Relation Between Neutrophil Count and Left Ventricular Ejection Fraction Following Acute Myocarditis in Adolescents: A Preliminary Study
Abstract
1. Introduction
2. Materials and Methods
Statistical Analysis
3. Results
4. Discussion
Study Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| ALT | alanine transaminase |
| AST | aspartate aminotransferase |
| BNP | brain natriuretic peptide |
| CMR | cardiac magnetic resonance |
| CMV | cytomegalovirus |
| CRP | C-reactive protein |
| EBV | Epstein–Barr virus |
| ECG | electrocardiogram |
| ECHO | echocardiography |
| ELR | eosinophil-to-lymphocyte ratio |
| Hgb | hemoglobin |
| Hct | hematocrit |
| HCV | hepatitis C virus |
| HHV-6 | human herpesvirus 6 |
| HIV | human immunodeficiency virus |
| IG | immature granulocytes |
| IVs | interventricular septum |
| LYM | lymphocytes |
| LVED | left ventricular end-diastolic diameter |
| LVEF | left ventricular ejection fraction |
| MCH | mean corpuscular hemoglobin |
| MCHC | mean corpuscular hemoglobin concentration |
| MCV | mean corpuscular volume |
| MLR | monocyte-to-lymphocyte ratio |
| MON | monocytes |
| NLR | neutrophil-to-lymphocyte ratio |
| NT-proBNP | N-terminal prohormone of brain natriuretic peptide |
| NEUTR | neutrophils |
| nsVT | non-sustained ventricular tachycardia |
| PCT | procalcitonin |
| PWd | posterior wall diameter |
| RDW | red blood cell distribution width |
| RVED | right ventricular end-diastolic diameter |
| SARS-CoV | severe acute respiratory syndrome coronavirus |
| SVPB | supraventricular premature beats |
| VPB | ventricular premature beats |
| WBC | white blood cell count |
References
- De Sarro, R.; Borrelli, N.; Pelaia, G.; Mendicino, A.; Moscatelli, S.; Leo, I.; La Vecchia, G.; Mazza, G.; Castaldo, L.; Strangio, A.; et al. How to behave with paediatric myocarditis: Imaging methods and clinical considerations. Eur. Heart J. Imaging Methods Pract. 2025, 3, qyaf025. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Law, Y.M.; Lal, A.K.; Chen, S.; Čiháková, D.; Cooper, L.T., Jr.; Deshpande, S.; Godown, J.; Grosse-Wortmann, L.; Robinson, J.D.; Towbin, J.A. American Heart Association Pediatric Heart Failure and Transplantation Committee of the Council on Lifelong Congenital Heart Disease and Heart Health in the Young and Stroke Council. Diagnosis and Management of Myocarditis in Children: A Scientific Statement from the American Heart Association. Circulation 2021, 144, e123–e135.6. [Google Scholar]
- Shams, P.; Collier, S.A. Acute Myocarditis. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2025. [Google Scholar] [PubMed]
- Ozierański, K.; Tymińska, A.; Skwarek, A.; Kruk, M.; Koń, B.; Biliński, J.; Opolski, G.; Grabowski, M. Sex Differences in Incidence, Clinical Characteristics and Outcomes in Children and Young Adults Hospitalized for Clinically Suspected Myocarditis in the Last Ten Years-Data from the MYO-PL Nationwide Database. J. Clin. Med. 2021, 10, 5502. [Google Scholar] [CrossRef]
- Ammirati, E.; Moslehi, J.J. Diagnosis and Treatment of Acute Myocarditis: A Review. JAMA 2023, 329, 1098–1113. [Google Scholar] [CrossRef] [PubMed]
