key parameters for AE inspection.
- (3)
- Signal acquisition: AE signals were continuously collected below the threshold to make sure the corrosion signal was dominant. Then simulate different noises and record the time to facilitate subsequent addi-tion of noise data labels.
- (4)
- Data processing. AE signal waveform is exported from the analysis software and labeled with noise types on a time basis.
2.4. Interference of Noise in AE Inspection of Oil Tank Corrosion
3. Feature Extraction
3.1. Time-Domain Features
3.2. Frequency-Domain Features
3.3. Time–Frequency Domain Feature Extraction
3.3.1. VMD
3.3.2. Dispersion Entropy (DE)
3.3.3. Multi-Domain Feature Dataset
3.4. Feature Selection Based on IDE
4. BES-SVM Model for AE Source Identification
- (1)
- Set the population number of bald eagles and the iteration number, then initialize the locations of bald eagle individuals.
- (2)
- Define the 5-fold cross-validation loss of SVM as the fitness function of the BES algorithm.
- (3)
- Select the searching space. The optimal position is updated according to the prey population, which further helps to find the optimal space. In this step, the position update is determined by the a priori information obtained from a random search. The mathematical expression for this behavior is
- (4)
- The bald eagles hover in the searching space to find the best swoop position. A polar coordinate system is used to describe the spiral flight path of bald eagles. The position update in this step can be given by
- (5)
- Bald eagles swoop down toward the target, and the center around which the bald eagles fly gradually moves to the prey. The position update equation for this phase is
- (6)
- When the iteration reaches the desired number, output the best combination of penalty factor C and kernel function parameter g. Otherwise, jump to Step (3) to continue iterating until the termination condition is met.
5. Results and Discussion
5.1. Model Performance in AE Source Classification
5.2. Field Validation
5.3. Sensitivity Study
5.3.1. Impact of Optimization Algorithm
5.3.2. Impact of Feature Selection Algorithm
5.3.3. Impact of Feature Type
6. Conclusions and Future Concerns
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhou, Q.Y.; Li, B.; Lu, Y.; Chen, J.; Shu, C.M.; Bi, M.S. Dynamic risk analysis of oil depot storage tank failure using a fuzzy Bayesian network model. Process Saf. Environ. Prot. 2023, 173, 800–811. [Google Scholar] [CrossRef]
- Yang, Y.; Chen, G.; Reniers, G. Vulnerability assessment of atmospheric storage tanks to floods based on logistic regression. Reliab. Eng. Syst. Saf. 2020, 196, 106721. [Google Scholar] [CrossRef]
- Riemer, D.P.; Orazem, M.E. A mathematical model for the cathodic protection of tank bottoms. Corros. Sci. 2005, 47, 849–868. [Google Scholar] [CrossRef]
- Kolokolnikov, S.; Dubov, A.; Medvedev, A.; Boriskin, D. Comprehensive inspection of refrigerated ammonia storage tank welded joints by the metal magnetic memory technique and conventional NDT methods. Weld. World 2020, 64, 1659–1670. [Google Scholar] [CrossRef]
