Changes in Soil Microbial Parameters after Herbicide Application in Soils under Conventional Tillage and Non-Tillage
Abstract
1. Introduction
2. Materials and Methods
2.1. Herbicides
2.2. Field Experiment
2.3. Experimental Procedure
2.4. Data Analysis
3. Results and Discussion
3.1. Herbicide Residues in Soils under Tillage and Non-Tillage Management
3.2. Soil Microbial Respiration
3.3. Soil Dehydrogenase Activity
3.4. Soil Microbial Biomass and Structure
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Boselli, R.; Fiorini, A.; Santelli, S.; Ardenti, F.; Capra, F.; Maris, S.C.; Tabaglio, V. Cover crops during transition to no-till maintain yield and enhance soil fertility in intensive agro-ecosystems. Field Crops Res. 2020, 255, 107871. [Google Scholar] [CrossRef]
- Kader, M.A.; Senge, M.; Mojid, M.A.; Ito, K. Recent advances in mulching materials and methods for modifying soil environment. Soil Tillage Res. 2017, 168, 155–166. [Google Scholar] [CrossRef]
- Jacobs, A.A.; Evans, R.S.; Allison, J.K.; Garner, E.R.; Kingery, W.L.; McCulley, R.L. Cover crops and no-tillage reduce crop production costs and soil loss, compensating for lack of short-term soil quality improvement in a maize and soybean production system. Soil Tillage Res. 2022, 218, 105310. [Google Scholar] [CrossRef]
- Wang, G.; Jia, H.; Zhuang, J.; Glatzel, S.; Bennett, J.M.; Zhu, Y. Growing-season soil microbial respiration response to long-term no tillage and spring ridge tillage. Int. J. Agric. Biol. Eng. 2020, 13, 143–150. [Google Scholar] [CrossRef]
- Zheng, F.; Wu, X.; Zhang, M.; Liu, X.; Song, X.; Lu, J.; Wang, B.; van Groenigen, K.J.; Li, S. Linking soil microbial community traits and organic carbon accumulation rate under long-term conservation tillage practices. Soil Tillage Res. 2022, 220, 105360. [Google Scholar] [CrossRef]
- Panettieri, M.; de Sosa, L.L.; Domínguez, M.T.; Madejón, E. Long-term impacts of conservation tillage on Mediterranean agricultural soils: Shifts in microbial communities despite limited effects on chemical properties. Agric. Ecosyst. Environ. 2020, 304, 107144. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, Q.; Cai, Y.; Yang, Q.; Chang, S.X. Minimum tillage and residue retention increase soil microbial population size and diversity: Implications for conservation tillage. Sci. Total Environ. 2020, 716, 137164. [Google Scholar] [CrossRef]
- Baghel, J.K.; Das, T.K.; Raj, R.; Paul, S.; Mukherjee, I.; Bisht, M. Effect of conservation agriculture and weed management on weeds, soil microbial activity and wheat (Triticum aestivum) productivity under a rice (Oryza sativa)-wheat cropping system. Indian J. Agric. Sci. 2018, 88, 1709–1716. [Google Scholar] [CrossRef]
- Belmonte, S.A.; Celi, L.; Stahel, R.J.; Bonifacio, E.; Novello, V.; Zanini, E.; Steenwerth, K.L. Effect of Long-Term Soil Management on the Mutual Interaction Among Soil Organic Matter, Microbial Activity and Aggregate Stability in a Vineyard. Pedosphere 2018, 28, 288–298. [Google Scholar] [CrossRef]
- Arantes, A.C.C.; Cotta, S.R.; da Conceição, P.M.; Meneghin, S.P.; Martinelli, R.; Próspero, A.G.; Boaretto, R.M.; Andreote, F.D.; Mattos, D., Jr.; de Azevedo, F.A. Implication of Urochloa spp. Intercropping and Conservation Agriculture on Soil Microbiological Quality and Yield of Tahiti Acid Lime in Long Term Orchard Experiment. Agriculture 2020, 10, 491. [Google Scholar] [CrossRef]
