Biofilm Formation in Water Distribution Systems
Abstract
1. Introduction
2. Biofilm
3. Bacteria in DWDS Biofilms
4. Biofilm on Different Materials in DWDS
5. Microbial Chlorine Resistance in DWDS
5.1. Problems with MCR
- Group I: all five strains of bacteria;
- Group II: without Acidovorax defluvii;
- Group III: without Acinetobacter sp.;
- Group IV: without Bacillus cereus;
- Group V.: without Microbacterium laevaniformans;
- Group VI.: all except Sphingomonas sp.
5.2. Chlorine-Resistant Bacteria
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hemdan, B.A.; El-Taweel, G.E.; Goswami, P.; Pant, D.; Sevda, S. The role of biofilm in the development and dissemination of ubiquitous pathogens in drinking water distribution systems: An overview of surveillance, outbreaks, and prevention. World J. Microbiol. Biotechnol. 2021, 37, 36. [Google Scholar] [CrossRef]
- Speight, V.L.; Mounce, S.R.; Boxall, J.B. Identification of the causes of drinking water discolouration from machine learning analysis of historical datasets. Environ. Sci. Water Res. Technol. 2019, 5, 747–755. [Google Scholar] [CrossRef]
- Liu, G.; Verberk, J.Q.J.C.; Van Dijk, J.C. Bacteriology of drinking water distribution systems: An integral and multidimensional review. Appl. Microbiol. Biotechnol. 2013, 97, 9265–9276. [Google Scholar] [CrossRef] [PubMed]
- Gilbert, N. Water under pressure. Nature 2012, 483, 256–257. [Google Scholar] [CrossRef] [PubMed]
- Garner, E.; Inyang, M.; Garvey, E. Impact of blending for direct potable reuse on premise plumbing microbial ecology and regrowth of opportunistic pathogens and antibiotic resistant bacteria. Water Res. 2019, 15, 75–86. [Google Scholar] [CrossRef] [PubMed]
- Elhadidy, A.M.; Van Dyke, M.I.; Chen, F. Development and application of an improved protocol to characterize biofilms in biologically active drinking water filters. Env. Sci. Water Res. Technol. 2019, 3, 249–261. [Google Scholar] [CrossRef]
- Neu, L.; Proctor, C.R.; Walser, J.C.; Hammes, F. Small-scale heterogeneity in drinking water biofilms. Front. Microbiol. 2019, 10, 2446. [Google Scholar] [CrossRef]
- Morvay, A.A.; Decun, M.; Scurtu, M.; Sala, C.; Morar, A.; Sarandan, M. Biofilm formation on materials commonly used in household drinking water systems. Water Sci. Technol. Water Supply 2011, 11, 252–257. [Google Scholar] [CrossRef]
- Belák, Á.; Héher, B.; Kiskó, G. Formation and removal of Listeria monocytogenes and Lactococcus lactis biofilms. Acta Univ. Sapientiae Aliment. 2012, 5, 5–17. [Google Scholar]
- Simoes, L.C.; Simoes, M. Biofilms in drinking water: Problems and solutions. RSC Adv. 2013, 3, 2520–2533. [Google Scholar] [CrossRef]
- Chan, S.; Pullerits, K.; Keucken, A.; Persson, K.M.; Paul, C.J.; Radström, P. Bacterial release from pipe biofilm in a full-scale drinking water distribution system. NPJ Biofilms Microbiomes 2019, 5, 9. [Google Scholar] [CrossRef] [PubMed]
- Lu, J.; Hu, X.; Ren, L. Biofilm control strategies in food industry: Inhibition and utilization. Trends Food Sci. Technol. 2022, 123, 103–113. [Google Scholar] [CrossRef]
- Stockmann, U.; Adams, M.A.; Crawford, J.W.; Field, D.J.; Henakaarchchi, N.; Jenkins, M.; Minasny, B.; McBratney, A.B.; de Remy de Courcelles, V.; Singh, K.; et al. The knowns, known unknowns and unknowns of sequestration of soil organic carbon. Agric. Ecosyst. Environ. 2013, 164, 80–99. [Google Scholar] [CrossRef]
