A Treasure of Bioactive Compounds from the Deep Sea
Abstract
:1. Introduction
2. Deep-Sea Species with Biological Activities
2.1. Bacteria
2.2. Fungi
2.3. Cnidaria
2.4. Porifera
2.5. Mesopelagic Species
3. Other Deep-Sea Organisms
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Skropeta, D.; Wei, L. Recent advances in deep-sea natural products. Nat. Prod. Rep. 2014, 31, 999–1025. [Google Scholar] [CrossRef]
- Danovaro, R.; Fanelli, E.; Aguzzi, J.; Billett, D.; Carugati, L.; Corinaldesi, C.; Dell’Anno, A.; Gjerde, K.; Jamieson, A.J.; Kark, S.; et al. Ecological variables for developing a global deep-ocean monitoring and conservation strategy. Nat. Ecol. Evol. 2020, 4, 181–192. [Google Scholar] [CrossRef]
- Danovaro, R.; Snelgrove, P.V.R.; Tyler, P. Challenging the paradigms of deep-sea ecology. Trends Ecol. Evol. 2014, 29, 465–475. [Google Scholar] [CrossRef] [PubMed]
- Metaxas, A.; Nunoura, T.; Baker, B.J.; Corinaldesi, C. New perspectives in benthic deep-sea microbial ecology Deep-Sea Microbial Ecology: An Exciting Challenge in Marine Ecology. Front. Mar. Sci. 2015, 2, 17. [Google Scholar] [CrossRef] [Green Version]
- Danovaro, R.; Corinaldesi, C.; Dell’Anno, A.; Snelgrove, P.V.R. The deep-sea under global change. Curr. Biol. 2017, 27, R461–R465. [Google Scholar] [CrossRef] [Green Version]
- Danovaro, R.; Carugati, L.; Berzano, M.; Cahill, A.E.; Carvalho, S.; Chenuil, A.; Corinaldesi, C.; Cristina, S.; David, R.; Dell’Anno, A.; et al. Implementing and innovating marine monitoring approaches for assessing marine environmental status. Front. Mar. Sci. 2016, 3, 1–25. [Google Scholar] [CrossRef]
- Sorokina, M.; Steinbeck, C. Review on natural products databases: Where to find data in 2020. J. Cheminform. 2020, 12, 1–51. [Google Scholar] [CrossRef] [Green Version]
- Newman, D.J.; Cragg, G.M. Natural Products as Sources of New Drugs over the Nearly Four Decades from 01/1981 to 09/2019. J. Nat. Prod. 2020, 83, 770–803. [Google Scholar] [CrossRef]
- Lyu, C.; Chen, T.; Qiang, B.; Liu, N.; Wang, H.; Zhang, L.; Liu, Z. CMNPD: A comprehensive marine natural products database towards facilitating drug discovery from the ocean. Nucleic Acids Res. 2021, 49, D509–D515. [Google Scholar] [CrossRef]
- Kong, D.X.; Jiang, Y.Y.; Zhang, H.Y. Marine natural products as sources of novel scaffolds: Achievement and concern. Drug Discov. Today 2010, 15, 884–886. [Google Scholar] [CrossRef]
- Spainhour, C.B. Natural Products. In Drug Discovery Handbook; John Wiley Sons Inc.: Hoboken, NJ, USA, 2005; pp. 11–72. [Google Scholar] [CrossRef]
- Skropeta, D. Deep-sea natural products. Nat. Prod. Rep. 2008, 25, 1131–1166. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Glud, R.N.; Wenzhöfer, F.; Middelboe, M.; Oguri, K.; Turnewitsch, R.; Canfield, D.E.; Kitazato, H. High rates of microbial carbon turnover in sediments in the deepest oceanic trench on Earth. Nat. Geosci. 2013, 6, 284–288. [Google Scholar] [CrossRef]
- Jiang, X.; Xu, X.; Huo, Y.; Wu, Y.; Zhu, X.; Zhang, X.; Wu, M. Identification and characterization of novel esterases from a deep-sea sediment metagenome. Arch. Microbiol. 2012, 194, 207–214. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, T.; Uchimura, K.; Deguchi, S.; Horikoshi, K. Cloning and sequencing of inulinase and β-fructofuranosidase genes of a deep-sea Microbulbifer species and properties of recombinant enzymes. Appl. Environ. Microbiol. 2012, 78, 2493–2495. [Google Scholar] [CrossRef] [PubMed]
- Murakami, C.; Ohmae, E.; Tate, S.I.; Gekko, K.; Nakasone, K.; Kato, C. Cloning and characterization of dihydrofolate reductases from deep-sea bacteria. J. Biochem. 2010, 147, 591–599. [Google Scholar] [CrossRef]
- Cossins, A.R.; Macdonald, A.G. The adaptation of biological membranes to temperature and pressure: Fish from the deep and cold. J. Bioenerg. Biomembr. 1989, 21, 115–135. [Google Scholar] [CrossRef]
- Jaspars, M.; De Pascale, D.; Andersen, J.H.; Reyes, F.; Crawford, A.D.; Ianora, A. The marine biodiscovery pipeline and ocean medicines of tomorrow. J. Mar. Biol. Assoc. U. K. 2016, 96, 151–158. [Google Scholar] [CrossRef] [Green Version]
- Schöffski, P.; Dumez, H.; Wolter, P.; Stefan, C.; Wozniak, A.; Jimeno, J.; Van Oosterom, A.T. Clinical impact of trabectedin (ecteinascidin-743) in advanced/metastatic soft tissue sarcoma. Expert Opin. Pharmacother. 2008, 9, 1609–1618. [Google Scholar] [CrossRef]
- National Center for Biotechnology Information. PubChem Compound Summary for CID 16135415, Ziconotide. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/Ziconotide (accessed on 11 October 2021).