- Jayaraman, S.; Dang, Y.P.; Naorem, A.; Page, K.L.; Dalal, R.C. Conservation Agriculture as a System to Enhance Ecosystem Services. Agriculture 2021, 11, 718. [Google Scholar] [CrossRef]
- Legrand, F.; Picot, A.; Cobo-Díaz, J.F.; Carof, M.; Chen, W.; Le Floch, G. Effect of tillage and static abiotic soil properties on microbial diversity. Appl. Soil Ecol. 2018, 132, 135–145. [Google Scholar] [CrossRef]
- Alletto, L.; Coquet, Y.; Benoit, P.; Heddadj, D.; Barriuso, E. Tillage management effects on pesticide fate in soils. A review. Agron. Sustain. Dev. 2010, 30, 367–400. [Google Scholar] [CrossRef]
- Malone, M.; Foster, E. A mixed-methods approach to determine how conservation management programs and techniques have affected herbicide use and distribution in the environment over time. Sci. Total Environ. 2019, 660, 145–157. [Google Scholar] [CrossRef] [PubMed]
- Mahía, J.; Martín, A.; Carballas, T.; Díaz-Raviña, M. Atrazine degradation and enzyme activities in an agricultural soil under two tillage systems. Sci. Total Environ. 2007, 378, 187–194. [Google Scholar] [CrossRef]
- Okada, E.; Costa, J.L.; Bedmar, F. Glyphosate Dissipation in Different Soils Under No-Till and Conventional Tillage. Pedosphere 2019, 29, 773–783. [Google Scholar] [CrossRef]
- Hussain, S.; Arshad, M.; Springael, D.; Sørensen, S.R.; Bending, G.D.; Devers-Lamrani, M.; Maqbool, Z.; Martin-Laurent, F. Abiotic and Biotic Processes Governing the Fate of Phenylurea Herbicides in Soils: A Review. Crit. Rev. Environ. Sci. Technol. 2015, 45, 1947–1998. [Google Scholar] [CrossRef]
- Álvarez-Martín, A.; Hilton, S.L.; Bending, G.D.; Rodríguez-Cruz, M.S.; Sánchez-Martín, M.J. Changes in activity and structure of the soil microbial community after application of azoxystrobin or pirimicarb and an organic amendment to an agricultural soil. Appl. Soil Ecol. 2016, 106, 47–57. [Google Scholar] [CrossRef]
- Marín-Benito, J.M.; Herrero-Hernández, E.; Andrades, M.S.; Sánchez-Martín, M.J.; Rodríguez-Cruz, M.S. Effect of different organic amendments on the dissipation of linuron, diazinon and myclobutanil in an agricultural soil incubated for different time periods. Sci. Total Environ. 2014, 476–477, 611–621. [Google Scholar] [CrossRef]
- Hussain, S.; Siddique, T.; Arshad, M.; Saleem, M. Bioremediation and Phytoremediation of Pesticides: Recent Advances. Crit. Rev. Environ. Sci. Technol. 2009, 39, 843–907. [Google Scholar] [CrossRef]
- Pose-Juan, E.; Igual, J.M.; Curto, N.; Sánchez-Martín, M.J.; Rodríguez-Cruz, M.S. Mesotrione dissipation and response of soil microbial communities in a soil amended with organic residues. Span. J. Soil Sci. 2015, 5, 12–25. [Google Scholar] [CrossRef]
- Imfeld, G.; Vuilleumier, S. Measuring the effects of pesticides on bacterial communities in soil: A critical review. Eur. J. Soil Biol. 2012, 49, 22–30. [Google Scholar] [CrossRef]
- Jose Carpio, M.; Garcia-Delgado, C.; Maria Marin-Benito, J.; Jesus Sanchez-Martin, M.; Sonia Rodriguez-Cruz, M. Soil Microbial Community Changes in a Field Treatment with Chlorotoluron, Flufenacet and Diflufenican and Two Organic Amendments. Agronomy 2020, 10, 1166. [Google Scholar] [CrossRef]
- García-Delgado, C.; Barba, V.; Marín-Benito, J.M.; Igual, J.M.; Sánchez-Martín, M.J.; Rodríguez-Cruz, M.S. Simultaneous application of two herbicides and green compost in a field experiment: Implications on soil microbial community. Appl. Soil Ecol. 2018, 127, 30–40. [Google Scholar] [CrossRef]