- Fratamico, P.M.; Annous, B.A.; Gunther, N.W. Biofilms in the Food and Beverage Industries; Woodhead Publishing Limited: Cambrige, UK, 2019; ISBN 978-1-84569-477-7. [Google Scholar]
- Husband, P.S.; Boxall, J.B.; Saul, A.J. Laboratory studies investigating the processes leading to discolouration in water distribution networks. Water Res. 2008, 42, 4309–4318. [Google Scholar] [CrossRef] [PubMed]
- Szewzyk, U.; Szewzyk, R.; Manz, W.; Schleifer, K.H. Microbiological safety of drinking water. Annu. Rev. Microbiol. 2000, 54, 81–127. [Google Scholar] [CrossRef] [PubMed]
- Bakke, R.; Trulear, M.G.; Robinson, J.A.; Characklis, W.G. Activity of Pseudomonas aeruginosa in Biofilms: Steady State. Biotechnol. Bioeng. 1984, XXVI, 1418–1424. [Google Scholar] [CrossRef]
- Batté, M.; Appenzeller, B.M.R.; Grandjean, D.; Fass, S.; Gauthier, V.; Jorand, F.; Mathieu, L.; Boualam, M.; Saby, S.; Block, J.C. Biofilms in drinking water distribution systems. Rev. Environ. Sci. Bio/Technol. 2003, 2, 147–168. [Google Scholar] [CrossRef]
- Allison, D.G.; Sutherland, I.W. The role of exopolysacharides in adhesion of freshwater bacteria. J. Gen. Microbiol. 1987, 133, 1319–1327. [Google Scholar]
- Pap, K.; Kiskó, G. Efficacy of disinfectants against static biofilms on stainless steel surface. Acta Aliment. 2008, 37, 1–7. [Google Scholar] [CrossRef]
- Besner, M.-C.; Prevost, M.; Regli, S. Assessing the public health risk of microbial intrusion events in distribution systems: Conceptual model, available data, and challenges. Water Res. 2011, 45, 961–979. [Google Scholar] [CrossRef]
- Żur, J.; Wojcieszyńska, D.; Guzik, U. Metabolic Responses of Bacterial Cells to Immobilization. Molecules 2016, 21, 958. [Google Scholar] [CrossRef] [PubMed]
- Thomas, J.G.; Nakaishi, L.A. Managing the complexity of a dynamic biofilm. J. Am. Dent. Assoc. 2006, 137, S10–S15. [Google Scholar] [CrossRef] [PubMed]
- Costerton, J.W.; Cheng, K.J.; Geesey, G.G.; Ladd, T.I.; Nickel, J.C.; Dasgupta, M.; Marrie, T.J. Bacterial biofilms in nature and disease. Annu. Rev. Microbiol. 1987, 41, 435–464. [Google Scholar] [CrossRef] [PubMed]
- Kiskó, G.; Szabó-Szabó, O. Biofilm Removal of Pseudomas Strains Using Hot Water Sanitation. Acta Univ. Sapientiae Aliment. 2011, 4, 69–79. [Google Scholar]
- Hammes, F.; Berney, M.; Wang, Y.; Vital, M.; Koster, O.; Egli, T. Flow-cytometric total bacterial cell counts as a descriptive microbiological parameter for drinking water treatment processes. Water Res. 2008, 42, 269–277. [Google Scholar] [CrossRef] [PubMed]
- Flemming, H.C.; Percival, S.L.; Walker, J.T. Contamination potential of biofilms in water distribution systems. Water Sci. Technol. 2002, 2, 271–280. [Google Scholar] [CrossRef]
- Al-Makhlafi, H.; Nasir, A.; Mcguire, J.; Daeschel, M. Adhesion of Listeria monocytogenes to Silica Surfaces after Sequential and Competitive Adsorption of Bovine Serum Albumin and b-Lactoglobulin. Appl. Environ. Microbiol. 1995, 61, 2013–2015. [Google Scholar] [CrossRef]
- Labidi, S.; Jánosity, A.; Yakdhane, A.; Yakdhane, E.; Surányi, B.; Mohácsi-Farkas, C.; Kiskó, G. Effects of pH, sodium chloride, and temperature on the growth of Listeria monocytogenes biofilms. Acta Aliment. 2023, 52, 270–280. [Google Scholar] [CrossRef]
