Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (6,557)

Search Parameters:
Keywords = pipes

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 11111 KB  
Article
DeePC Sensitivity for Pressure Control with Pressure-Reducing Valves (PRVs) in Water Networks
by Jason Davda and Avi Ostfeld
Water 2026, 18(2), 253; https://doi.org/10.3390/w18020253 (registering DOI) - 17 Jan 2026
Abstract
This study provides a practice-oriented sensitivity analysis of DeePC for pressure management in water distribution systems. Two public benchmark systems were used, Fossolo (simpler) and Modena (more complex). Each run fixed a monitored node and pressure reference, applied the same randomized identification phase [...] Read more.
This study provides a practice-oriented sensitivity analysis of DeePC for pressure management in water distribution systems. Two public benchmark systems were used, Fossolo (simpler) and Modena (more complex). Each run fixed a monitored node and pressure reference, applied the same randomized identification phase followed by closed-loop control, and quantified performance by the mean absolute error (MAE) of the node pressure relative to the reference value. To better characterize closed-loop behavior beyond MAE, we additionally report (i) the maximum deviation from the reference over the control window and (ii) a valve actuation effort metric, normalized to enable fair comparison across different numbers of valves and, where relevant, different control update rates. Motivated by the need for practical guidance on how hydraulic boundary conditions and algorithmic choices shape DeePC performance in complex water networks, we examined four factors: (1) placement of an additional internal PRV, supplementing the reservoir-outlet PRVs; (2) the control time step (Δt); (3) a uniform reservoir-head offset (Δh); and (4) DeePC regularization weights (λg,λu,λy). Results show strong location sensitivity, in Fossolo, topologically closer placements tended to lower MAE, with exceptions; the baseline MAE with only the inlet PRV was 3.35 [m], defined as a DeePC run with no additions, no extra valve, and no changes to reservoir head, time step, or regularization weights. Several added-valve locations improved the MAE (i.e., reduced it) below this level, whereas poor choices increased the error up to ~8.5 [m]. In Modena, 54 candidate pipes were tested, the baseline MAE was 2.19 [m], and the best candidate (Pipe 312) achieved 2.02 [m], while pipes adjacent to the monitored node did not outperform the baseline. Decreasing Δt across nine tested values consistently reduced MAE, with an approximately linear trend over the tested range, maximum deviation was unchanged (7.8 [m]) across all Δt cases, and actuation effort decreased with shorter steps after normalization. Changing reservoir head had a pronounced effect: positive offsets improved tracking toward a floor of ≈0.49 [m] around Δh ≈ +30 [m], whereas negative offsets (below the reference) degraded performance. Tuning of regularization weights produced a modest spread (≈0.1 [m]) relative to other factors, and the best tested combination (λy, λg, λu) = (102, 10−3, 10−2) yielded MAE ≈ 2.11 [m], while actuation effort was more sensitive to the regularization choice than MAE/max deviation. We conclude that baseline system calibration, especially reservoir heads, is essential before running DeePC to avoid biased or artificially bounded outcomes, and that for large systems an external optimization (e.g., a genetic-algorithm search) is advisable to identify beneficial PRV locations. Full article
Show Figures