- Wendt, M.J.; Kenter, C.; Ladewig, E.; Wegener, M.; Märländer, B. Duration of Soil Activity of Foramsulfuron Plus Thiencarbazone-methyl Applied to Weed Species Typical of Sugar Beet Cultivation. Weed Technol. 2017, 31, 291–300. [Google Scholar] [CrossRef]
- Lewis, K.A.; Tzilivakis, J.; Warner, D.J.; Green, A. An international database for pesticide risk assessments and management. Hum. Ecol. Risk Assess. Int. J. 2016, 22, 1050–1064. [Google Scholar] [CrossRef]
- Douibi, M.; Krishtammagari, A.; Sánchez-Martín, M.J.; Rodríguez-Cruz, M.S.; Marín-Benito, J.M. Mulching vs. organic soil amendment: Effects on adsorption-desorption of herbicides. Sci. Total Environ. 2023, 892, 164749. [Google Scholar] [CrossRef] [PubMed]
- Douibi, M.; Sánchez-Martín, M.J.; Rodríguez-Cruz, M.S.; Marín-Benito, J.M. Impacto de la Temperatura y de Prácticas Agrícolas Sostenibles en la Degradación de Herbicidas. Rev. Ciências Agrárias 2022, 45, 583–586. [Google Scholar]
- Cassigneul, A.; Benoit, P.; Nobile, C.; Bergheaud, V.; Dumeny, V.; Etiévant, V.; Maylin, A.; Justes, E.; Alletto, L. Behaviour of S-metolachlor and its oxanilic and ethanesulfonic acids metabolites under fresh vs. partially decomposed cover crop mulches: A laboratory study. Sci. Total Environ. 2018, 631–632, 1515–1524. [Google Scholar]
- Huang, X.; He, J.; Yan, X.; Hong, Q.; Chen, K.; He, Q.; Zhang, L.; Liu, X.; Chuang, S.; Li, S.; et al. Microbial catabolism of chemical herbicides: Microbial resources, metabolic pathways and catabolic genes. Pestic. Biochem. Physiol. 2017, 143, 272–297. [Google Scholar] [CrossRef]
- Ahmad, K.S.; Hafeez, N.; Gul, M.M.; Ali, D.; Shaheen, A.; Aslam, B. Xenobiotic thiencarbazone-methyl biotransformation investigation by bacteria Streptococcus pneumoniae, Escherichia coli and Streptococcus pyogenes. Int. J. Env. Sci. Technol. 2021, 18, 1753–1760. [Google Scholar] [CrossRef]
- Wołejko, E.; Kaczyński, P.; Łozowicka, B.; Wydro, U.; Borusiewicz, A.; Hrynko, I.; Konecki, R.; Snarska, K.; Dec, D.; Malinowski, P. Dissipation of S-metolachlor in plant and soil and effect on enzymatic activities. Env. Monit Assess 2017, 189, 355. [Google Scholar] [CrossRef] [PubMed]
- Xu, N.; Qu, Q.; Zhang, Z.; Yuan, W.; Cui, H.; Shen, Y.; Lin, W.; Lu, T.; Qian, H. Effects of residual S-metolachlor in soil on the phyllosphere microbial communities of wheat (Triticum aestivum L.). Sci. Total Environ. 2020, 748, 141342. [Google Scholar] [CrossRef] [PubMed]
- Borowik, A.; Wyszkowska, J.; Kucharski, J.; Baćmaga, M.; Tomkiel, M. Response of microorganisms and enzymes to soil contamination with a mixture of terbuthylazine, mesotrione, and S-metolachlor. Environ. Sci. Pollut. Res. 2017, 24, 1910–1925. [Google Scholar] [CrossRef] [PubMed]
- Rabelo, J.S.; Dos Santos, E.A.; de Melo, E.I.; Vaz, M.G.M.V.; de Oliveira Mendes, G. Tolerance of microorganisms to residual herbicides found in eucalyptus plantations. Chemosphere 2023, 329, 138630. [Google Scholar] [CrossRef] [PubMed]
- Koçak, B.; Cenkseven, S. Effects of Three Commonly Used Herbicides in Maize on Short-Term Soil Organic Carbon Mineralization. Water Air Soil Pollut. 2021, 232, 386. [Google Scholar] [CrossRef]
- World Reference Base; Schád, P.; van Huyssteen, C.; Micheli, E. World Reference Base for Soil Resources 2014, Update 2015. Available online: https://www.fao.org/3/i3794en/I3794en.pdf (accessed on 30 March 2023).