- Grimaud, R.; Sivadon, P.; Barnier, C.; Urios, L. Biofilm formation as a microbial strategy to assimilate particulate substrates. Environ. Microbiol. Rep. 2019, 11, 749–764. [Google Scholar] [CrossRef]
- Helke, D.M.; Sommers, E.B.; Wong, A.C.L. Attachment of Listeria monocytogenes and Salmonella typhimurium to Stainless Steel and Buna-N in the Presence of Milk and Individual Milk Components. J. Food Prot. 1993, 56, 479–484. [Google Scholar] [CrossRef]
- Mráz, B.; Kiskó, G.; Hidi, E.; Ágoston, R.; Mohácsiné Farkas, C.S.; Gillay, Z. Assessment of biofilm formation of Listeria monocytogenes strains. Acta Aliment. 2011, 40 (Suppl. S1), 101–108. [Google Scholar] [CrossRef]
- Luo, L.; Wu, Y.; Yu, T.; Wang, Y.; Chen, G.; Tong, X.; Bai, Y.; Xu, C.; Wang, H.; Ikuno, N.; et al. Evaluating method and potential risks of chlorine-resistant bacteria (CRB): A review. Water Res. 2021, 188, 116474. [Google Scholar] [CrossRef]
- Hussain, T.; Roohi, A.; Munir, S.; Ahmed, I.; Khan, J.; Edel-Hermann, V.; Yong, K.; Anees, K. Biochemical characterization and identification of bacterial strains isolated from drinking water sources of Kohat, Pakistan. Afr. J. Microbiol. Res. 2013, 7, 1579–1590. [Google Scholar] [CrossRef]
- Jamal, M.; Ahmad, W.; Andleeb, S.; Jalil, F.; Imran, M.; Nawaz, M.A.; Hussain, T.; Ali, M.; Rafiq, M.; Kamil, M.A. Bacterial biofilm and associated infections. J. Chin. Med. Assoc. 2018, 81, 7–11. [Google Scholar] [CrossRef]
- Ruhal, R.; Kataria, R. Biofilm patterns in gram-positive and gram-negative bacteria. Microbiol. Res. 2021, 251, 126829. [Google Scholar] [CrossRef]
- Gebreyohannes, G.; Nyerere, A.; Bii, C.; Sbhatu, D.B. Challenges of intervention, treatment, and antibiotic resistance of biofilm-forming microorganisms. Heliyon 2019, 5, 02192. [Google Scholar] [CrossRef] [PubMed]
- Abebe, G.M. The Role of Bacterial Biofilm in Antibiotic Resistance and Food Contamination. Hindawi Int. J. Microbiol. 2020, 2020, 1705814. [Google Scholar] [CrossRef] [PubMed]
- Guzmán-Soto, I.; McTiernan, C.; Gonzalez-Gomez, M.; Ross, A.; Gupta, K.; Suuronen, E.J.; Mah, T.-F.; Griffith, M.; Alarcon, E.I. Mimicking biofilm formation and development: Recent progress in in vitro and in vivo biofilm models. iScience 2021, 24, 102443. [Google Scholar] [CrossRef] [PubMed]
- Meganathan, Y.; Vishwakarma, A.; Ramya, M. Biofilm formation and social interaction of Leptospira in natural and artificial environments. Res. Microbiol. 2022, 173, 103981. [Google Scholar] [CrossRef]
- Zhang, J.; Li, W.; Chen, J.; Qi, W.; Wang, F.; Zhoua, Y. Impact of biofilm formation and detachment on the transmission of bacterial antibiotic resistance in drinking water distribution systems. Chemosphere 2018, 203, 368–380. [Google Scholar] [CrossRef] [PubMed]
- Douterelo, I.; Boxall, J.B.; Deines, P.; Sekar, J.; Fish, K.A.; Biggs, C.A. Methodological approaches for studying the microbial ecology of drinking water distribution systems. Water Res. 2014, 65, 134–156. [Google Scholar] [CrossRef]
- Chen, X.D.; Zhang, C.K.; Zhou, Z.; Gong, Z.; Zhou, J.J.; Tao, J.F.; Feng, Q. Stabilizing effects of bacterial biofilms: EPS penetration and redistribution of bed stability down the sediment profile. J. Geophys. Res. Biogeosci. 2017, 122, 3113–3125. [Google Scholar] [CrossRef]
