Chemical Characterization of an ARDUINO® Board and Its Surface Mount Devices for the Evaluation of Their Intrinsic Economic Value
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussions
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ning, C.; Lin, C.S.K.; Hui, D.C.W.; McKay, G. Waste Printed Circuit Board (PCB) Recycling Techniques. Top. Curr. Chem. 2017, 375, 43. [Google Scholar] [CrossRef] [PubMed]
- Cadence PCB Solutions Identifying Electronic Components on a Circuit Board. Available online: https://resources.pcb.cadence.com/blog/2023-identifying-electronic-components-on-a-circuit-board (accessed on 17 June 2023).
- European Commission. Study on the Critical Raw Materials for the EU; European Commission: Brussels, Belgium, 2023; ISBN 9789268004135.
- Romano, P.; Melchiorre, E.; Vegliò, F. ASPEN PLUS Predictive Simulation of Printed Circuit Boards Pyrolysis and Steam Gasification for Organic Fraction Valorization. Waste 2023, 1, 281–292. [Google Scholar] [CrossRef]
- Korf, N.; Løvik, A.N.; Figi, R.; Schreiner, C.; Kuntz, C.; Mählitz, P.M.; Rösslein, M.; Wäger, P.; Rotter, V.S. Multi-element chemical analysis of printed circuit boards—Challenges and pitfalls. Waste Manag. 2019, 92, 124–136. [Google Scholar] [CrossRef] [PubMed]
- NextPCB FR-1 PCB|Difference Between FR-1, FR-2, FR-3 and FR-4 PCB. Available online: https://www.nextpcb.com/blog/fr-1-pcb (accessed on 1 April 2023).
- Lazar, S.T.; Kolibaba, T.J.; Grunlan, J.C. Flame-retardant surface treatments. Nat. Rev. Mater. 2020, 5, 259–275. [Google Scholar] [CrossRef]
- Bizzo, W.A.; Figueiredo, R.A.; De Andrade, V.F. Characterization of printed circuit boards for metal and energy recovery after milling and mechanical separation. Materials 2014, 7, 4555–4566. [Google Scholar] [CrossRef] [PubMed]
- Bidini, G.; Fantozzi, F.; Bartocci, P.; D’Alessandro, B.; D’Amico, M.; Laranci, P.; Scozza, E.; Zagaroli, M. Recovery of precious metals from scrap printed circuit boards through pyrolysis. J. Anal. Appl. Pyrolysis 2015, 111, 140–147. [Google Scholar] [CrossRef]
- Terena, L.M.; Neto, A.F.D.A.; Gimenes, M.L.; Vieira, M.G.A. Characterisation of printed circuit boards of mobile phones discarded in Brazil. Chem. Eng. Trans. 2017, 56, 1945–1950. [Google Scholar] [CrossRef]
- Annamalai, M.; Gurumurthy, K. Characterization of end-of-life mobile phone printed circuit boards for its elemental composition and beneficiation analysis. J. Air Waste Manag. Assoc. 2021, 71, 315–327. [Google Scholar] [CrossRef]
- Van Yken, J.; Cheng, K.Y.; Boxall, N.J.; Sheedy, C.; Nikoloski, A.N.; Moheimani, N.R.; Kaksonen, A.H. A comparison of methods for the characterisation of waste-printed circuit boards. Metals 2021, 11, 1935. [Google Scholar] [CrossRef]
- Anić-Vučinić, A.; Bedeković, G.; Šarc, R.; Premur, V. Determining metal content in waste printed circuit boards and their electronic components. J. Sustain. Dev. Energy Water Environ. Syst. 2020, 8, 590–602. [Google Scholar] [CrossRef]
- Ippolito, N.M.; Birloaga, I.; Ferella, F.; Centofanti, M.; Vegliò, F. Preliminary study on gold recovery from high grade e-waste by thiourea leaching and electrowinning. Minerals 2021, 11, 235. [Google Scholar] [CrossRef]