- National Center for Biotechnology Information. PubChem Compound Summary for CID 108150, Trabectedin. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/Trabectedin (accessed on 11 October 2021).
- Subramani, R.; Aalbersberg, W. Marine actinomycetes: An ongoing source of novel bioactive metabolites. Microbiol. Res. 2012, 167, 571–580. [Google Scholar] [CrossRef]
- Mincer, T.J.; Fenical, W.; Jensen, P.R. Culture-dependent and culture-independent diversity within the obligate marine actinomycete genus Salinispora. Appl. Environ. Microbiol. 2005, 71, 7019–7028. [Google Scholar] [CrossRef] [Green Version]
- Berdi, J. Bioactive Microbial metabolites. J. Antibiot. 2005, 58, 1–26. [Google Scholar] [CrossRef] [Green Version]
- Nachtigall, J.; Schneider, K.; Bruntner, C.; Bull, A.T.; Goodfellow, M.; Zinecker, H.; Imhoff, J.F.; Nicholson, G.; Irran, E.; Süssmuth, R.D.; et al. Benzoxacystol, a benzoxazine-type enzyme inhibitor from the deep-sea strain Streptomyces sp. NTK 935. J. Antibiot. 2011, 64, 453–457. [Google Scholar] [CrossRef] [Green Version]
- Braña, A.F.; Sarmiento-Vizcaíno, A.; Osset, M.; Pérez-Victoria, I.; Martín, J.; De Pedro, N.; De La Cruz, M.; Díaz, C.; Vicente, F.; Reyes, F.; et al. Lobophorin K, a new natural product with cytotoxic activity produced by Streptomyces sp. M-207 associated with the deep-sea coral Lophelia pertusa. Mar. Drugs 2017, 15, 144. [Google Scholar] [CrossRef] [Green Version]
- Yan, X.; Zhou, Y.-X.; Tang, X.-X.; Liu, X.-X.; Yi, Z.-W.; Fang, M.-J.; Wu, Z.; Jiang, F.-Q.; Qiu, Y.-K. Macrolactins from Marine-Derived Bacillus subtilis B5 Bacteria as Inhibitors of Inducible Nitric Oxide and Cytokines Expression. Mar. Drugs 2016, 14, 195. [Google Scholar] [CrossRef] [Green Version]
- Huang, H.; Yao, Y.; He, Z.; Yang, T.; Ma, J.; Tian, X.; Li, Y.; Huang, C.; Chen, X.; Li, W.; et al. Antimalarial β-carboline and indolactam alkaloids from Marinactinospora thermotolerans, a deep sea isolate. J. Nat. Prod. 2011, 74, 2122–2127. [Google Scholar] [CrossRef]
- Zhou, X.; Huang, H.; Chen, Y.; Tan, J.; Song, Y.; Zou, J.; Tian, X.; Hua, Y.; Ju, J. Marthiapeptide A, an anti-infective and cytotoxic polythiazole cyclopeptide from a 60 L scale fermentation of the deep sea-derived Marinactinospora thermotolerans SCSIO 00652. J. Nat. Prod. 2012, 75, 2251–2255. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.; Li, Q.; Liu, X.; Chen, Y.; Zhang, Y.; Sun, A.; Zhang, W.; Zhang, J.; Ju, J. Cyclic hexapeptides from the deep South China sea-derived Streptomyces scopuliridis SCSIO ZJ46 active against pathogenic gram-positive bacteria. J. Nat. Prod. 2014, 77, 1937–1941. [Google Scholar] [CrossRef]