- Jing, Z.; Wang, X.; Wang, W.; Lu, Z.; Mao, T.; Cao, W.; Ke, Y.; Zhao, Z.; Sun, W. Microbial composition and diversity of drinking water: A full scale spatial-temporal investigation of a city in northern China. Sci. Total Environ. 2021, 776, 145986. [Google Scholar] [CrossRef]
- Zhao, J.; Yang, Y.; Li, C. The laboratory study of drinking water biofilms. Appl. Mech. Mater. 2014, 535, 455–459. [Google Scholar] [CrossRef]
- Liu, H.; Walski, T.; Fu, G.; Zhang, C. Failure impact analysis of isolation valves in a water distribution network. J. Water Resour. Plan. Manag. 2017, 143, 04017019. [Google Scholar] [CrossRef]
- Gião, M.S.; Azevedo, N.F.; Wilks, S.A.; Vieira, M.J.; Keevil, C.W. Interaction of Legionella pneumophila and Helicobacter pylori with bacterial species isolated from drinking water biofilms. BMC Microbiol. 2011, 11, 57. [Google Scholar] [CrossRef] [PubMed]
- Bunn, J.E.G.; MacKay, W.G.; Thomas, J.E.; Reid, D.C.; Weaver, L.T. Detection of Helicobacter pylori DNA in drinking water biofilms: Implications for transmission in early life. Lett. Appl. Microbiol. 2002, 34, 450–454. [Google Scholar] [CrossRef] [PubMed]
- Stingu, C.S.; Rodloff, A.C.; Jentsch, H.; Schaumann, R.; Eschrich, K. Rapid identification of oral anaerobic bacteria cultivated from subgingival biofilm by MALDI-TOF-MS. Oral Microbiol. Immunol. 2008, 23, 372–376. [Google Scholar] [CrossRef] [PubMed]
- Boe-Hansen, R.; Martiny, A.C.; Arvin, E.; Albrechtsen, H.-J. Monitoring biofilm formation and activity in drinking water distribution networks under oligotrophic conditions. Water Sci. Technol. 2003, 47, 91–97. [Google Scholar] [CrossRef] [PubMed]
- Goraj, W.; Pytlak, A.; Kowalska, B.; Kowalski, D.; Grządziel, J.; Szafranek-Nakonieczna, A.; Gałązka, A.; Stępniewska, Z.; Stępniewski, W. Influence of pipe material on biofilm microbial communities found in drinking water supply system. Environ. Res. 2021, 196, 110433. [Google Scholar] [CrossRef] [PubMed]
- Liu, G.; Zhang, Y.; Liu, X.; Hammes, F.; Liu, W.T.; Medema, G.; Wessels, P.; van der Meer, W. 360-Degree Distribution of Biofilm Quantity and Community in an Operational Unchlorinated Drinking Water Distribution Pipe. Environ. Sci. Technol. 2020, 54, 5619–5628. [Google Scholar] [CrossRef]
- Vávrová, A.; Matoulková, D.; Balážová, T.; Šedo, O. MALDI-TOF MS Analysis of Anaerobic Bacteria Isolated from Biofilm-Covered Surfaces in Brewery Bottling Halls. J. Am. Soc. Brew. Chem. 2014, 72, 95–101. [Google Scholar] [CrossRef]
- Pereira, F.D.E.S.; Silva, L.P.; Bonatto, C.C.; Lopes, C.A.P.; Pereira, A.L. Use of MALDI-TOF mass spectrometry to analyze the molecular profile of Pseudomonas aeruginosa biofilms grown on glass and plastic surfaces. Microb. Pathog. 2015, 86, 32–37. [Google Scholar] [CrossRef]
- Caputo, P.; Di Martino, M.C.; Perfetto, B.; Iovino, F.; Donnarumma, G. Use of MALDI-TOF MS to Discriminate between Biofilm-Producer and Non-Producer Strains of Staphylococcus epidermidis. Int. J. Environ. Res. Public. Health 2018, 15, 1695. [Google Scholar] [CrossRef] [PubMed]
- Gaudreau, A.M.; Labrie, J.; Goetz, C.; Dufour, S.; Jacques, M. Evaluation of MALDI-TOF mass spectrometry for the identification of bacteria growing as biofilms. J. Microbiol. Methods 2018, 145, 79–81. [Google Scholar] [CrossRef]