- Veronese, G.; Ammirati, E.; Cipriani, M.; Frigerio, M. Fulminant myocarditis: Characteristics, treatment, and outcomes. Anatol. J. Cardiol. 2018, 19, 279–286. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Camilleri, T.; Grech, N.; Caruana, M.; Sammut, M. Acute lymphocytic myocarditis presenting as complete heart block in an adult: A case report. Egypt. Heart J. 2023, 75, 77–83. [Google Scholar] [CrossRef]
- Maron, B.J.; Udelson, J.E.; Bonow, R.O.; Nishimura, R.A.; Ackerman, M.J.; Estes, N.A., 3rd; Cooper, L.T., Jr.; Link, M.S.; Maron, M.S.; American Heart Association Electrocardiography and Arrhythmias Committee of Council on Clinical Cardiology; et al. Eligibility and Disqualification Recommendations for Competitive Athletes with Cardiovascular Abnormalities: Task Force 3: Hypertrophic Cardiomyopathy, Arrhythmogenic Right Ventricular Cardiomyopathy and Other Cardiomyopathies, and Myocarditis: A Scientific Statement from the American Heart Association and American College of Cardiology. Circulation 2015, 132, e273–e280. [Google Scholar] [CrossRef] [PubMed]
- Bejiqi, R.; Retkoceri, R.; Maloku, A.; Mustafa, A.; Bejiqi, H.; Bejiqi, R. The Diagnostic and Clinical Approach to Pediatric Myocarditis: A Review of the Current Literature. Open Access Maced. J. Med. Sci. 2019, 7, 162–173. [Google Scholar] [CrossRef]
- Martens, P.; Cooper, L.T.; Tang, W.H.W. Diagnostic Approach for Suspected Acute Myocarditis: Considerations for Standardization and Broadening Clinical Spectrum. J. Am. Heart Assoc. 2023, 12, e031454. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Maddox, T.; Januzzi, J.; Allen, L.; Breathett, K.; Brouse, S.; Butler, J.; Davis, L.L.; Fonarow, G.C.; Ibrahim, N.E.; Lindenfeld, J.; et al. 2024 ACC Expert Consensus Decision Pathway for Treatment of Heart Failure with Reduced Ejection Fraction: A Report of the American College of Cardiology Solution Set Oversight Committee. JACC 2024, 83, 1444–1488. [Google Scholar] [CrossRef]
- Maisch, B. Cardio-Immunology of Myocarditis: Focus on Immune Mechanisms and Treatment Options. Front. Cardiovasc. Med. 2019, 6, 48–65. [Google Scholar] [CrossRef]
- Sozzi, F.B.; Gherbesi, E.; Faggiano, A.; Gnan, E.; Maruccio, A.; Schiavone, M.; Iacuzio, L.; Carugo, S. Viral Myocarditis: Classification, Diagnosis, and Clinical Implications. Front. Cardiovasc. Med. 2022, 9, 908663–908679. [Google Scholar] [CrossRef] [PubMed]
- Tschöpe, C.; Ammirati, E.; Bozkurt, B.; Caforio, A.L.P.; Cooper, L.T.; Felix, S.B.; Hare, J.M.; Heidecker, B.; Heymans, S.; Hübner, N.; et al. Myocarditis and inflammatory cardiomyopathy: Current evidence and future directions. Nat. Rev. Cardiol. 2021, 18, 169–193. [Google Scholar] [CrossRef] [PubMed]
- Xiong, H.; Xia, B.; Zhu, J.; Li, B.; Huang, W. Clinical Outcomes in Pediatric Patients Hospitalized with Fulminant Myocarditis Requiring Extracorporeal Membrane Oxygenation: A Meta-analysis. Pediatr. Cardiol. 2017, 38, 209–214. [Google Scholar] [CrossRef]
- Aoyama, N.; Izumi, T.; Hiramori, K.; Isobe, M.; Kawana, M.; Hiroe, M.; Hishida, H.; Kitaura, Y.; Imaizumi, T.; Japanese Investigators of Fulminant Myocarditis. National survey of fulminant myocarditis in Japan: Therapeutic guidelines long-term prognosis of using percutaneous cardiopulmonary support for fulminant myocarditis (special report from a scientific committee). Circ. J. 2002, 66, 133–144. [Google Scholar]