- Wang, D.; Liao, B.; Hao, C.; Wen, A.; Zheng, J.; Jiang, P.; Gu, C.; Xu, P.; Huang, Q. Acoustic emission characteristics of used 70 MPa type IV hydrogen storage tanks during hydrostatic burst tests. Int. J. Hydrogen Energy 2021, 46, 12605–12614. [Google Scholar] [CrossRef]
- Ebrahimkhanlou, A.; Choi, J.; Hrynyk, T.D.; Salamone, S.; Bayrak, O. Acoustic emission monitoring of containment structures during post-tensioning. Eng. Struct. 2020, 209, 109930. [Google Scholar] [CrossRef]
- He, Y.; Li, M.; Meng, Z.; Chen, S.; Huang, S.; Hu, Y.; Zou, X. An overview of acoustic emission inspection and monitoring technology in the key components of renewable energy systems. Mech. Syst. Signal Process. 2021, 148, 107146. [Google Scholar] [CrossRef]
- Olszewska, A. Using the acoustic emission method for testing aboveground vertical storage tank bottoms. Appl. Acoust. 2022, 188, 108564. [Google Scholar] [CrossRef]
- Kim, Y.P.; Fregonese, M.; Mazille, H.; Féron, D.; Santarini, G. Ability of acoustic emission technique for detection and monitoring of crevice corrosion on 304L austenitic stainless steel. NDT E Int. 2003, 36, 553–562. [Google Scholar] [CrossRef]
- Jirarungsatian, C.; Prateepasen, A. Pitting and uniform corrosion source recognition using acoustic emission parameters. Corros. Sci. 2010, 52, 187–197. [Google Scholar] [CrossRef]
- Haile, M.A.; Bordick, N.E.; Riddick, J.C. Distributed acoustic emission sensing for large complex air structures. Struct. Health Monit. 2018, 17, 624–634. [Google Scholar] [CrossRef]
- Raorane, S.; Ercan, T.; Papadimitriou, C.; Packo, P.; Uhl, T. Bayesian optimal sensor placement for acoustic emission source localization with clusters of sensors in isotropic plates. Mech. Syst. Signal Process. 2024, 214, 111342. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, T.; Chen, E.; Ozevin, D.; Li, H. Phased acoustic emission sensor array for localizing radial and axial positions of defects in hollow structures. Measurement 2020, 151, 107223. [Google Scholar] [CrossRef]
- Jung, D.; Lee, J. Enhancing Structural Health Monitoring with Acoustic Emission Sensors: A Case Study on Composites under Cyclic Loading. Sensors 2024, 24, 371. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, Y.; Zhu, H.; Yan, R.; Liu, Y.; Sun, L.; Zeng, Z. Recognition Algorithm of Acoustic Emission Signals Based on Conditional Random Field Model in Storage Tank Floor Inspection Using Inner Detector. Shock Vib. 2015, 2015, 173470. [Google Scholar] [CrossRef]
- Sagasta, F.; Zitto, M.E.; Piotrkowski, R.; Benavent-Climent, A.; Suarez, E.; Gallego, A. Acoustic emission energy b-value for local damage evaluation in reinforced concrete structures subjected to seismic loadings. Mech. Syst. Signal Process. 2018, 102, 262–277. [Google Scholar] [CrossRef]
- Vicuña, C.M.; Höweler, C. A method for reduction of Acoustic Emission (AE) data with application in machine failure detection and diagnosis. Mech. Syst. Signal Process. 2012, 97, 44–58. [Google Scholar] [CrossRef]
- Zitto, M.E.; Piotrkowski, R.; Gallego, A.; Sagasta, F.; Benavent-Climent, A. Damage assessed by wavelet scale bands and b-value in dynamical tests of a reinforced concrete slab monitored with acoustic emission. Mech. Syst. Signal Process. 2015, 60–61, 75–89. [Google Scholar] [CrossRef]