Figure 1

27 pages, 1112 KB  
Article
Unraveling COVID-19’s Impact on Raw Material Supply Chains and Production in the Turkish Pipe Industry: A Critical ANOVA and Advanced MCDM Evaluation
by Hatef Javadi, Oguz Toragay, Mehmet Akif Yerlikaya, Marco Falagario and Nicola Epicoco
Appl. Sci. 2026, 16(2), 959; https://doi.org/10.3390/app16020959 (registering DOI) - 16 Jan 2026
Viewed by 27
Abstract
This paper analyzes the impact of COVID-19 on the supply chain and production, investigating countermeasures for industrial recovery. In particular, the study examines how COVID-19 has affected the raw material supply chain, production, and outages on a real case study, that is, Turkey’s [...] Read more.
This paper analyzes the impact of COVID-19 on the supply chain and production, investigating countermeasures for industrial recovery. In particular, the study examines how COVID-19 has affected the raw material supply chain, production, and outages on a real case study, that is, Turkey’s Glass-Reinforced Plastic (GRP) pipe industry. Using two- and three-way analysis of variance (ANOVA), significant negative impacts on the raw material supply chain are identified with 95% confidence. To enhance decision-making, the fuzzy q-rung orthopair set (FQROPS) and entropy-based multi-criteria decision-making (MCDM) methods are integrated in the baseline method. Specifically, ANOVA-identified factors, such as cost, supply continuity, production capacity, and risk level, are used as criteria in the MCDM analysis. Entropy determined criteria weights and FQROPS evaluate alternatives based on their proximity to the ideal solution. Findings show that significant disruptions occurred due to the pandemic. In addition, the MCDM analysis reveals that pre-pandemic conditions for key materials, such as fiberglass and resin, were significantly more favorable in terms of cost, supply continuity, production capacity, and risk levels. This integrated approach provides strategic insights for managing supply chains and production in the GRP pipe industry during and after pandemic events. Full article
19 pages, 5077 KB  
Article
The Influence of Microstructure on Decisions Regarding Repurposing Natural Gas Pipelines for Hydrogen Service
by Jonathan Parker, Mike Gagliano and Eeva Griscom
Metals 2026, 16(1), 103; https://doi.org/10.3390/met16010103 - 16 Jan 2026
Viewed by 32
Abstract
Empirical approaches alone have significant limitations for accurate estimation of the fracture toughness of welds in gas line pipes being considered for repurposing to hydrogen service. These problems arise because most samples machined from ex-service welds contain a range of microstructures. The different [...] Read more.
Empirical approaches alone have significant limitations for accurate estimation of the fracture toughness of welds in gas line pipes being considered for repurposing to hydrogen service. These problems arise because most samples machined from ex-service welds contain a range of microstructures. The different microstructural zones have different properties and even when compact tension samples with side grooves are utilized, it is unlikely that plane strain conditions are achieved during laboratory testing. Thus, the measured toughness may not be directly relevant to assessing in-service performance. The present research has been undertaken as part of an integrated series of projects seeking to define a robust protocol for assessing the damage tolerance of piping used for the transmission of hydrogen, especially when considering repurposing existing infrastructure. The key work described in this paper involved establishing heat treatments which produced microstructures relevant to the constituents found in ex-service welds of X46 type steel. Following comprehensive microstructural characterization, these heat treatments were applied to steel sections which allowed for the fabrication of standard compact tension specimens, which were subsequently tested in hydrogen to measure fracture toughness. The results obtained showed that the fracture behavior varied for different microstructures. To identify the influence that hydrogen gas has on the performance of pipeline steels, it is important to assess microstructures relevant to the welds present, as testing only on base metal may not provide conservative information. However, the results from well-planned and carefully executed programs can be used to identify the relative performance in hydrogen. The data can also be used as critical input to models which form part of an integrated approach to structural integrity assessment. Full article
Show Figures