- Sasko, B.; Patschan, D.; Nordbeck, P.; Seidlmayer, L.; Andresen, H.; Jänsch, M.; Bramlage, P.; Ritter, O.; Pagonas, N. Secondary Prevention of Potentially Life-Threatening Arrhythmia Using Implantable Cardioverter Defibrillators in Patients with Biopsy-Proven Viral Myocarditis and Preserved Ejection Fraction. Cardiology 2021, 146, 213–221. [Google Scholar] [CrossRef] [PubMed]
- Mirna, M.; Schmutzler, L.; Topf, A.; Hoppe, U.C.; Lichtenauer, M. Neutrophil-to-lymphocyte ratio and monocyte-to-lymphocyte ratio predict length of hospital stay in myocarditis. Sci. Rep. 2021, 11, 18101. [Google Scholar] [CrossRef]
- Nagai, T.; Inomata, T.; Kohno, T.; Sato, T.; Tada, A.; Kubo, T.; Nakamura, K.; Oyama-Manabe, N.; Ikeda, Y.; Fujino, T.; et al. Japanese Circulation Society Joint Working Group JCS2023 Guideline on the Diagnosis Treatment of Myocarditis. Circ. J. 2023, 87, 674–754. [Google Scholar] [CrossRef]
- Jasti, N.; Mn, L.R.; Pothireddy, N.K.; Sankepalli, M.R.; Jagathkar, G.M.; Pratap Singh, U. Changes and Rate of Change in Neutrophil-Lymphocyte Ratio (∆NLR) as an Early Prognostic Marker for the Severity of Outcomes in Patients with COVID-19 and Its Applicability in Other Viral and Bacterial Diseases. Cureus 2023, 15, e41774. [Google Scholar] [CrossRef]
- Mantovani, A.; Cassatella, M.A.; Costantini, C.; Jaillon, S. Neutrophils in the activation and regulation of innate and adaptive immunity. Nat. Rev. Immunol. 2011, 11, 519–531. [Google Scholar] [CrossRef]
- Nauseef, W.M.; Borregaard, N. Neutrophils at work. Nat. Immunol. 2014, 15, 602–611. [Google Scholar] [CrossRef] [PubMed]
- Lian, Y.; Lai, X.; Wu, C.; Wang, L.; Shang, J.; Zhang, H.; Jia, S.; Xing, W.; Liu, H. The roles of neutrophils in cardiovascular diseases. Front. Cardiovasc. Med. 2025, 12, 1526170. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ma, Y. Role of Neutrophils in Cardiac Injury and Repair Following Myocardial Infarction. Cells 2021, 10, 1676. [Google Scholar] [CrossRef]
- Jia, L.; Shen, Y.; Feng, W.; Mai, R.; Wang, X. Neutrophils in Myocarditis: A Focus on the Secretory and Phagocytotic Functions. Rev. Cardiovasc. Med. 2025, 26, 39207. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Carai, P.; González, L.F.; Van Bruggen, S.; Spalart, V.; De Giorgio, D.; Geuens, N.; Martinod, K.; Jones, E.A.V.; Heymans, S. Neutrophil inhibition improves acute inflammation in a murine model of viral myocarditis. Cardiovasc. Res. 2023, 118, 3331–3345. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Müller, I.; Vogl, T.; Kühl, U.; Krannich, A.; Banks, A.; Trippel, T.; Noutsias, M.; Maisel, A.S.; van Linthout, S.; Tschöpe, C. Serum alarmin S100A8/S100A9 levels and its potential role as biomarker in myocarditis. ESC Heart Fail. 2020, 7, 1442–1451. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ichimura, S.; Misaka, T.; Ogawara, R.; Tomita, Y.; Anzai, F.; Sato, Y.; Miura, S.; Yokokawa, T.; Sato, T.; Oikawa, M.; et al. Neutrophil Extracellular Traps in Myocardial Tissue Drive Cardiac Dysfunction and Adverse Outcomes in Patients with Heart Failure with Dilated Cardiomyopathy. Circ. Heart Fail. 2024, 17, e011057. [Google Scholar] [CrossRef] [PubMed]
