Pediatric Mixed Plasmodium vivax–P. falciparum Infection with Disparate Parasitemias: Diagnostic and Surveillance Challenges
Highlights
- Mixed P. vivax–P. falciparum infection with marked parasitemia disparity (5500 parasites/µL P. vivax vs. 562 parasites/µL P. falciparum) detected using complementary microscopy and rapid diagnostic testing.
- Low-density P. falciparum coinfection confirmed through integrated diagnostic approach despite predominant P. vivax parasitemia, enabling species-appropriate antimalarial therapy.
- Coinfections with markedly disparate parasitemias can be missed by conventional diagnostic methods, posing a risk of delayed or incomplete treatment.
- Comprehensive parasitological evaluation combining microscopy and rapid testing for pan-Plasmodium antigens and HRP2 is recommended in endemic areas to optimize outcomes and prevent severe malaria.
Abstract
1. Introduction
2. Case Report
3. Discussion
3.1. Diagnostic Challenges in Mixed-Species Malaria with Disparate Parasitemia
3.2. Implications for Epidemiological Surveillance and Public Health Policy
3.3. Limitations of This Report
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| WHO | World Health Organization |
| G6PD | Glucose-6-Phosphate Dehydrogenase |
| RDT | Rapid Diagnostic Test |
| AST | Aspartate Aminotransferase |
| ALT | Alanine Aminotransferase |
| PCR | Polymerase Chain Reaction |
| BUN | Blood Urea Nitrogen |
| PaO2/FiO2 | Partial Pressure of Oxygen/Fraction of Inspired Oxygen |
| ACT | Artemisinin-based Combination Therapy |
| HRP2 | Histidine-rich protein 2 |
| pLDH | Plasmodium lactate dehydrogenase |
| H | Hours |
| Min | Minutes |
References
- WHO. World Malaria Report 2024; World Health Organization: Geneva, Switzerland, 2024; Available online: https://www.who.int/publications/i/item/9789240104440 (accessed on 29 October 2025).
- PAHO. Malaria: Symptoms, Prevention and Treatments; Pan American Health Organization: Washington, DC, USA, 2025; Available online: https://www.paho.org/en/topics/malaria (accessed on 29 October 2025).
- Siqueira, A.M.; Mesones-Lapouble, O.; Marchesini, P.; Sampaio, V.S.; Brasil, P.; Tauil, P.L.; Fontes, C.J.; Costa, F.T.M.; Daniel-Ribeiro, C.T.; Lacerda, M.V.G.; et al. Plasmodium vivax Landscape in Brazil: Scenario and Challenges. Am. J. Trop. Med. Hyg. 2016, 95, 87–96. [Google Scholar] [CrossRef]
- Recht, J.; Siqueira, A.M.; Monteiro, W.M.; Herrera, S.M.; Herrera, S.; Lacerda, M.V.G. Malaria in Brazil, Colombia, Peru and Venezuela: Current challenges in malaria control and elimination. Malar. J. 2017, 16, 273. [Google Scholar] [CrossRef]
- Arévalo-Herrera, M.; Lopez-Perez, M.; Medina, L.; Moreno, A.; Gutierrez, J.; Herrera, S. Clinical profile of Plasmodium falciparum and Plasmodium vivax infections in low and unstable malaria transmission settings of Colombia. Malar. J. 2015, 14, 154. [Google Scholar] [CrossRef]
- Olivera, M.J.; Padilla Rodriguez, J.C.; Chaparro Narvaez, P.E.; Leon Quevedo, W. Epidemiology of Plasmodium vivax malaria infection in Colombia. Microbe 2024, 5, 100209. [Google Scholar] [CrossRef]
- Instituto Nacional de Salud (INS) Colombia. Informe de Malaria 2024. Available online: https://www.ins.gov.co/buscador-eventos/Informesdeevento/MALARIA%20INFORME%20DE%20EVENTO%202024.pdf (accessed on 5 November 2025).