- Xu, J.; Luo, X.; Qiu, X.; Hu, G. Wavelet and fractal analysis of acoustic emission characteristic of fatigue damage of asphalt mixtures. Constr. Build. Mater. 2022, 349, 128643. [Google Scholar] [CrossRef]
- Fan, W.; Huang, W.; Liu, Y.; Yin, Y.; Liu, X.; Wang, Y. State Evolution of Dry Gas Seal during Repeated Start–Stop Operation Using Acoustic Emission Method. Tribol. Trans. 2020, 63, 173–181. [Google Scholar] [CrossRef]
- Yang, Z.; Yan, W.; Jin, L.; Li, F.; Hou, Z. A novel feature representation method based on original waveforms for acoustic emission signals. Mech. Syst. Signal Process. 2020, 135, 106365. [Google Scholar] [CrossRef]
- Dragomiretskiy, K.; Zosso, D. Variational Mode Decomposition. IEEE Trans. Signal Process. 2014, 62, 531–544. [Google Scholar] [CrossRef]
- Qiu, F.; Shen, Z.; Bai, Y.; Shan, G.; Qu, D.; Chen, W. Hydrogen defect acoustic emission recognition by deep learning neural network. Int. J. Hydrogen Energy 2024, 54, 878–893. [Google Scholar] [CrossRef]
- Huang, X.; Xia, H.; Liu, Y.; Zio, E.; Yin, W. Fault diagnosis of nuclear power plant electric gate valves based on acoustic emission signals. Ann. Nucl. Energy 2025, 221, 111519. [Google Scholar] [CrossRef]
- Zhu, S.; Zhang, D.; Zhou, M.; Guan, P.; Duo, S.; Huang, H. AI-driven non-destructive concrete stress state identification: A novel approach based on time-frequency analysis of active acoustic emission signals. Adv. Eng. Inform. 2025, 68, 103757. [Google Scholar] [CrossRef]
- Hesser, D.F.; Mostafavi, S.; Kocur, G.K.; Markert, B. Identification of acoustic emission sources for structural health monitoring applications based on convolutional neural networks and deep transfer learning. Neurocomputing 2021, 452, 1–12. [Google Scholar] [CrossRef]
- Xu, L.; Wen, S.M.; Huang, H.F.; Tang, Y.; Wang, Y.; Pan, C. Corrosion failure prediction in natural gas pipelines using an interpretable XGBoost model: Insights and applications. Energy 2025, 325, 136–157. [Google Scholar] [CrossRef]
- Wang, L.; Guo, W.; Guo, J.; Zheng, S.; Wang, Z.; Kang, H.S.; Li, H. An integrated deep learning model for intelligent recognition of long-distance natural gas pipeline features. Reliab. Eng. Syst. Saf. 2025, 255, 110664. [Google Scholar] [CrossRef]
- He, L.; Ding, Y.; Sun, Y.; Xie, M.; Soares, G.C. An intelligent failure feature learning method for failure and maintenance data management of wind turbines. Reliab. Eng. Syst. Saf. 2025, 261, 111113. [Google Scholar] [CrossRef]
- Gu, J.; Tian, F.; Shi, J.; Tan, F. Noise reduction and analysis of leaf electrical signals of strap-leaved plants based on VMD-EWT. Comput. Electron. Agric. 2024, 226, 109441. [Google Scholar] [CrossRef]
- Yan, X.; Jia, M. Intelligent fault diagnosis of rotating machinery using improved multiscale dispersion entropy and mRMR feature selection. Knowl. Based Syst. 2019, 163, 450–471. [Google Scholar] [CrossRef]
- Bono, F.M.; Radicioni, L.; Bombaci, G.; Somaschini, C.; Cinquemani, S. An approach based on convolutional autoencoder for detecting damage location in a mechanical system. Proc. SPIE 2023, 12489, 124890K. [Google Scholar]