- Marín-Benito, J.M.; Barba, V.; Ordax, J.M.; Sánchez-Martín, M.J.; Rodríguez-Cruz, M.S. Recycling organic residues in soils as amendments: Effect on the mobility of two herbicides under different management practices. J. Environ. Manag. 2018, 224, 172–181. [Google Scholar] [CrossRef] [PubMed]
- Sparks, D.L. Methods of Soil Analysis. Part 3: Chemical Methods; SSSA Series; Wiley: Hoboken, NJ, USA, 1996. [Google Scholar]
- Tabatabai, M.A. Soil Enzymes. In Methods of Soil Analysis, Part 2-Microbiological and Biochemical Properties; Weaver, R.W., Angl, J.S., Bottomley, P.S., Eds.; Soil Science Society of America (SSSA): Madison, WI, USA, 1994; pp. 903–947. [Google Scholar]
- Frostegård, Å.; Bååth, E.; Tunlio, A. Shifts in the structure of soil microbial communities in limed forests as revealed by phospholipid fatty acid analysis. Soil Biol. Biochem. 1993, 25, 723–730. [Google Scholar] [CrossRef]
- Alletto, L.; Benoit, P.; Bolognsi, B.; Couffignal, M.; Bergheaud, V.; Dumny, V.; Longueval, C.; Barriuso, E. Sorption and mineralisation of S-metolachlor in soils from fields cultivated with different conservation tillage systems. Soil Tillage Res. 2013, 128, 97–103. [Google Scholar] [CrossRef]
- Schmitz, G.L.; Witt, W.W.; Mueller, T.C. The Effect of Wheat (Triticum aestivum) Straw Levels on Chlorimuron, Imazaquin, and Imazethapyr Dissipation and Interception. Weed Technol. 2001, 15, 129–136. [Google Scholar] [CrossRef]
- Sperry, B.P.; Ferguson, J.C.; Bond, J.A.; Kruger, G.R.; Johnson, A.B.; Reynolds, D.B. Effect of differential levels of simulated overhead irrigation on residual herbicides applied to wheat straw–covered soil for barnyardgrass control. Weed Technol. 2022, 36, 648–654. [Google Scholar] [CrossRef]
- Sapkota, T.B.; Mazzoncini, M.; Bàrberi, P.; Antichi, D.; Silvestri, N. Fifteen years of no till increase soil organic matter, microbial biomass and arthropod diversity in cover crop-based arable cropping systems. Agron. Sustain. Dev. 2012, 32, 853–863. [Google Scholar] [CrossRef]
- Mirzavand, J.; Asadi-Rahmani, H.; Moradi-Talebbeigi, R. Biological indicators of soil quality under conventional, reduced, and no-tillage systems. Arch. Agron. Soil Sci. 2022, 68, 311–324. [Google Scholar] [CrossRef]
- Khan, M.H.; Liu, H.; Zhu, A.; Khan, M.H.; Hussain, S.; Cao, H. Conservation tillage practices affect soil microbial diversity and composition in experimental fields. Front. Microbiol. 2023, 14, 1227–1297. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Liu, W.; Ye, H. [Effects of pesticides metolachlor and S-metolachlor on soil microorganisms in aquisols. II. Soil Respiration]. Ying Yong Sheng Tai Xue Bao 2006, 17, 1305–1309. [Google Scholar] [PubMed]
- García-Orenes, F.; Guerrero, C.; Roldán, A.; Mataix-Solera, J.; Cerdà, A.; Campoy, M.; Zornoza, R.; Bárcenas, G.; Caravaca, F. Soil microbial biomass and activity under different agricultural management systems in a semiarid Mediterranean agroecosystem. Soil Tillage Res. 2010, 109, 110–115. [Google Scholar] [CrossRef]
- Zuber, S.M.; Villamil, M.B. Meta-analysis approach to assess effect of tillage on microbial biomass and enzyme activities. Soil Biol. Biochem. 2016, 97, 176–187. [Google Scholar] [CrossRef]
- Dang, Y.P.; Page, K.L.; Dalal, R.C.; Menzies, N.W. No-till Farming Systems for Sustainable Agriculture: An Overview. In No-till Farming Systems for Sustainable Agriculture; Dang, Y.P., Dalal, R.C., Menzies, N.W., Eds.; Springer International Publushing: Cham, Switzerland, 2020; pp. 3–20. Available online: http://link.springer.com/10.1007/978-3-030-46409-7_1. (accessed on 30 January 2023).