Figure 1

27 pages, 11232 KB  
Article
Aerokinesis: An IoT-Based Vision-Driven Gesture Control System for Quadcopter Navigation Using Deep Learning and ROS2
by Sergei Kondratev, Yulia Dyrchenkova, Georgiy Nikitin, Leonid Voskov, Vladimir Pikalov and Victor Meshcheryakov
Technologies 2026, 14(1), 69; https://doi.org/10.3390/technologies14010069 - 16 Jan 2026
Viewed by 27
Abstract
This paper presents Aerokinesis, an IoT-based software–hardware system for intuitive gesture-driven control of quadcopter unmanned aerial vehicles (UAVs), developed within the Robot Operating System 2 (ROS2) framework. The proposed system addresses the challenge of providing an accessible human–drone interaction interface for operators in [...] Read more.
This paper presents Aerokinesis, an IoT-based software–hardware system for intuitive gesture-driven control of quadcopter unmanned aerial vehicles (UAVs), developed within the Robot Operating System 2 (ROS2) framework. The proposed system addresses the challenge of providing an accessible human–drone interaction interface for operators in scenarios where traditional remote controllers are impractical or unavailable. The architecture comprises two hierarchical control levels: (1) high-level discrete command control utilizing a fully connected neural network classifier for static gesture recognition, and (2) low-level continuous flight control based on three-dimensional hand keypoint analysis from a depth camera. The gesture classification module achieves an accuracy exceeding 99% using a multi-layer perceptron trained on MediaPipe-extracted hand landmarks. For continuous control, we propose a novel approach that computes Euler angles (roll, pitch, yaw) and throttle from 3D hand pose estimation, enabling intuitive four-degree-of-freedom quadcopter manipulation. A hybrid signal filtering pipeline ensures robust control signal generation while maintaining real-time responsiveness. Comparative user studies demonstrate that gesture-based control reduces task completion time by 52.6% for beginners compared to conventional remote controllers. The results confirm the viability of vision-based gesture interfaces for IoT-enabled UAV applications. Full article
(This article belongs to the Section Information and Communication Technologies)
Show Figures

Figure 1

21 pages, 4532 KB  
Article
Clarifying the Tip Resistance Mechanism of Open-Ended Steel Pipe Piles: A Fundamental Evaluation Under Partially Plugged Conditions
by Kei Katayama and Takashi Matsushima
Geotechnics 2026, 6(1), 9; https://doi.org/10.3390/geotechnics6010009 - 16 Jan 2026
Viewed by 37
Abstract
This study aims to investigate the tip resistance mechanism of open-ended steel pipe piles under partially plugged conditions by decomposing the load-sharing contribution of the ring zone and the internal soil core. A virtual static loading test was performed using the two-dimensional discrete [...] Read more.
This study aims to investigate the tip resistance mechanism of open-ended steel pipe piles under partially plugged conditions by decomposing the load-sharing contribution of the ring zone and the internal soil core. A virtual static loading test was performed using the two-dimensional discrete element method (2D-DEM). Note that the findings of this study were obtained within the range of the 2D-DEM analysis conditions and do not intend to directly reproduce the three-dimensional arching mechanism or to establish equivalence between 2D and 3D responses. Quasi-static conditions were ensured by identifying loading parameters such that the energy residual remained ≤5% during driving, rest, and static loading phases, and the sensitivity criterion |Δq_b|/q_b ≤ 3% was satisfied when the loading rate was halved or doubled. The primary evaluation range of static loading was set to s/D = 0.1 (10% D), corresponding to the displacement criterion for confirming the tip resistance in the Japanese design specifications for highway bridges. For reference, the post-peak mechanism was additionally tracked up to s/D = 0.2 (20% D). Within a fixed evaluation window located immediately beneath the pile tip, high-contact-force (HCF) points were binarized using the threshold τ = μ + σ, and their occupancy ratio φ and normalized force intensity I* were calculated separately for the ring and core regions. A density-based contribution index (“K-density share”) was defined by combining “strength × area” and normalizing by the geometric width. The results suggest that, for the sand conditions and particle-scale ratios examined (D/d_50 = 25–100), the ring zone tends to carry on the order of 85–90% of the tip resistance within the observed cases up to the ultimate state. Even at high plugging ratios (CRs), the internal soil core gradually increases its occupancy and intensity with settlement; however, high-contact-force struts beneath the ring remain active, and it is suggested that the ring-dominant load-transfer mechanism is generally preserved. In the post-peak plastic regime, the K-density share remains around 60%, indicating that the internal core plays a secondary, confining role rather than becoming dominant. These findings suggest that the conventional plug/unplug classification based on PLR can be supplemented by a combined use of plugging ratio CR (a kinematic indicator) and the ring contribution index (K-density share), potentially enabling a continuous interpretation of plugged and unplugged behaviors and contributing to the establishment of a design backbone for tip resistance evaluation. Calibration of design coefficients, scale regression, and mapping to practical indices such as N-values will be addressed in part II of this study. (Note: “Contribution” in this study refers to the HCF-based density contribution index K-density share, not the reaction–force ratio.) Full article
Show Figures