- Motahari-Nezhad, M.; Jafari, S.M. Bearing remaining useful life prediction under starved lubricating condition using time domain acoustic emission signal processing. Expert Syst. Appl. 2021, 168, 114391. [Google Scholar] [CrossRef]
- Baccarini, L.M.R.; Rocha e Silva, V.V.; De Menezes, B.R.; Caminhas, W.M. SVM practical industrial application for mechanical faults diagnostic. Expert Syst. Appl. 2011, 38, 6980–6984. [Google Scholar] [CrossRef]
- Zhou, J.; Huang, S.; Wang, M.Z.; Qiu, Y.G. Performance evaluation of hybrid GA–SVM and GWO–SVM models to predict earthquake-induced liquefaction potential of soil: A multi-dataset investigation. Eng. Comput. 2022, 38, 4197–4215. [Google Scholar] [CrossRef]
- Chauhan, V.K.; Dahiya, K.; Sharma, A. Problem formulations and solvers in linear SVM: A review. Artif. Intell. Rev. 2019, 52, 803–855. [Google Scholar] [CrossRef]
- Tang, J.; Liu, G.; Pan, Q. A Review on representative swarm intelligence algorithms for solving optimization problems: Applications and trends. IEEE/CAA J. Autom. Sin. 2021, 8, 1627–1643. [Google Scholar] [CrossRef]
- Alsattar, H.A.; Zaidan, A.A.; Zaidan, B.B. Novel meta-heuristic bald eagle search optimisation algorithm. Artif. Intell. Rev. 2020, 53, 2237–2264. [Google Scholar] [CrossRef]
Threshold (dB) | Gain (dB) | Waveform Setting | Timing Parameter | Frequency Range | |||||
---|---|---|---|---|---|---|---|---|---|
Pre-Trigger (μs) | Sampling Frequency /MHz | Sampling Length (N) | PDT (μs) | HDT (μs) | HLT (μs) | Lower Limit (kHz) | Upper Limit (kHz) | ||
32 | 22 | 256 | 0.5 | 4096 | 1000 | 2000 | 20,000 | 20 | 100 |
Feature Name | Formula | Feature Name | Formula |
---|---|---|---|
Maximum | Kurtosis | ||
Minimum | Skewness | ||
Mean | Root mean square | ||
Peak | Waveform factor | ||
Quadratic mean | Crest factor | ||
Variance | Pulse Factor | ||
Standard deviation | Margin factor |
Feature Name | Formula | Feature Name | Formula |
---|---|---|---|
Centroid frequency | Frequency variance | ||
Mean square frequency | Frequency standard deviation | ||
RMS frequency | Spectrum mean |
Model | Accuracy at Corresponding Iteration Count (%) | |||
---|---|---|---|---|
20 | 30 | 40 | 50 | |
WOA-SVM | 77.92 ± 22.76 | 82.72 ± 21.84 | 82.95 ± 18.23 | 76.30 ± 23.62 |
PSO-SVM | 58.70 ± 22.17 | 71.94 ± 26.39 | 65.58 ± 22.21 | 56.34 ± 22.94 |
GWO-SVM | 71.94 ± 20.55 | 91.79 ± 0.75 | 87.26 ± 13.68 | 77.66 ± 20.42 |
CGO-SVM | 88.11 ± 6.37 | 90.36 ± 0.20 | 91.85 ± 0.33 | 90.61 ± 0.35 |
SCA-SVM | 73.60 ± 25.03 | 87.56 ± 16.12 | 86.34 ± 14.88 | 84.17 ± 15.76 |
TSO-SVM | 87.14 ± 14.83 | 87.24 ± 16.44 | 83.01 ± 18.26 | 77.99 ± 20.14 |
CSA-SVM | 82.51 ± 19.81 | 83.10 ± 2.02 | 78.63 ± 20.80 | 75.89 ± 23.32 |
BES-SVM | 91.45 ± 0.66 | 93.52 ± 0.25 | 92.48 ± 0.56 | 91.09 ± 0.50 |
Model | Precision at Corresponding Iteration Count (%) | |||
---|---|---|---|---|
20 | 30 | 40 | 50 | |
WOA-SVM | 80.97 ± 23.65 | 84.36 ± 22.27 | 84.59 ± 18.59 | 79.45 ± 24.60 |
PSO-SVM | 67.44 ± 25.47 | 76.28 ± 27.98 | 72.08 ± 24.41 | 65.83 ± 26.80 |
GWO-SVM | 76.28 ± 21.79 | 92.43 ± 0.76 | 87.92 ± 13.78 | 80.63 ± 21.20 |
CGO-SVM | 89.05 ± 6.44 | 90.72 ± 0.20 | 92.43 ± 0.33 | 90.72 ± 0.36 |
SCA-SVM | 88.66 ± 16.32 | 88.66 ± 16.32 | 87.55 ± 15.09 | 85.64 ± 16.03 |
TSO-SVM | 87.92 ± 14.96 | 87.92 ± 16.57 | 84.68 ± 18.63 | 80.97 ± 20.91 |