- Ravichandran, M.; Samiappan, S.C.; Pandiyan, R.; Velu, R.K. Improvement of crop and soil management practices through mulching for enhancement of soil fertility and environmental sustainability: A review. J. Exp. Biol. Agric. Sci. 2022, 10, 697–712. [Google Scholar] [CrossRef]
- Mathew, R.P.; Feng, Y.; Githinji, L.; Ankumah, R.; Balkcom, K.S. Impact of No-Tillage and Conventional Tillage Systems on Soil Microbial Communities. Appl. Environ. Soil Sci. 2012, 2012, e548620. [Google Scholar] [CrossRef]
- Six, J.; Frey, S.D.; Thiet, R.K.; Batten, K.M. Bacterial and Fungal Contributions to Carbon Sequestration in Agroecosystems. Soil Sci. Soc. Amer. J 2006, 70, 555–569. [Google Scholar] [CrossRef]
- Lipșa, F.D.; Ulea, E.; Chiriac, I.P.; Coroi, I.G. Effect of Herbicide S-Metolachlor on Soil Microorganisms; Seria Agronomie; Lucrări Științifice, Universitatea de Stiinte Agricole si Medicină Veterinară ‘Ion Ionescu de la Brad’: Iași, Romania, 2010; Volume 53, pp. 110–113. [Google Scholar]
- Filimon, M.N.; Roman, D.L.; Caraba, I.V.; Isvoran, A. Assessment of the Effect of Application of the Herbicide S-Metolachlor on the Activity of Some Enzymes Found in Soil. Agriculture 2021, 11, 469. [Google Scholar] [CrossRef]
- Kaschuk, G.; Alberton, O.; Hungria, M. Three decades of soil microbial biomass studies in Brazilian ecosystems: Lessons learned about soil quality and indications for improving sustainability. Soil Biol. Biochem. 2010, 42, 1–13. [Google Scholar] [CrossRef]
- Kaur, P.; Jain, D.; Singh Bhullar, M. Effect of Conventional and Conservation Agriculture Practices on Dissipation of Metribuzin and Clodinafop-Propargyl, Soil Enzymatic and Microbial Activities in Wheat in a Rice-Wheat System. Soil Sediment Contam. Int. J. 2023, 1–21. [Google Scholar] [CrossRef]
- Zhang, B.; Li, Y.; Ren, T.; Tian, Z.; Wang, G.; He, X.; Tian, C. Short-term effect of tillage and crop rotation on microbial community structure and enzyme activities of a clay loam soil. Biol. Fertil Soils 2014, 50, 1077–1085. [Google Scholar] [CrossRef]
- Kumar, S.; Rana, S.S.; Kumar, R.; Sharma, N. Effects of Conservation Tillage and Weed Management On Soil Microbial Community and Enzymatic Activity. Bangladesh J. Bot. 2022, 51, 425–431. [Google Scholar] [CrossRef]
- Schmidt, R.; Gravuer, K.; Bossange, A.V.; Mitchell, J.; Scow, K. Long-term use of cover crops and no-till shift soil microbial community life strategies in agricultural soil. PLoS ONE 2018, 13, e0192953. [Google Scholar] [CrossRef]
- Helgason, B.L.; Walley, F.L.; Germida, J.J. Long-term no-till management affects microbial biomass but not community composition in Canadian prairie agroecosytems. Soil Biol. Biochem. 2010, 42, 2192–2202. [Google Scholar] [CrossRef]
- Lupwayi, N.Z.; May, W.E.; Kanashiro, D.A.; Petri, R.M. Soil bacterial community responses to black medic cover crop and fertilizer N under no-till. Appl. Soil Ecol. 2018, 124, 95–103. [Google Scholar] [CrossRef]
- Allison, S.D.; Martiny, J.B.H. Resistance, resilience, and redundancy in microbial communities. Proc. Natl. Acad. Sci. USA 2008, 105 (Suppl. 1), 11512–11519. [Google Scholar] [CrossRef]