Figure 1

27 pages, 6365 KB  
Article
Lessons Learned and Proposed Solutions for Drilling Wells in the San Juan Basin for a CO2-Storage Project
by Van Tang Nguyen, William Ampomah, Tan Nguyen, Sai Wang, Duc Pham, Hao Duong and Hoa Vo
Appl. Sci. 2026, 16(2), 937; https://doi.org/10.3390/app16020937 - 16 Jan 2026
Viewed by 59
Abstract
This paper synthesizes lessons learned from drilling a CO2-storage stratigraphic well in the San Juan Basin (New Mexico, USA) to clarify drivers of operational incidents and to inform future well planning. A literature review of regional drilling problems was combined with [...] Read more.
This paper synthesizes lessons learned from drilling a CO2-storage stratigraphic well in the San Juan Basin (New Mexico, USA) to clarify drivers of operational incidents and to inform future well planning. A literature review of regional drilling problems was combined with pre-drill engineering based on offset-well history and a geomechanical model, including casing, cementing, and hydraulics designs developed in commercial software; these designs were compared with field execution to extract incident-specific lessons. The most frequent problems observed are lost circulation, stuck pipe, and poor control of drilling parameters, consistent with complex lithology and reservoir pressure depletion that reduces fracture pressure below anticipated values. Based on the lessons learned, three mitigations are proposed as follows: (1) update the geomechanical model with the latest pore, fracture pressure estimates; (2) apply underbalanced drilling using nitrified mud by injecting nitrogen through a parasite string while drilling intermediate and production sections; and (3) maintain operating limits (weight on bit < 44.5 kN, top-drive rotation < 45 rpm, and pump rate < 1.32 m3/min) to improve fluid returns through low-fracture-pressure intervals. Simulation results support the applicability of the proposed solutions. Full article
(This article belongs to the Section Energy Science and Technology)
Show Figures

Figure 1

20 pages, 2472 KB  
Article
Filtration System for Reducing CO2 Concentration from Combustion Gases of Used Spark Ignition Engines
by Radu Tarulescu, Stelian Tarulescu, Razvan Gabriel Boboc and Mircea Nastasoiu
Vehicles 2026, 8(1), 19; https://doi.org/10.3390/vehicles8010019 - 15 Jan 2026
Viewed by 44
Abstract
This research paper proposes a solution to reduce CO2 emissions from a spark ignition engine’s exhaust gases by installing a filtration system on the vehicle’s exhaust pipe. The analyzed filtration system was not patented and was in the testing stage. Tests will [...] Read more.
This research paper proposes a solution to reduce CO2 emissions from a spark ignition engine’s exhaust gases by installing a filtration system on the vehicle’s exhaust pipe. The analyzed filtration system was not patented and was in the testing stage. Tests will also be carried out on the stand. The tested system can be used to reduce CO2 levels in automotive exhaust gases and for static applications (generators, internal combustion engine test stands, fossil fuel power generation systems). The need for a system to reduce pollutant emissions emerged with the average age in Europe. In proper conditions, some vehicles can use this type of filtration system. The tested vehicle is a vehicle (produced in 2009) equipped with a 75HP Spark Ignition Engine. The CO2 filtration system consists of a container containing a reactive aqueous solution comprising water, CaO, and MgO. Four tests were performed: the first without a filter, and the other three with the filter placed at different distances from the exhaust pipe end to the reactive solution surface. The tests consisted of evaluating the exhaust gases from the cold start of the engine and running (idle engine speed) until the engine reached the optimal operating temperature. The test procedure involved saving the data collected by the analyzer every 10 s for each of the four tests performed (the duration of a test was 1050 s). The first test (No. 1) was performed without the use of the filtering system. Tests 2, 3, and 4 were carried out using the filtering system and changing the distance between the exhaust gases’ outlet point and the surface of the aqueous substance. All tests were carried out under similar conditions. Data specific to the test of engines were collected—emissions (CO2, CO, NOx), ambient temperature, and exhaust temperature. The tests were analyzed and compared, and the highest CO2 reductions without increases in CO or NOx were observed in Tests 3 and 4. Based on the detailed analysis of the values obtained from the four tests, the system was efficient. The tests will continue on experimental engines from test stands, to develop a prototype filter for primarily static applications with internal combustion engines: test stands for engines and generators, and, after homologation, directly on vehicles. The paper aims to partially solve an important problem—reducing the level of CO2 from the exhaust gases. The presented solution may have applicability in the automotive industry but is also feasible for static applications. Another objective is to reduce emissions from older vehicles, which are widespread in certain regions of Europe and worldwide. Full article
(This article belongs to the Special Issue Intelligent Mobility and Sustainable Automotive Technologies)
Show Figures