- Cannata, A.; Segev, A.; Madaudo, C.; Bobbio, E.; Baggio, C.; Schütze, J.; Gentile, P.; Sanguineti, M.; Monzo, L.; Schettino, M.; et al. Elevated Neutrophil-to-Lymphocyte Ratio Predicts Prognosis in Acute Myocarditis. JACC Heart Fail. 2025, 13, 770–780. [Google Scholar] [CrossRef] [PubMed]
- Abdin, A.; Anker, S.D.; Butler, J.; Coats, A.J.S.; Kindermann, I.; Lainscak, M.; Lund, L.H.; Metra, M.; Mullens, W.; Rosano, G.; et al. ‘Time is prognosis’ in heart failure: Time-to-treatment initiation as a modifiable risk factor. ESC Heart Fail. 2021, 8, 4444–4453. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Arakawa, K.; Yasuda, S.; Hao, H.; Kataoka, Y.; Morii, I.; Kasahara, Y.; Kawamura, A.; Ishibashi-Ueda, H.; Miyazaki, S. Significant association between neutrophil aggregation in aspirated thrombus and myocardial damage in patients with ST-segment elevation acute myocardial infarction. Circ. J. 2009, 73, 139–144. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Urbanowicz, T.; Michalak, M.; Olasińska-Wiśniewska, A.; Rodzki, M.; Witkowska, A.; Gąsecka, A.; Buczkowski, P.; Perek, B.; Jemielity, M. Neutrophil Counts, Neutrophil-to-Lymphocyte Ratio, and Systemic Inflammatory Response Index (SIRI) Predict Mortality after Off-Pump Coronary Artery Bypass Surgery. Cells 2022, 11, 1124. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Pilati, M.; Rebonato, M.; Formigari, R.; Butera, G. Endomyocardial Biopsy in Pediatric Myocarditis and Dilated Cardiomyopathy: A Tool in Search for a Role. J. Cardiovasc. Dev. Dis. 2022, 9, 24. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Choi, D.H.; Kobayashi, Y.; Nishi, T.; Luikart, H.; Dimbil, S.; Kobashigawa, J.; Khush, K.; Fearon, W.F. Change in lymphocyte to neutrophil ratio predicts acute rejection after heart transplantation. Int. J. Cardiol. 2018, 251, 58–64. [Google Scholar] [CrossRef]
- Madaudo, C.; Segev, A.; Bobbio, E.; Baggio, C.; Schütze, J.; Gentile, P.; Sanguineti, M.; Monzo, L.; Schettino, M.; Ferone, E.; et al. Neutrophil-to-lymphocyte ratio for risk stratification in acute myocarditis across the left ventricular ejection fraction spectrum. Eur. J. Heart Fail. 2025, ahead of print. [Google Scholar] [CrossRef] [PubMed]
- Peeples, L. Understanding Kids and COVID. Proc. Natl. Acad. Sci. USA 2022, 119, e2203753119. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Murray, J.M.; Kaufmann, G.R.; Hodgkin, P.D.; Lewin, S.R.; Kelleher, A.D.; Davenport, M.P.; Zaunders, J.J. Naive T cells are maintained by thymic output in early ages but by proliferation without phenotypic change after age twenty. Immunol. Cell Biol. 2003, 81, 487–495. [Google Scholar] [CrossRef] [PubMed]
- Ammirati, E.; Frigerio, M.; Adler, E.D.; Basso, C.; Birnie, D.H.; Brambatti, M.; Friedrich, M.G.; Klingel, K.; Lehtonen, J.; Moslehi, J.J.; et al. Management of Acute Myocarditis and Chronic Inflammatory Cardiomyopathy: An Expert Consensus Document. Circ. Heart Fail. 2020, 13, e007405. [Google Scholar] [CrossRef] [PubMed]