- Khmelevtsova, L.E.; Sazykin, I.S.; Azhogina, T.N.; Sazykina, M.A. Influence of Agricultural Practices on Bacterial Community of Cultivated Soils. Agriculture 2022, 12, 371. [Google Scholar] [CrossRef]
Herbicide | Chemical Structure | WS a (mg L−1) | Log Kow b | Kfoc/Koc c (mL g−1) | DT50 d Field/Lab (Days) | GUS Index e |
---|---|---|---|---|---|---|
S-metolachlor (SMOC) [2-chloro-N-(2-ethyl-6-methylphenyl)-N-[(1S)-2-meth-oxy-1-methylethyl] acetamide] | 480 | 3.05 | 200.2 | 23.2/51.8 | 2.32 | |
Foramsulfuron (FORAM) [2-[[[[(4,6-dimethoxy-2-pyrimidinyl) amino] carbonyl] amino] sulfony]-4-(formylamino)-N,N-dimethylbenzamide] | 3293 | −0.78 | 78.4 | -/25.3 | 2.95 | |
Thiencarbazone-methyl (TCM) [methyl 4-[[[(4,5-dihydro-3-methoxy-4-methyl-5-oxo-1H-1,2,4-triazol-1-yl) carbonyl] amino] sulfonyl]-5-methyl-3-thiophenecarboxylic acid] | 436 | −1.98 | 100 | 17/51.5 | 2.46 |
Treatment/Parameter | S1 + CT | S2 + CT | S1 + NT | S2 + NT |
---|---|---|---|---|
Sand (%) | 80.4 | 76.7 | 80.4 | 76.7 |
Silt (%) | 4.7 | 6.8 | 4.7 | 6.8 |
Clay (%) | 14.9 | 16.5 | 14.9 | 16.5 |
pH | 6.81 | 7.67 | 6.8 | 7.67 |
OC (%) | 0.69 | 1.01 | 0.68 | 1.01 |
Herbicides/Soil | Residual Herbicide (μg Herbicide g−1 Dry Soil) ± SD a | ||
---|---|---|---|
1 Day | 34 Days | 153 Days | |
S-metolachlor | |||
S1 + CT | 0.898 ± 0.09 aA | 0.421 ± 0.08 aB | 0.024 ± 0.00 -C |
S1 + NT | 0.013 ± 0.02 cA | 0.007 ± 0.00 bB | 0.000 ± 0.00 -C |
S2 + CT | 0.659 ± 0.04 bA | 0.423 ± 0.14 aB | 0.036 ± 0.05 -C |
S2 + NT | 0.000 ± 0.00 c- | 0.050 ± 0.05 b- | 0.014 ± 0.02 -- |
Foramsulfuron | |||
S1 + CT | 0.555 ± 0.28 ab- | 0.005 ± 0.00 c- | 0.002 ± 0.00 -- |
S1 + NT | 0.022 ± 0.02 b- | 0.011± 0.00 bc- | 0.041 ± 0.00 -B |
S2 + CT | 0.675 ± 0.72 aA | 0.023 ± 0.00 aB | 0.041 ± 0.00 -B |
S2 + NT | 0.009 ± 0.10 bB | 0.018 ± 0.00 abA | 0.002 ± 0.00 -C |
Thiencarbazone-methyl | |||
S1 + CT | 0.102 ± 0.02 aA | 0.031 ± 0.00 -B | 0.003 ± 0.00 -B |
S1 + NT | 0.003 ± 0.01 bB | 0.012 ± 0.00 -A | 0.001 ± 0.00 -B |
S2 + CT | 0.097 ± 0.00 aA | 0.041 ± 0.01 -B | 0.004 ± 0.00 -C |
S2 + NT | 0.001 ± 0.00 b- | 0.021 ± 0.00 -- | 0.003 ± 0.00 -- |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Douibi, M.; Carpio, M.J.; Rodríguez-Cruz, M.S.; Sánchez-Martín, M.J.; Marín-Benito, J.M. Changes in Soil Microbial Parameters after Herbicide Application in Soils under Conventional Tillage and Non-Tillage. Processes 2024, 12, 827. https://doi.org/10.3390/pr12040827
Douibi M, Carpio MJ, Rodríguez-Cruz MS, Sánchez-Martín MJ, Marín-Benito JM. Changes in Soil Microbial Parameters after Herbicide Application in Soils under Conventional Tillage and Non-Tillage. Processes. 2024; 12(4):827. https://doi.org/10.3390/pr12040827
Chicago/Turabian StyleDouibi, Marwa, María José Carpio, María Sonia Rodríguez-Cruz, María J. Sánchez-Martín, and Jesús M. Marín-Benito. 2024. "Changes in Soil Microbial Parameters after Herbicide Application in Soils under Conventional Tillage and Non-Tillage" Processes 12, no. 4: 827. https://doi.org/10.3390/pr12040827
APA StyleDouibi, M., Carpio, M. J., Rodríguez-Cruz, M. S., Sánchez-Martín, M. J., & Marín-Benito, J. M. (2024). Changes in Soil Microbial Parameters after Herbicide Application in Soils under Conventional Tillage and Non-Tillage. Processes, 12(4), 827. https://doi.org/10.3390/pr12040827