Figure 1

22 pages, 1941 KB  
Article
Fluid Domain Characteristics and Separation Performance of an Eccentric Pipe Separator Handling a Crude Oil–Water Mixture
by Qi-lin Wu, Zheng-jia Ou, Ye Liu, Shuo Liu, Meng Yang and Jing-Yu Xu
Separations 2026, 13(1), 33; https://doi.org/10.3390/separations13010033 - 15 Jan 2026
Viewed by 69
Abstract
This study presents an eccentric pipe separator (EPS) designed according to the shallow pool principle and Stokes’ law as a compact alternative to conventional gravitational tank separators for offshore platforms. To investigate the internal oil–water flow characteristics and separation performance of the EPS, [...] Read more.
This study presents an eccentric pipe separator (EPS) designed according to the shallow pool principle and Stokes’ law as a compact alternative to conventional gravitational tank separators for offshore platforms. To investigate the internal oil–water flow characteristics and separation performance of the EPS, both field experiments with crude oil on an offshore platform and computational fluid dynamics (CFD) simulations were conducted, guided by dimensional analysis. Crude oil volume fractions were measured using a Coriolis mass flow meter and the fluorescence method. The CFD analysis employed an Eulerian multiphase model coupled with the renormalization group (RNG) k-ε turbulence model, validated against experimental data. Under the operating conditions examined, the separated water contained less than 50 mg/L of oil, while the separated crude oil achieved a purity of 98%, corresponding to a separation efficiency of 97%. The split ratios between the oil and upper outlets were found to strongly influence the phase distribution, velocity field, and pressure distribution within the EPS. Higher split ratios caused crude oil to accumulate in the upper core region and annulus. Maximum separation efficiency occurred when the combined split ratio of the upper and oil outlets matched the inlet oil volume fraction. Excessively high split ratios led to excessive water entrainment in the separated oil, whereas excessively low ratios resulted in excessive oil entrainment in the separated water. Crude oil density and inlet velocity exhibited an inverse relationship with separation efficiency; as these parameters increased, reduced droplet settling diminished optimal efficiency. In contrast, crude oil viscosity showed a positive correlation with the pressure drop between the inlet and oil outlet. Overall, the EPS demonstrates a viable, space-efficient alternative for oil–water separation in offshore oil production. Full article
(This article belongs to the Section Separation Engineering)
30 pages, 5428 KB  
Article
Numerical Study on Minor Leak for Pressure-Driven Flow in Straight Pipe and 90° Elbow Transporting Different Media
by Liang-Huai Tong, Yuan-Fan Zhu, Hui-Fan Huang, Yan-Juan Zhao and Yu-Liang Zhang
Processes 2026, 14(2), 304; https://doi.org/10.3390/pr14020304 - 15 Jan 2026
Viewed by 81
Abstract
Pipeline leakage is a common issue in many pressurized pipeline systems, with significant hazards, making it a current research hotspot. To reveal the fundamental characteristics of leakage in straight pipelines and 90° elbows transporting different media and thereby predict leakage locations, this paper [...] Read more.
Pipeline leakage is a common issue in many pressurized pipeline systems, with significant hazards, making it a current research hotspot. To reveal the fundamental characteristics of leakage in straight pipelines and 90° elbows transporting different media and thereby predict leakage locations, this paper conducts numerical calculations of the internal flow, while also predicting the pipeline leakage location monitoring model. The study finds that under air medium conditions, the nonlinear function model demonstrates excellent prediction accuracy, with R2 > 0.99 for the water3 condition. Under water medium conditions, the model’s fitting performance gradually weakens with increasing inlet pressure, with R2 dropping to 0.77. For a bent pipe, when air is used as the medium, the pressure peak at the large bend angle increases significantly under high inlet pressure. In contrast, when water is the medium, the local pressure reconstruction effect in the bent pipe exhibits a linear strengthening trend as the inlet pressure increases. Full article
(This article belongs to the Section Manufacturing Processes and Systems)
Show Figures