CSA-SVM | 84.36 ± 20.25 | 84.68 ± 2.06 | 81.20 ± 21.48 | 79.19 ± 24.33 |
BES-SVM | 91.38 ± 0.66 | 93.80 ± 0.25 | 92.57 ± 0.56 | 91.38 ± 0.50 |
Model | Recall at Corresponding Iteration Count (%) | |||
---|---|---|---|---|
20 | 30 | 40 | 50 | |
WOA-SVM | 78.29 ± 22.87 | 82.48 ± 21.78 | 82.86 ± 18.21 | 76.00 ± 23.53 |
PSO-SVM | 58.86 ± 22.23 | 71.81 ± 26.34 | 65.71 ± 22.26 | 56.57 ± 23.03 |
GWO-SVM | 71.81 ± 20.51 | 92.19 ± 0.75 | 87.05 ± 13.65 | 77.71 ± 20.43 |
CGO-SVM | 88.38 ± 6.39 | 90.29 ± 0.20 | 92.19 ± 0.33 | 90.29 ± 0.35 |
SCA-SVM | 87.81 ± 16.17 | 87.81 ± 16.17 | 86.48 ± 14.90 | 84.19 ± 15.76 |
TSO-SVM | 87.05 ± 14.81 | 87.05 ± 16.40 | 83.05 ± 18.27 | 78.29 ± 20.22 |
CSA-SVM | 82.48 ± 19.80 | 83.05 ± 2.02 | 78.48 ± 20.76 | 75.81 ± 23.30 |
BES-SVM | 91.05 ± 0.66 | 93.71 ± 0.25 | 92.38 ± 0.56 | 91.05 ± 0.50 |
Model | F1 Score at Corresponding Iteration Count (%) | |||
---|---|---|---|---|
20 | 30 | 40 | 50 | |
WOA-SVM | 79.09 ± 23.10 | 83.03 ± 21.92 | 83.38 ± 18.32 | 76.99 ± 23.83 |
PSO-SVM | 61.17 ± 23.10 | 73.09 ± 26.81 | 67.50 ± 22.86 | 59.03 ± 24.04 |
GWO-SVM | 73.09 ± 20.88 | 92.27 ± 0.75 | 87.32 ± 13.69 | 78.57 ± 20.66 |
CGO-SVM | 88.59 ± 6.40 | 90.43 ± 0.20 | 92.27 ± 0.33 | 90.43 ± 0.35 |
SCA-SVM | 88.07 ± 16.21 | 88.07 ± 16.21 | 86.80 ± 14.96 | 84.63 ± 15.85 |
TSO-SVM | 87.32 ± 14.86 | 87.32 ± 16.45 | 83.54 ± 18.38 | 79.09 ± 20.42 |
CSA-SVM | 83.03 ± 19.94 | 83.54 ± 2.03 | 79.27 ± 20.97 | 76.79 ± 23.60 |
BES-SVM | 91.16 ± 0.66 | 93.74 ± 0.25 | 92.44 ± 0.56 | 91.16 ± 0.50 |
Feature Type | Testing Accuracy of Different Classification Algorithms with Different Feature Inputs (%) | ||||
---|---|---|---|---|---|
DT | BPNN | KNN | BES-SVM | Average | |
Time-domain feature | 82.67 | 83.05 | 85.90 | 90.29 | 85.47 |
Frequency-domain feature | 61.33 | 68.57 | 66.67 | 70.67 | 66.81 |
Time–frequency-domain feature | 57.14 | 55.05 | 63.81 | 65.90 | 60.48 |
Multi-domain feature | 83.24 | 88.19 | 89.33 | 93.52 | 88.57 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, C.; Zhang, W.; Yang, B.; Zheng, R.; Sun, X.; Chen, F.; Xu, D.; Li, W. Noise Identification in Acoustic Emission (AE) Inspection of Oil Tank Bottom Corrosion Based on Multi-Domain Features and BES-SVM Algorithm. Processes 2025, 13, 3291. https://doi.org/10.3390/pr13103291
Huang C, Zhang W, Yang B, Zheng R, Sun X, Chen F, Xu D, Li W. Noise Identification in Acoustic Emission (AE) Inspection of Oil Tank Bottom Corrosion Based on Multi-Domain Features and BES-SVM Algorithm. Processes. 2025; 13(10):3291. https://doi.org/10.3390/pr13103291
Chicago/Turabian StyleHuang, Canwei, Wenpei Zhang, Bo Yang, Rongbu Zheng, Xueliang Sun, Fuhai Chen, Da Xu, and Weidong Li. 2025. "Noise Identification in Acoustic Emission (AE) Inspection of Oil Tank Bottom Corrosion Based on Multi-Domain Features and BES-SVM Algorithm" Processes 13, no. 10: 3291. https://doi.org/10.3390/pr13103291
APA StyleHuang, C., Zhang, W., Yang, B., Zheng, R., Sun, X., Chen, F., Xu, D., & Li, W. (2025). Noise Identification in Acoustic Emission (AE) Inspection of Oil Tank Bottom Corrosion Based on Multi-Domain Features and BES-SVM Algorithm. Processes, 13(10), 3291. https://doi.org/10.3390/pr13103291