- Ippolito, N.M.; Medici, F.; Pietrelli, L.; Piga, L. Effect of acid leaching pre-treatment on gold extraction from printed circuit boards of spent mobile phones. Materials 2021, 14, 362. [Google Scholar] [CrossRef] [PubMed]
- Birloaga, I.; Vegliò, F. An innovative hybrid hydrometallurgical approach for precious metals recovery from secondary resources. J. Environ. Manag. 2022, 307, 114567. [Google Scholar] [CrossRef]
- Mishra, G.; Jha, R.; Rao, M.D.; Meshram, A.; Singh, K.K. Recovery of silver from waste printed circuit boards (WPCBs) through hydrometallurgical route: A review. Environ. Chall. 2021, 4, 100073. [Google Scholar] [CrossRef]
- Xu, Y.; Li, J.; Liu, L. Current Status and Future Perspective of Recycling Copper by Hydrometallurgy from Waste Printed Circuit Boards. Procedia Environ. Sci. 2016, 31, 162–170. [Google Scholar] [CrossRef]
- Udayakumar, S.; Razak, M.I.B.A.; Ismail, S. Recovering valuable metals from Waste Printed Circuit Boards (WPCB): A short review. Mater. Today Proc. 2022, 66, 3062–3070. [Google Scholar] [CrossRef]
- Bae, H.; Kim, Y. Technologies of lithium recycling from waste lithium ion batteries: A review. Mater. Adv. 2021, 2, 3234–3250. [Google Scholar] [CrossRef]
- EUR-Lex Directive 2012/19/EU of the European Parliament and of the Council of 4 July 2012 on Waste Electrical and Electronic Equipment (WEEE). Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32012L0019&from=EN (accessed on 5 April 2023).
- Cerecedo-Sáenz, E.; Cárdenas-Reyes, E.A.; Rojas-Calva, A.H.; Reyes-Valderrama, M.I.; Rodríguez-Lugo, V.; Toro, N.; Gálvez, E.; Acevedo-Sandoval, O.A.; Hernández-ávila, J.; Salinas-Rodríguez, E. Use of the O2-thiosemicarbazide system, for the leaching of: Gold and copper from WEEE & silver contained in mining wastes. Materials 2021, 14, 7329. [Google Scholar] [CrossRef]
- Salinas-Rodríguez, E.; Hernández-ávila, J.; Cerecedo-Sáenz, E.; Arenas-Flores, A.; Veloz-Rodríguez, M.A.; Toro, N.; Gutiérrez-Amador, M.D.P.; Acevedo-Sandoval, O.A. Leaching of Copper Contained in Waste Printed Circuit Boards, Using the Thiosulfate—Oxygen System: A Kinetic Approach. Materials 2022, 15, 2354. [Google Scholar] [CrossRef]
- Jiang, T.; Zhang, Y.Z.; Yang, Y.B.; Huang, Z.C. Influence of copper minerals on cyanide leaching of gold. J. Cent. South Univ. Technol. 2001, 8, 24–28. [Google Scholar] [CrossRef]
- Oraby, E.A.; Eksteen, J.J. The selective leaching of copper from a gold-copper concentrate in glycine solutions. Hydrometallurgy 2014, 150, 14–19. [Google Scholar] [CrossRef]
- Vermeşan, H.; Tiuc, A.E.; Purcar, M. Advanced recovery techniques for waste materials from IT and telecommunication equipment printed circuit boards. Sustainability 2020, 12, 74. [Google Scholar] [CrossRef]
- Wang, X.; Gaustad, G.; Babbitt, C.W.; Bailey, C.; Ganter, M.J.; Landi, B.J. Economic and environmental characterization of an evolving Li-ion battery waste stream. J. Environ. Manag. 2014, 135, 126–134. [Google Scholar] [CrossRef] [PubMed]
- Arduino S.r.l. Available online: https://store.arduino.cc/products/arduino-mega-2560-rev3 (accessed on 5 April 2023).