Figure 1

22 pages, 10247 KB  
Article
Reconstructing Sewer Network Topology Using Graph Theory
by Batoul Haydar, Nanée Chahinian and Claude Pasquier
Water 2026, 18(2), 222; https://doi.org/10.3390/w18020222 - 14 Jan 2026
Viewed by 93
Abstract
To manage sewer networks, reliable data is needed, which is often challenging. This study proposes a novel methodology to reconstruct the sewer network topology using graph theory. Two core procedures—flow adjustment and edge addition—re-establish hydraulically consistent flow paths and restore connectivity in disconnected [...] Read more.
To manage sewer networks, reliable data is needed, which is often challenging. This study proposes a novel methodology to reconstruct the sewer network topology using graph theory. Two core procedures—flow adjustment and edge addition—re-establish hydraulically consistent flow paths and restore connectivity in disconnected portions of the network by reversing and adding links. The proposed approach operates at the pipe level, repairing directional reachability. It leverages only the existing network topology to reconstruct connectivity, guided by the principle that every node must have a downstream path to an outlet. The methodology is first applied to reconstruct the sewer network of Montpellier Metropolis in the South of France. Then it is validated by deliberately removing and reversing edges and applying the algorithms to test the methodology’s capability in recovering the correct topology. Both methods performed well individually, especially at lower percentages of reversal (1%) and removal (1%), with a correctness of 0.99 for flow adjustment and 0.8 for edge addition. Although the results were poorer when combining the methods and increasing data degradation—particularly at 10% reversal and 10% removal (correctness of 0.64)—the methodology continued to produce a functionally consistent and logically coherent network, highlighting its robustness given the absence of supporting attribute data. Full article
(This article belongs to the Section Urban Water Management)
Show Figures

Figure 1

9 pages, 1618 KB  
Proceeding Paper
Water Network Loss Control System
by Silvie Drabinová, Petra Malíková and Petr Černoch
Eng. Proc. 2025, 116(1), 42; https://doi.org/10.3390/engproc2025116042 - 13 Jan 2026
Viewed by 78
Abstract
This study addresses the issue of water losses in drinking water distribution networks, a problem exacerbated by climate change, drought, and aging infrastructure. The research was conducted in the operational area of Frýdek-Místek, managed by Severomoravské vodovody a kanalizace Ostrava a.s., covering 59 [...] Read more.
This study addresses the issue of water losses in drinking water distribution networks, a problem exacerbated by climate change, drought, and aging infrastructure. The research was conducted in the operational area of Frýdek-Místek, managed by Severomoravské vodovody a kanalizace Ostrava a.s., covering 59 municipalities, 1024.4 km of pipeline, and more than 32,594 service connections. The objective was to evaluate the impact of implementing the “Leakage monitor” software system (ver. 19-11-2024), which focuses on continuous monitoring of minimum night flows (Qmin), on the reduction in Non-Revenue Water (NRW). The system, deployed since 2019, enables automated data collection, remote transmission, and analysis for timely leak detection and localization using acoustic and correlator methods within district metered areas. The results confirmed a reduction in NRW from 14.6% in 2019 to 11.5% in 2024. The implementation of a “Leak monitor” has proven to be an effective tool for improving operational efficiency and ensuring both economic and environmental sustainability of water supply systems. Full article
Show Figures