- Kotepui, M.; Kotepui, K.U.; De Jesus Milanez, G.; Masangkay, F.R. Summary of discordant results between rapid diagnosis tests, microscopy, and polymerase chain reaction for detecting Plasmodium mixed infection: A systematic review and meta-analysis. Sci. Rep. 2020, 10, 12765. [Google Scholar] [CrossRef]
- Cherif, M.S.; Dahal, P.; Beavogui, A.H.; Delamou, A.; Lama, E.K.; Camara, A.; Diallo, M.P. Malaria epidemiology and anti-malarial drug efficacy in Guinea: A review of clinical and molecular studies. Malar. J. 2021, 20, 272. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, H.T.T.; Romano, F.; Wampfler, R.; Mühlethaler, K.; Tannich, E.; Oberli, A. Case Report: Diagnostic Challenges in the Detection of a Mixed Plasmodium vivax/ovale Infection in a Non-Endemic Setting. Am. J. Trop. Med. Hyg. 2020, 103, 1085–1087. [Google Scholar] [CrossRef]
- Gupta, A.; Gupta, S.; Gorki, V. Chapter 4-Molecular Diagnostic Tools in Detection of Mixed Parasite Infections: Current Scenario and Challenges; Academic Press: Cambridge, MA, USA, 2024; pp. 59–76. [Google Scholar] [CrossRef]
- Mueller, I.; Galinski, M.R.; Baird, J.K.; Carlton, J.M.; Kochar, D.K.; Alonso, P.L.; del Portillo, H.A. Key gaps in the knowledge of Plasmodium vivax, a neglected human malaria parasite. Lancet Infect. Dis. 2009, 9, 555–566. [Google Scholar] [CrossRef]
- Hartley, M.A.; Hofmann, N.; Keitel, K.; Kagoro, F.; Antunes Moniz, C.; Mlaganile, T.; Samaka, J.; Masimba, J.; Said, Z.; Temba, H.; et al. Clinical relevance of low-density Plasmodium falciparum parasitemia in untreated febrile children: A cohort study. PLoS Med. 2020, 17, e1003318. [Google Scholar] [CrossRef]
- Acharya, J.; Harwani, D. Changing pattern of severe manifestations of Plasmodium falciparum and Plasmodium vivax malaria: A retrospective study from Bikaner, India. J. Vector Borne Dis. 2022, 59, 259–264. [Google Scholar] [CrossRef] [PubMed]
- Badugu, V.; Gaur, B.K.; Maini, B. Clinical profile and severity of Plasmodium vivax and falciparum malaria in hospitalized children from North India. J. Vector Borne Dis. 2023, 60, 252–258. [Google Scholar] [CrossRef]
- Petter, M.; Duffy, M.F. Antigenic Variation in Plasmodium falciparum. Results Probl. Cell Differ. 2015, 57, 47–90. [Google Scholar] [CrossRef]
- Gowda, D.C.; Wu, X. Parasite Recognition and Signaling Mechanisms in Innate Immune Responses to Malaria. Front. Immunol. 2018, 9, 3006. [Google Scholar] [CrossRef] [PubMed]
- Bach, F.A.; Muñoz Sandoval, D.; Mazurczyk, M.; Themistocleous, Y.; Rawlinson, T.A.; Harding, A.C.; Kemp, A.; Silk, S.E.; Barrett, J.R.; Edwards, N.J.; et al. A systematic analysis of the human immune response to Plasmodium vivax. J. Clin. Investig. 2023, 133, e152463. [Google Scholar] [CrossRef]