- Lei, Z.; Cao, J.; Wu, J.; Lu, Y.; Ni, L.; Hu, X. Identification of the communal pathogenesis and immune landscape between viral myocarditis and dilated cardiomyopathy. ESC Heart Fail. 2023. ahead of print. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhang, H.; Yan, X.; Ma, S.; Yao, X.; Shi, Y.; Ping, Y.; Cao, M.; Peng, C.; Wang, S.; et al. Neutrophil infiltration and myocarditis in patients with severe COVID-19: A post-mortem study. Front. Cardiovasc. Med. 2022, 9, 1026866. [Google Scholar] [CrossRef] [PubMed]
- Caforio, A.L.; Mahon, N.J.; Mckenna, W.J. Cardiac autoantibodies to myosin and other heart-specific autoantigens in myocarditis and dilated cardiomyopathy. Autoimmunity 2001, 34, 199–204. [Google Scholar] [CrossRef] [PubMed]
- Caforio, A.L.; Mahon, N.J.; Tona, F.; McKenna, W.J. Circulating cardiac autoantibodies in dilated cardiomyopathy and myocarditis: Pathogenetic and clinical significance. Eur. J. Heart Fail. 2002, 4, 411–417. [Google Scholar] [CrossRef] [PubMed]

| Parameters | Group 1 N = 18 Unchanged LVEF | Group 2 N = 26 LVEF Improvement | p |
|---|---|---|---|
| Demographical | |||
| Sex (F (%)/M (%)) | 3 (17)/15 (83) | 4 (15)/22 (85) | 0.889 |
| Age (years) (median, (Q1–Q3)) | 15 (13–17) | 16 (14–17) | 0.561 |
| BMI (median, (Q1–Q3)) | 20 (20–25) | 23 (20–25) | 0.991 |
| Hospitalization | |||
| Days (median, (Q1–Q3)) | 9 (8–9) | 9 (7–11) | 0.726 |
| Clinical—symptoms | |||
| Chest pain (n, (%)) | 18 (100) | 26 (100) | 1.00 |
| Syncope (n, (%)) | 0 (0) | 1 (4) | 1.00 |
| Heart palpitations (n, (%)) | 1 (6) | 1 (4) | 1.00 |
| Whole blood count analysis on admission | |||
| WBC [K/uL] (median, (Q1–Q3)) | 7.2 (6.4–8.7) | 7.6 (6.7–10.4) | 0.391 |
| Hgb [g/dL] (median, (Q1–Q3)) | 13.8 (12.7–14.9) | 14.4 (13.2–15.5) | 0.330 |
| Hct [%] (median, (Q1–Q3)) | 40.1 (37.1–44.3) | 40.7 (38.8–44.4) | 0.627 |
| MCV [fl] (median, (Q1–Q3)) | 83.9 (81.4–85.7) | 82.9 (80.7–85.4) | 0.516 |
| MCH [pg] (median, (Q1–Q3)) | 29.0 (28.2–29.5) | 29.0 (28.0–29.6) | 0.933 |
| MCHC [g/dL] (median, (Q1–Q3)) | 34.3 (33.8–25.1) | 34.6 (33.9–35.4) | 0.190 |
| PLT [K/uL] (median, (Q1–Q3)) | 238.0 (188.8–262.0) | 239.0 (223.0–270.5) | 0.835 |
| RDW [fl] (median, (Q1–Q3)) | 38.7 (37.0–40.1) | 37.7 (37.0–39.7) | 0.513 |
| NEUTR# [K/uL] (median, (Q1–Q3)) | 3.9 (2.8–5.0) | 5.5 (4.4–7.9) | 0.030 * |
| MON# [K/uL] (median, (Q1–Q3)) | 0.8 (0.6–1.2) | 1.0 (0.7–1.2) | 0.446 |
| LYM# [K/uL] (median, (Q1–Q3)) | 1.9 (1.6–2.0) | 1.7 (1.5–2.3) | 0.838 |
| NLR (median, (Q1–Q3)) | 1.9 (1.5–3.8) | 3.5 (2.4–4.1) | 0.138 |
| IG# [K/uL] (median, (Q1–Q3)) | 0.0 (0.0–0.0) | 0.0 (0.0–0.0) | 0.574 |
| Myocardial injury markers | |||
| Troponin I (median, (Q1–Q3)) | 6066 (1224–13,383) | 6777 (1683–16,611) | 0.722 |
| Other laboratory tests: | |||
| CRP [mg/dL] (median, (Q1–Q3)) | 1.8 (1.1–4.7) | 2.7 (1.7–5.7) | 0.314 |
| PCT [ng/mL] (median, (Q1–Q3)) | 0.08 (0.06–0.13) | 0.14 (0.07–0.25) | 0.118 |
| ALT [IU/L] (median, (Q1–Q3)) | 24 (16–27) | 21 (16–33) | 0.604 |
| AST [IU/L] (median, (Q1–Q3)) | 58 (33–102) | 48 (37–86) | 0.828 |
| BNP [pg/mL] (median, (Q1–Q3)) | 31.7 (11.7–40.0) | 30.6 (10.5–60.4) | 0.920 |
| NTproBNP [pg/mL] (median, (Q1–Q3)) | 267 (174–414) | 367 (194–837) | 0.262 |