Figure 1

18 pages, 6383 KB  
Article
Study on Combustion Characteristics and Ignition Performance of a Reverse Pulverized-Coal Flame Stabilizer
by Zhenyu Liu, Mingshuang Cui, Nan Jia and Fang Niu
Energies 2026, 19(2), 393; https://doi.org/10.3390/en19020393 - 13 Jan 2026
Viewed by 108
Abstract
The rapid growth in the installation of new energy poses challenges to the stability of the power grid due to its volatility and intermittency. Coal-fired power plants have come to play an important role in flexible peak power regulation. Considering that the burner [...] Read more.
The rapid growth in the installation of new energy poses challenges to the stability of the power grid due to its volatility and intermittency. Coal-fired power plants have come to play an important role in flexible peak power regulation. Considering that the burner is the core of a pulverized coal boiler, this study proposes the application of reverse injection pulverized coal combustion technology to power plant burners to achieve better ignition and combustion stability. The results of numerical simulations combined with experimental verification indicate that for a single ignition stabilizer, recirculation zones can be formed on both sides of the primary pulverized coal pipe at the front cone, and a high-temperature flame is ejected at high speed at the outlet. As the secondary air temperature increases from 373 K to 533 K, the axial length of the high-temperature recirculation zone increases, corresponding to an increase in the average outlet flame temperature from 1510 K to 1672 K. Under different loads of the main pulverized coal burner, the high-temperature flame ejected from the stabilizer can quickly encounter and mix with the surrounding main pulverized coal airflow, thereby igniting it rapidly. This process establishes a high-temperature flame zone within the two-stage combustion chamber, demonstrating strong adaptability to load fluctuations. As the burner load decreases, the outlet airflow velocity decreases significantly and the high-speed zone area shrinks, and the two adjacent high-temperature zones initially formed at the outlet gradually merge into a larger high-temperature zone. Simultaneously, the upward deflection of the jet at the outlet weakens. Full article
(This article belongs to the Special Issue Optimization of Efficient Clean Combustion Technology: 2nd Edition)
Show Figures

Figure 1

27 pages, 80350 KB  
Article
Pose-Based Static Sign Language Recognition with Deep Learning for Turkish, Arabic, and American Sign Languages
by Rıdvan Yayla, Hakan Üçgün and Mahmud Abbas
Sensors 2026, 26(2), 524; https://doi.org/10.3390/s26020524 - 13 Jan 2026
Viewed by 157
Abstract
Advancements in artificial intelligence have significantly enhanced communication for individuals with hearing impairments. This study presents a robust cross-lingual Sign Language Recognition (SLR) framework for Turkish, American English, and Arabic sign languages. The system utilizes the lightweight MediaPipe library for efficient hand landmark [...] Read more.
Advancements in artificial intelligence have significantly enhanced communication for individuals with hearing impairments. This study presents a robust cross-lingual Sign Language Recognition (SLR) framework for Turkish, American English, and Arabic sign languages. The system utilizes the lightweight MediaPipe library for efficient hand landmark extraction, ensuring stable and consistent feature representation across diverse linguistic contexts. Datasets were meticulously constructed from nine public-domain sources (four Arabic, three American, and two Turkish). The final training data comprises curated image datasets, with frames for each language carefully selected from varying angles and distances to ensure high diversity. A comprehensive comparative evaluation was conducted across three state-of-the-art deep learning architectures—ConvNeXt (CNN-based), Swin Transformer (ViT-based), and Vision Mamba (SSM-based)—all applied to identical feature sets. The evaluation demonstrates the superior performance of contemporary vision Transformers and state space models in capturing subtle spatial cues across diverse sign languages. Our approach provides a comparative analysis of model generalization capabilities across three distinct sign languages, offering valuable insights for model selection in pose-based SLR systems. Full article
(This article belongs to the Special Issue Sensor Systems for Gesture Recognition (3rd Edition))
Show Figures