- Tang, J.; Yeoh, L.M.; Grotz, M.D.; Goodman, C.D.; Chisholm, S.A.; Nguyen, H.H.T.; Yu, C.; Pareek, K.; McPherson, F.; Cozijnsen, A.; et al. PfGCN5 is essential for Plasmodium falciparum survival and transmission and regulates Pf H2B.Z acetylation and chromatin structure. Nucleic Acids Res. 2025, 53, gkaf218. [Google Scholar] [CrossRef]
- Bosco, A.B.; Nankabirwa, J.I.; Yeka, A.; Nsobya, S.; Gresty, K.; Anderson, K.; Mbaka, P.; Prosser, C.; Smith, D.; Opigo, J.; et al. Limitations of rapid diagnostic tests in malaria surveys in areas with varied transmission intensity in Uganda 2017–2019: Implications for selection and use of HRP2 RDTs. PLoS ONE 2020, 15, e0244457. [Google Scholar] [CrossRef] [PubMed]
- Scalisi, M.; Giordano, S.; Canduscio, L.A.; Failla, M.C.; Messina, L.; Sferrazza, E.; Rubino, R.; Siracusa, L.; Vanella, V.; Cascio, A.; et al. MIS-C and co-infection with P. vivax and P. falciparum in a child: A clinical conundrum. Ital. J. Pediatr. 2022, 48, 130. [Google Scholar] [CrossRef] [PubMed]
- Hogan, B.; Eibach, D.; Krumkamp, R.; Sarpong, N.; Dekker, D.; Kreuels, B.; Maiga-Ascofaré, O.; Boahen, K.G.; Akenten, C.W.; Adu-Sarkodie, Y.; et al. Malaria Coinfections in Febrile Pediatric Inpatients: A Hospital-Based Study from Ghana. Clin. Infect. Dis. 2018, 66, 1838–1845. [Google Scholar] [CrossRef]
- Afolabi, M.O.; Ale, B.M.; Dabira, E.D.; Agbla, S.C.; Bustinduy, A.L.; Ndiaye, J.L.A.; Greenwood, B. Malaria and helminth co-infections in children living in endemic countries: A systematic review with meta-analysis. PLoS Neglected Trop. Dis. 2021, 15, e0009138. [Google Scholar] [CrossRef]
- Naser, R.H.; Rajaii, T.; Farash, B.R.H.; Seyyedtabaei, S.J.; Hajali, V.; Sadabadi, F.; Saburi, E. Hematological changes due to malaria-An update. Mol. Biochem. Parasitol. 2024, 259, 111635. [Google Scholar] [CrossRef]
- Sanclemente-Cardoza, V.; Payán-Salcedo, H.A.; Estela-Zape, J.L. Severe Malaria Due to Plasmodium falciparum in an Immunocompetent Young Adult: Rapid Progression to Multiorgan Failure. Life 2025, 15, 1201. [Google Scholar] [CrossRef]
- Chaudhary, A.; Kataria, P.; Surela, N.; Das, J. Pathophysiology of Cerebral Malaria: Implications of MSCs as A Regenerative Medicinal Tool. Bioengineering 2022, 9, 263. [Google Scholar] [CrossRef]
- World Health Organization. WHO Guidelines for Malaria; World Health Organization: Geneva, Switzerland, 2025; Available online: https://www.who.int/publications/i/item/guidelines-for-malaria (accessed on 16 November 2025).