- Trading Economics. Available online: https://tradingeconomics.com/ (accessed on 2 April 2023).
FR-1 | FR-2 | FR-3 | FR-4 | |
---|---|---|---|---|
Materials | Paper and phenol-formaldehyde resin. | Paper with a plasticized phenol formaldehyde resin. | Cotton linter/alpha cellulose paper with epoxy resin formulation. | Woven/Unwoven fiber-glass cloth with epoxy resin. |
Glass Transition Temperature | 130 °C | 130 °C | 130 °C | 140–170 °C |
Chemical resistance | Low | Low | Medium | High |
Base Metals Content (wt%) | Precious Metals Content (ppm) | ||
---|---|---|---|
Cu | 3–40 | Au | 250–2050 |
Al | 0.2–14 | Ag | 110–4500 |
Sn | 0.6–8.8 | Pd | 50–4000 |
Fe | 1.2–8 | Pt | 5–30 |
Pb | 1–4.2 | Co | 1–4000 |
Zn | 0.04–6 | ||
Ni | 0–5.4 |
N. | Name | Image | Method |
---|---|---|---|
1 | Board | Size reduction + AR | |
2 | External pin | AR | |
3 | USB-B port | AR | |
4 | DC power jack | AR | |
5 | Internal pin | AR | |
6 | ICC 1 | Size reduction + AR | |
7 | Capacitors | Size reduction + AR | |
8 | Q.C. Oscillator | AR | |
9 | Push button | AR | |
10 | Voltage regulator | Size reduction + AR | |
11 | M7 Diode | AR | |
12 | Fuse | AR | |
13 | Led | AR | |
14 | MLCC | Size reduction, Calcination at 350 °C with KOH + DL | |
15 | Transistor | AR | |
16 | Plastic cover | - | |
17 | Other 2 | - | AR |
Metal | q (EUR/kg) | Metal | q (EUR/kg) |
---|---|---|---|
Au | 58,251.97 € | Si | 9.00 € |
Pd | 43,196.81 € | Cu | 8.29 € |
Pt | 29,940.00 € | Ti | 7.53 € |
Ag | 712.51 € | Mg | 2.82 € |
Ga | 535.43 € | Zn | 2.68 € |
Ba | 347.28 € | Al | 2.23 € |
Co | 27.34 € | Fe | 0.23 € |
Sn | 23.84 € | Mn | 0.004 € |
Ni | 21.76 € |
Ag | Al | Au | Ba | Co | Cu | Fe | Ga | Mg | Mn | Ni | Pd | Pt | Si | Sn | Ti | Zn | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Board | x | x | x | x | x | x | x | x | x | x | x | x | x | ||||
External pin | x | x | x | x | x | x | x | ||||||||||
USB-B port | x | x | x | x | x | x | x | ||||||||||
DC power jack | x | x | x | x | x | x | x | x | x | x | |||||||
Internal pin | x | x | x | x | x | x | x | ||||||||||
ICC | x | x | x | x | x | x | x | x | x | ||||||||
Capacitors | x | x | x | x | x | x | x | x | x | ||||||||
Q.C. Oscillator | x | x | x | x | x | x | x | x | x | x | |||||||
Push button | x | x | x | x | x | x | x | x | x | x | |||||||
V. Regulator | x | x | x | x | x | x | x | x | x | ||||||||
M7 Diode | x | x | x | x | x | x | |||||||||||
Fuse | x | x | x | x | x | x | x | x | |||||||||
Led | x | x | x | x | x | x | x | x | x | x | |||||||
MLCC | x | x | x | x | x | x | x | x | x | x | x | ||||||
Transistor | x | x | x | x | x | x | x | ||||||||||
Plastic cover | |||||||||||||||||