- Asghari, E.; Kiel, A.; Kaltschmidt, B.P.; Wortmann, M.; Schmidt, N.; Hüsgen, B.; Hütten, A.; Knabbe, C.; Kaltschmidt, C.; Kaltschmidt, B. Identification of Microorganisms from Several Surfaces by MALDI-TOF MS: P. aeruginosa Is Leading in Biofilm Formation. Microorganisms 2021, 9, 992. [Google Scholar] [CrossRef] [PubMed]
- Silva, N.B.S.; Marques, L.A.; Röder, D.D.B. Diagnosis of biofilm infections: Current methods used, challenges and perspectives for the future. J. Appl. Microbiol. 2021, 131, 2148–2160. [Google Scholar] [CrossRef]
- Li, W.; Zheng, T.; Ma, Y.; Liu, J. Current status and future prospects of sewer biofilms: Their structure, influencing factors, and substance transformations. Sci. Total Environ. 2019, 695, 133815. [Google Scholar] [CrossRef]
- Learbuch, K.L.G.; Smidt, H.; van der Wielen, P.W.J.J. Influence of pipe materials on the microbial community in unchlorinated drinking water and biofilm. Water Res. 2021, 194, 116922. [Google Scholar] [CrossRef]
- Janzon, A.; Sjöling, A.; Lothigius, A.; Ahmed, D.; Qadri, F.; Svennerholm, A. Failure to Detect Helicobacter pylori DNA in Drinking and Environmental Water in Dhaka, Bangladesh, Using Highly Sensitive Real-Time PCR Assays. Public Health Microbiol. 2009, 75, 3039–3044. [Google Scholar] [CrossRef] [PubMed]
- Srey, S.; Jahid, I.K.; Ha, S.-D. Biofilm formation in food industries: A food safety concern. Food Control 2013, 31, 572–585. [Google Scholar] [CrossRef]
- Zhou, X.; Ahmad, J.I.; Hoek, P.; Zhang, K. Thermal energy recovery from chlorinated drinking water distribution systems: Effect on chlorine and microbial water and biofilm characteristics. Environ. Res. 2020, 187, 109655. [Google Scholar] [CrossRef] [PubMed]
- Manuel, C.M.; Melo, L.F.; Nunes, O.C. Dynamics of drinking water biofilm in flow/non-flow conditions. Water Res. 2007, 41, 551–562. [Google Scholar] [CrossRef] [PubMed]
- Wen, G.; Kötzsch, S.; Vital, M.; Egli, T.; Ma, J. BioMig—A Method to Evaluate the Potential Release of Compounds from and the Formation of Biofilms on Polymeric Materials in Contact with Drinking Water. Environ. Sci. Technol. 2015, 49, 11659–11669. [Google Scholar] [CrossRef] [PubMed]
- Zarnowski, R.; Sanchez, H.; Andes, D.R. Large-scale production and isolation of Candida biofilm extracellular matrix. Nat. Protoc. 2016, 11, 2320–2327. [Google Scholar] [CrossRef] [PubMed]
- Kretschmer, M.; Schüßler, C.A.; Lieleg, O. Biofilm Adhesion to Surfaces is Modulated by Biofilm Wettability and Stiffness. Adv. Mater. Interfaces 2021, 8, 2001658. [Google Scholar] [CrossRef]
- Taczman-Brückner, A.; Juhász, I.; Dancs, V.; Erdős, H.; Surányi, B.; Kocsis, T.; Kiskó, G. Removal of Pseudomonas aeruginosa biofilm in plastic bottles filled with different beverages. In Abstracts of 4th FoodConf—International Conference on Food Science and Technology, Budapest, Hungary, 9–11 June 2022; Szalóki-Dorkó, L., Batáné Vidács, I., Kumar, P., Pomázi, A., Gere, A., Eds.; Élelmiszertudományért Alapítvány Bicske: Bicske, Hungary, 2022; Abs. 29; p. 1. [Google Scholar]
- Taczman-Brückner, A.; Erdei-Tombor, P.; Mouki Mwiwi, A.; Szijj, O.; Medve, D.; Hős, C.S.; Huzsvár, T.; Kiskó, G. Biofilm formation on HDPE surface used in drinking water distribution system. In Abstracts of Lippay János–Ormos Imre–-Vas. Károly (LOV) Scientific Meeting, Budapest, Hungary, 5 November 2023; MATE: Budapest, Hungary, 2024. [Google Scholar]