- Venkatesan, P. WHO world malaria report 2024. Lancet Microbe 2025, 6, 101073. [Google Scholar] [CrossRef]
- Recht, J.; Ashley, E.A.; White, N.J. Use of primaquine and glucose-6-phosphate dehydrogenase deficiency testing: Divergent policies and practices in malaria endemic countries. PLoS Neglected Trop. Dis. 2018, 12, e0006230. [Google Scholar] [CrossRef] [PubMed]
- Pukrittayakamee, S.; Jittamala, P.; Watson, J.A.; Hanboonkunupakarn, B.; Leungsinsiri, P.; Poovorawan, K.; Chotivanich, K.; Bancone, G.; Chu, C.S.; Imwong, M.; et al. Primaquine in glucose-6-phosphate dehydrogenase deficiency: An adaptive pharmacometric assessment of ascending dose regimens in healthy volunteers. eLife 2024, 12, RP87318. [Google Scholar] [CrossRef]
- Bélard, S.; Ramharter, M.; Kurth, F. Paediatric formulations of artemisinin-based combination therapies for treating uncomplicated malaria in children. Cochrane Database Syst. Rev. 2020, 12, CD009568. [Google Scholar] [CrossRef] [PubMed]
- Drysdale, M.; Tan, L.; Martin, A.; Fuhrer, I.B.; Duparc, S.; Sharma, H. Plasmodium vivax in Children: Hidden Burden and Conspicuous Challenges, a Narrative Review. Infect. Dis. Ther. 2023, 12, 33–51. [Google Scholar] [CrossRef]
- Ashley, E.A.; Poespoprodjo, J.R. Treatment and prevention of malaria in children. Lancet Child Adolesc. Health 2020, 4, 775–789. [Google Scholar] [CrossRef] [PubMed]
- Chawla, K.; Khanna, V.; Ayer, V.S.; Khanna, R. Comparative evaluation of traditional and molecular diagnostic methods for malaria: An analysis of performance. Trop. Parasitol. 2024, 14, 30–35. [Google Scholar] [CrossRef]
- Abdallah, R.; Louzada, J.; Carlson, C.; Ljolje, D.; Udhayakumar, V.; Oliveira-Ferreira, J.; Lucchi, N.W. Cross-border malaria in the triple border region between Brazil, Venezuela and Guyana. Sci. Rep. 2022, 12, 1200. [Google Scholar] [CrossRef]
- Zainabadi, K. Ultrasensitive Diagnostics for Low-Density Asymptomatic Plasmodium falciparum Infections in Low-Transmission Settings. J. Clin. Microbiol. 2021, 59, e01508-20. [Google Scholar] [CrossRef] [PubMed]
- Moyeh, M.N.; Ali, I.M.; Njimoh, D.L.; Nji, A.M.; Netongo, P.M.; Evehe, M.S.; Atogho-Tiedeu, B.; Ghogomu, S.M.; Mbacham, W.F. Comparison of the Accuracy of Four Malaria Diagnostic Methods in a High Transmission Setting in Coastal Cameroon. J. Parasitol. Res. 2019, 2019, 1417967. [Google Scholar] [CrossRef] [PubMed]
- Deora, N.; Yadav, C.P.; Pande, V.; Sinha, A. A systematic review and meta-analysis on sub-microscopic Plasmodium infections in India: Different perspectives and global challenges. Lancet Reg. Health Southeast Asia 2022, 2, 100012. [Google Scholar] [CrossRef] [PubMed]
| Blood Biochemistry Results | Hospitalization | External Control | |
|---|---|---|---|
| 5 August 2025 | 7 August 2025 | 22 August 2025 | |
| Leukocytes, (×103/μL) 4.0–11.0 | 4.0 | 5.5 | 7.8 |
| Neutrophils (%) 42.5–73.2 | 43.1 | 67.5 | 55.9 |
| Lymphocytes (%) 18.0–48.3 | 44.6 | 30.6 | 30.7 |
| Monocytes (%) 2–10 | 12.0 | 8.8 | 8.0 |
| Eosinophils (%) 1–4 | 0.1 | 0.2 | 2.0 |
| Basophils (%) 0–2 | 0.2 | 0.2 | 0.4 |
| Hemoglobin, (g/dL) 11.7–18 | 11.5 | 13.3 | 14.8 |
| Hematocrit, (%) 31.5–50 | 31.5 | 34.2 | 41.0 |
| Platelets, (×103/μL) 150–450 | 95 | 140 | 322 |
| C-reactive protein, (mg/L) 0.8–15.8 | 18.9 | ||