| Parameters | Group 1 N = 18 Unchanged LVEF | Group 2 N = 26 LVEF Improvement | p |
|---|---|---|---|
| Echocardiographic results in an acute phase | |||
| LVEF (%) (median, (Q1–Q3)) | 71 (67–71) | 63 (60–67) | <0.001 |
| LVED z-score (median, (Q1–Q3)) | 0.10 (−0.59–0.65) | 0.61 (0.05–1.13) | 0.102 |
| RVED z-score (median, (Q1–Q3)) | 0.48 (0.04–0.83) | 0.84 (−0.28–1.70) | 0.339 |
| IVs z-score (median, (Q1–Q3)) | 0.21 (−0.18–0.83) | 0.56 (−0.24–1.45) | 0.566 |
| PWd z-score (median, (Q1–Q3)) | 0.09 (−0.08–0.85) | 0.60 (−0.07–1.27) | 0.319 |
| Pericardial effusion [mm](median, (Q1–Q3)) | 0 (0) | 0 (0) | 0.780 |
| E/A | 1.7 (1.5–1.8) | 1.8 (1.6–1.9) | 0.440 |
| E/E′ | 5.3 (4.8–6.4) | 6.0 (5.2–7.1) | 0.279 |
| Echocardiographic results after acute course | |||
| LVEF (%) (median, (Q1–Q3)) | 71 (69–74) | 72 (69–74) | 0.561 |
| LVED z-score (median, (Q1–Q3)) | 0.15 (−0.60–0.61) | 0.80 (−0.15–1.34) | 0.070 |
| RVED z-score (median, (Q1–Q3)) | 0.75 (0.40–1.2) | 0.55 (0.14–1.17) | 0.936 |
| IVs z-score (median, (Q1–Q3)) | 0.00 (−0.63–0.39) | 0.55 (−0.24–1.23) | 0.110 |
| PWd z-score (median, (Q1–Q3)) | 0.46 (−0.14–0.60) | 0.21 (−0.07–0.60) | 0.988 |
| Pericardial effusion (mm)(median, (Q1–Q3)) | 0 (0) | 0 (0) | 0.970 |
| E/A | 1.8 (1.6–1.9) | 1.7 (1.5–1.8) | 0.446 |
| E/E′ | 5.8 (5.0–6.6) | 4.8 (4.5–5.5) | 0.164 |
| ST-T segment changes | |||
| in II, III, aVF leads (n, (%)) | 12 (67) | 12 (46) | 0.285 |
| in I leads (n, (%)) | 2 (11) | 7 (27) | 0.168 |
| in V4 leads (n, (%)) | 3 (17) | 14 (54) | 0.057 |
| in V5 leads (n, (%)) | 7 (39) | 20 (77) | 0.071 |
| in V6 leads (n, (%)) | 7 (39) | 18 (70) | 0.134 |
| Holter results | |||
| Abnormalities | 0 (0) | 2 (87) | 0.505 |
| SVPB (n, (%)) | 2 (11) | 7 (27) | 0.27 |
| VPB (n, (%)) | 2 (11) | 5 (19) | 0.682 |
| VPB pairs (n, (%)) | 1 (6) | 2 (8) | 1.000 |
| nsVT (n, (%)) | 1 (6) | 0 (0) | 0.409 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Rabiega, B.; Wysocka, D.; Urbanowicz, T.; Olasińska-Wiśniewska, A.; Jemielity, M.; Bobkowski, W. Relation Between Neutrophil Count and Left Ventricular Ejection Fraction Following Acute Myocarditis in Adolescents: A Preliminary Study. Children 2026, 13, 40. https://doi.org/10.3390/children13010040
Rabiega B, Wysocka D, Urbanowicz T, Olasińska-Wiśniewska A, Jemielity M, Bobkowski W. Relation Between Neutrophil Count and Left Ventricular Ejection Fraction Following Acute Myocarditis in Adolescents: A Preliminary Study. Children. 2026; 13(1):40. https://doi.org/10.3390/children13010040
Chicago/Turabian StyleRabiega, Barbara, Dominika Wysocka, Tomasz Urbanowicz, Anna Olasińska-Wiśniewska, Marek Jemielity, and Waldemar Bobkowski. 2026. "Relation Between Neutrophil Count and Left Ventricular Ejection Fraction Following Acute Myocarditis in Adolescents: A Preliminary Study" Children 13, no. 1: 40. https://doi.org/10.3390/children13010040
APA StyleRabiega, B., Wysocka, D., Urbanowicz, T., Olasińska-Wiśniewska, A., Jemielity, M., & Bobkowski, W. (2026). Relation Between Neutrophil Count and Left Ventricular Ejection Fraction Following Acute Myocarditis in Adolescents: A Preliminary Study. Children, 13(1), 40. https://doi.org/10.3390/children13010040