- Erdei-Tombor, P.; Mouki Mwiwi, A.; Hős, C.S.; Huzsvár, T.; Kiskó, G.; Taczman-Brückner, A. Biofilm formation on model surfaces of drinking water distribution system. In Proceedings of the 5th International Conference on Biosystems and Food Engineering (ByosisFoodEng), Budapest, Hungary, 9 June 2023; p. E552, ISBN 978-615-01-8151-6. [Google Scholar]
- Zhou, C.; Hou, S.; Liu, Z.; Young, W.; Shi, Z.; Ren, D.; Kallenbach, N.R. Antimicrobial dendrimer active against Escherichia coli biofilms. Bioorganic Med. Chem. Lett. 2009, 19, 5478–5481. [Google Scholar] [CrossRef]
- Mathieu, L.; Bertrand, I.; Abe, Y.; Angel, E.; Block, J.C.; Skali-Lami, S.; Francius, G. Drinking water biofilm cohesiveness changes under chlorination or hydrodynamic stress. Water Res. 2014, 55, 175–184. [Google Scholar] [CrossRef]
- Fish, K.E.; Boxall, J.B. Biofilm Microbiome (Re)Growth Dynamics in Drinking Water Distribution Systems Are Impacted by Chlorine Concentration. Front. Microbiol. 2018, 9, 2519. [Google Scholar] [CrossRef]
- Ekundayo, T.C.; Igwaran, A.; Oluwafemi, Y.D.; Okoh, A.I. Global bibliometric meta-analytic assessment of research trends on microbial chlorine resistance in drinking water/water treatment systems. J. Environ. Manag. 2021, 278, 111641. [Google Scholar] [CrossRef]
- Wang, M.; Zhang, Y.; Niu, Z.; Miao, Q.; Fu, W. Study on the distribution characteristics and metabolic mechanism of chlorine-resistant bacteria in indoor water supply networks. Environ. Pollut. 2023, 328, 121640. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Z.; Shan, L.; Hu, F.; Li, Z.; Zhong, D.; Yuan, Y.; Zhang, J. Biofilm formation potential and chlorine resistance of typical bacteria isolated from drinking water distribution systems. RSC Adv. 2020, 10, 31295–31304. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Z.; Shan, L.; Zhang, X.; Hu, F.; Zhong, D.; Yuan, Y.; Zhang, J. Effects of bacterial community composition and structure in drinking water distribution systems on biofilm formation and chlorine resistance. Chemosphere 2021, 264, 128410. [Google Scholar] [CrossRef]
- Liu, G.; Zhang, Y.; Mark, E.; Magic-Knezev, A.; Pinto, A.; Bogert, B.; Liu, W.; Medema, G. Assessing the origin of bacteria in tap water and distribution system in an unchlorinated drinking water system by Source Tracker using microbial community fingerprints. Water Res. 2018, 138, 86–96. [Google Scholar] [CrossRef]
- Zhu, Z.; Xu, S.; Bao, X.; Shan, L.; Pei, Y.; Zheng, W.; Yuan, Y. Effect of outdoor pipe materials and community-intrinsic properties on biofilm formation and chlorine resistance: Black sheep or team leader. J. Clean. Prod. 2023, 411, 137308. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Erdei-Tombor, P.; Kiskó, G.; Taczman-Brückner, A. Biofilm Formation in Water Distribution Systems. Processes 2024, 12, 280. https://doi.org/10.3390/pr12020280
Erdei-Tombor P, Kiskó G, Taczman-Brückner A. Biofilm Formation in Water Distribution Systems. Processes. 2024; 12(2):280. https://doi.org/10.3390/pr12020280
Chicago/Turabian StyleErdei-Tombor, Patrícia, Gabriella Kiskó, and Andrea Taczman-Brückner. 2024. "Biofilm Formation in Water Distribution Systems" Processes 12, no. 2: 280. https://doi.org/10.3390/pr12020280
APA StyleErdei-Tombor, P., Kiskó, G., & Taczman-Brückner, A. (2024). Biofilm Formation in Water Distribution Systems. Processes, 12(2), 280. https://doi.org/10.3390/pr12020280