| Sodium, (Na+, mmol/L) 135–145 | 141.2 | ||
| Potassium, (K+, mmol/L) 3.5–5.1 | 4.1 | ||
| Chloride, (Cl− mmol/L) 97–105 | 104 | ||
| Creatinine, (mg/dL) 0.7–1.3 | 0.81 | ||
| BUN, (mg/dL) 6–20 | 11.5 | ||
| Aspartate aminotransferase, (AST U/L) 5–40 | 32.38 | 33.74 | 28.10 |
| Alanine aminotransferase, (ALT U/L) 7–56 | 26.77 | 28.33 | 24.25 |
| G6PD, (U/g) 7–10 | 8.5 | ||
| Lactic Acid, (mmol/L) 0.5–2.0 | 0.7 | ||
| Glucose, (mg/dL) 60–110 | 185.48 | 110 | |
| Arterial blood gas | |||
| pH 7.35–7.45 | 7.45 | ||
| pCO2, (mmHg) 35–45 | 30.5 | ||
| pO2, (mmHg) 80–100 | 79.3 | ||
| HCO3, (mmol/L) 24–26 | 23.1 | ||
| PaO2/FiO2 > 400 | 377 | ||
| Respiratory Support | Breathing room air | ||
| Parameter | Result |
|---|---|
| Species identified | P. vivax and P. falciparum |
| Parasitemia—P. vivax | 5500 parasites/µL |
| Parasitemia—P. falciparum | 562 parasites/µL |
| Parasitemia ratio | P. vivax predominant (≈9.8:1) |
| RDT—Pan-Plasmodium | Positive |
| RDT—HRP2 | Positive |
| Diagnostic Method | Sensitivity for P. vivax (Parasites/µL) | Sensitivity for P. falciparum (Parasites/µL) | Specificity for Mixed-Species Detection | Time to Result | Cost/Feasibility | Limitations |
|---|---|---|---|---|---|---|
| Thick smear microscopy | 50–100 | 50–100 | Limited; species with low parasitemia may not be detected | 1–2 h | Low cost; HIGH availability | Expert-dependent; misses low-density; time-consuming microscopy. |
| Thin blood film microscopy | 10–50 | 10–50 | Higher specificity; improved species differentiation | 1–2 h | Low cost; LIMITED availability | Labor-intensive; requires training; not available rurally. |
| Rapid diagnostic test—Pan-Plasmodium (pLDH) | 80–95% | 80–95% | Variable; detects multiple species antigens | 15–20 min | Low-moderate cost; VERY HIGH availability | Lower sensitivity at low parasite densities; may miss mixed infections with low component. |
| HRP2-based rapid diagnostic tests | 40–80% | 93–98% | Variable; HRP2 persistence may affect interpretation | 15–20 min | Low-moderate cost; VERY HIGH availability | Reduced sensitivity for non-falciparum; persistent HRP2 antigen post-treatment. |
| Multiplex PCR/qPCR | <10 | <10 | High; reliable for detecting mixed infections | 8–24 h | High cost, LIMITED availability | Requires infrastructure and training; impractical field-use. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Estela-Zape, J.L. Pediatric Mixed Plasmodium vivax–P. falciparum Infection with Disparate Parasitemias: Diagnostic and Surveillance Challenges. Children 2026, 13, 145. https://doi.org/10.3390/children13010145
Estela-Zape JL. Pediatric Mixed Plasmodium vivax–P. falciparum Infection with Disparate Parasitemias: Diagnostic and Surveillance Challenges. Children. 2026; 13(1):145. https://doi.org/10.3390/children13010145
Chicago/Turabian StyleEstela-Zape, Jose Luis. 2026. "Pediatric Mixed Plasmodium vivax–P. falciparum Infection with Disparate Parasitemias: Diagnostic and Surveillance Challenges" Children 13, no. 1: 145. https://doi.org/10.3390/children13010145
APA StyleEstela-Zape, J. L. (2026). Pediatric Mixed Plasmodium vivax–P. falciparum Infection with Disparate Parasitemias: Diagnostic and Surveillance Challenges. Children, 13(1), 145. https://doi.org/10.3390/children13010145