Figure 1

21 pages, 4447 KB  
Article
Numerical Investigation of a Multi-Year Sand-Based Thermal Energy Storage System for Building Space Heating Application
by Sandeep Bandarwadkar and Tadas Zdankus
Buildings 2026, 16(2), 321; https://doi.org/10.3390/buildings16020321 - 12 Jan 2026
Viewed by 102
Abstract
Residential space heating in Northern Europe requires long-duration thermal storage to align summer solar gains with winter heating demand. This study investigates a compact sand-based seasonal thermal energy storage integrated with flat-plate solar collectors for an A+ class single-family house in Kaunas, Lithuania. [...] Read more.
Residential space heating in Northern Europe requires long-duration thermal storage to align summer solar gains with winter heating demand. This study investigates a compact sand-based seasonal thermal energy storage integrated with flat-plate solar collectors for an A+ class single-family house in Kaunas, Lithuania. An iterative co-design couples collector sizing with the seasonal charging target and a 3D COMSOL Multiphysics model of a 300 m3 sand-filled, phenolic foam-insulated system, with a 1D conjugate model of a copper pipe heat-exchanger network. The system was charged from March to September and discharged from October to February under measured-weather boundary conditions across three consecutive annual cycles. During the first year, the storage supplied the entire winter heating demand, though 35.2% of the input energy was lost through conduction, resulting in an end-of-cycle average sand temperature slightly below the initial state. In subsequent years, both the peak sand temperature and the residual end-of-cycle temperature increased by 3.7 °C and 3.2 °C, respectively, by the third year, indicating cumulative thermal recovery and improved retention. Meanwhile, the peak conductive losses rate decreased by 98 W, and cumulative annual losses decreased by 781.4 kWh in the third year, with an average annual reduction of 4.15%. These results highlight the progressive self-conditioning of the surrounding soil and demonstrate that a low-cost, sand-based storage system can sustain a complete seasonal heating supply with declining losses, offering a robust and scalable approach for residential building heating applications. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Figure 1

24 pages, 3728 KB  
Article
Experimental Evaluation of Impact Loading of RFID Tags Embedded in a Pipe Conveyor Belt and Design of an Optimal Antenna Configuration
by Daniela Marasova, Miriam Andrejiova, Anna Grincova and Daniela Marasova
Appl. Sci. 2026, 16(2), 777; https://doi.org/10.3390/app16020777 - 12 Jan 2026
Viewed by 102
Abstract
Monitoring the technical condition of conveyor belts is essential for the reliable and safe operation of pipe belt conveyors. Integrating passive UHF RFID tags directly into the belt structure enables continuous monitoring of belt circulation, elongation, and splice condition without interrupting operation. This [...] Read more.
Monitoring the technical condition of conveyor belts is essential for the reliable and safe operation of pipe belt conveyors. Integrating passive UHF RFID tags directly into the belt structure enables continuous monitoring of belt circulation, elongation, and splice condition without interrupting operation. This study aimed to verify the technical feasibility of such an approach, optimize the RFID system architecture, and experimentally evaluate the impact resistance of tags vulcanized into a rubber–textile conveyor belt. A multicriteria decision-making approach (AHP and TOPSIS) was used to select a suitable UHF antenna and mounting system for the experimental pipe conveyor TMEL, resulting in the choice of a circularly polarized Alien ALR-8698 patch antenna and a fully adjustable portal-type holder. Impact tests on an S 250/2 RA belt with integrated RFID tags showed that all tags remained functional up to complete mechanical failure of the specimens, even under direct impact, with maximum impact forces of 6–12 kN depending on specimen width. The integration of RFID tags did not introduce a critical weakening of the load-bearing belt structure, confirming that RFID is a robust and suitable complement for intelligent condition monitoring of pipe conveyors. Full article
Show Figures

Figure 1

Back to TopTop