Other | x | x | x | x | x | x | x | x | x | x |
Weight (g) | Plastic (g) | Base Metals (wt%) | Precious Metals (ppm) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Cu | Sn | Ni | Al | Zn | Fe | Ti | Ag | Au | Pd | |||
Board | 20.251 | n.a. | 15.09 | 3.36 | - | - | 0.36 | - | - | 350 | 2 | 15 |
External pin | 7.929 | 5.505 | 56.95 | 9.56 | 1.00 | - | 25.84 | - | - | 642 | 107 | 45 |
USB-B port | 3.406 | 1.531 | 63.11 | 4.82 | 0.07 | - | 25.81 | - | - | 403 | 5 | 50 |
DC power jack | 1.329 | 0.685 | 48.57 | 7.03 | 0.24 | - | 25.53 | 19.07 | - | 811 | - | 45 |
Internal pin | 0.800 | 0.190 | 58.40 | 12.41 | 1.02 | - | 28.99 | - | - | 975 | 63 | 59 |
ICC | 0.629 | - | 28.75 | 3.19 | - | - | 0.17 | 1.67 | - | 639 | 191 | 34 |
Capacitors | 0.541 | - | 0.41 | 0.27 | - | 37.76 | 0.01 | 59.50 | - | 59 | - | - |
Q. C. Oscillator | 0.503 | - | 9.26 | 0.05 | 0.01 | - | 5.36 | 14.21 | - | 905 | - | 2 |
Push button | 0.197 | - | 13.85 | 0.87 | - | 0.05 | 7.12 | 0.60 | - | 403 | - | 18 |
V. Regulator | 0.129 | - | 42.80 | 2.96 | - | - | 0.29 | 0.02 | - | 3754 | - | 58 |
M7 Diode | 0.065 | - | 33.95 | 4.26 | - | - | 0.21 | - | - | 1374 | - | 47 |
Fuse | 0.028 | - | 38.41 | 9.38 | 0.67 | 0.49 | 0.24 | - | - | 2801 | 727 | 53 |
Led | 0.003 | - | 24.47 | 8.08 | 4.97 | 2.11 | 0.34 | 0.19 | - | 2097 | 1774 | 161 |
CMC | 0.164 | - | 9.63 | 6.07 | - | - | 0.40 | - | 15.72 | 13,335 | 104 | 162 |
Transistor | 0.093 | - | 3.46 | 5.46 | - | - | 0.04 | - | - | 2032 | 581 | - |
Plastic cover | 15.230 | 15.230 | - | - | - | - | - | - | - | - | - | - |
Other | 0.115 | - | 3.42 | 8.31 | - | - | 0.05 | - | 0.48 | 1813 | 52 | 300 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Romano, P.; Ippolito, N.M.; Vegliò, F. Chemical Characterization of an ARDUINO® Board and Its Surface Mount Devices for the Evaluation of Their Intrinsic Economic Value. Processes 2023, 11, 1911. https://doi.org/10.3390/pr11071911
Romano P, Ippolito NM, Vegliò F. Chemical Characterization of an ARDUINO® Board and Its Surface Mount Devices for the Evaluation of Their Intrinsic Economic Value. Processes. 2023; 11(7):1911. https://doi.org/10.3390/pr11071911
Chicago/Turabian StyleRomano, Pietro, Nicolò Maria Ippolito, and Francesco Vegliò. 2023. "Chemical Characterization of an ARDUINO® Board and Its Surface Mount Devices for the Evaluation of Their Intrinsic Economic Value" Processes 11, no. 7: 1911. https://doi.org/10.3390/pr11071911
APA StyleRomano, P., Ippolito, N. M., & Vegliò, F. (2023). Chemical Characterization of an ARDUINO® Board and Its Surface Mount Devices for the Evaluation of Their Intrinsic Economic Value. Processes, 11(7), 1911. https://doi.org/10.3390/pr11071911