- Zhou, X.; Huang, H.; Li, J.; Song, Y.; Jiang, R.; Liu, J.; Zhang, S.; Hua, Y.; Ju, J. New anti-infective cycloheptadepsipeptide congeners and absolute stereochemistry from the deep sea-derived Streptomyces drozdowiczii SCSIO 10141. Tetrahedron 2014, 70, 7795–7801. [Google Scholar] [CrossRef]
- Niu, S.; Li, S.; Chen, Y.; Tian, X.; Zhang, H.; Zhang, G.; Zhang, W.; Yang, X.; Zhang, S.; Ju, J.; et al. Lobophorins E and F, new spirotetronate antibiotics from a South China Sea-derived Streptomyces sp. SCSIO 01127. J. Antibiot. 2011, 64, 711–716. [Google Scholar] [CrossRef] [Green Version]
- Pan, H.-Q.; Zhang, S.-Y.; Wang, N.; Li, Z.-L.; Hua, H.-M.; Hu, J.-C.; Wang, S.-J. New Spirotetronate Antibiotics, Lobophorins H and I, from a South China Sea-Derived Streptomyces sp. 12A35. Mar. Drugs 2013, 11, 3891–3901. [Google Scholar] [CrossRef] [Green Version]
- Bister, B.; Bischoff, D.; Ströbele, M.; Riedlinger, J.; Reicke, A.; Wolter, F.; Bull, A.T.; Zähner, H.; Fiedler, H.-P.; Süssmuth, R.D. Abyssomicin C-A Polycyclic Antibiotic from a Marine Verrucosispora Strain as an Inhibitor of the p-Aminobenzoic Acid/Tetrahydrofolate Biosynthesis Pathway. Angew. Chem. Int. Ed. 2004, 43, 2574–2576. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.; Huang, H.; Chen, Y.; Ding, J.; Zhang, Y.; Sun, A.; Zhang, W.; Ju, J. Cytotoxic and antibacterial marfuraquinocins from the deep south china sea-derived Streptomyces niveus scsio 3406. J. Nat. Prod. 2013, 76, 2263–2268. [Google Scholar] [CrossRef] [PubMed]
- Sarmiento-Vizcaíno, A.; Braña, A.F.; Pérez-Victoria, I.; Martín, J.; De Pedro, N.; De La Cruz, M.; Díaz, C.; Vicente, F.; Acuña, J.L.; Reyes, F.; et al. Paulomycin G, a new natural product with cytotoxic activity against tumor cell lines produced by deep-sea sediment derived Micromonospora matsumotoense M-412 from the Avilés Canyon in the Cantabrian Sea. Mar. Drugs 2017, 15, 271. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Xu, Y.; Liu, L.; Han, Z.; Lai, P.Y.; Guo, X.; Zhang, X.; Lin, W.; Qian, P.Y. Five new amicoumacins isolated from a marine-derived bacterium Bacillus subtilis. Mar. Drugs 2012, 10, 319–328. [Google Scholar] [CrossRef] [Green Version]
- Abdel-Mageed, W.M.; Milne, B.F.; Wagner, M.; Schumacher, M.; Sandor, P.; Pathom-aree, W.; Goodfellow, M.; Bull, A.T.; Horikoshi, K.; Ebel, R.; et al. Dermacozines, a new phenazine family from deep-sea dermacocci isolated from a Mariana Trench sediment. Org. Biomol. Chem. 2010, 8, 2352–2362. [Google Scholar] [CrossRef]
- Li, S.; Tian, X.; Niu, S.; Zhang, W.; Chen, Y.; Zhang, H.; Yang, X.; Zhang, W.; Li, W.; Zhang, S.; et al. Pseudonocardians A–C, new diazaanthraquinone derivatives from a deep-sea actinomycete Pseudonocardia sp. SCSIO 01299. Mar. Drugs 2011, 9, 1428–1439. [Google Scholar] [CrossRef] [Green Version]
- Huang, H.; Yang, T.; Ren, X.; Liu, J.; Song, Y.; Sun, A.; Ma, J.; Wang, B.; Zhang, Y.; Huang, C.; et al. Cytotoxic angucycline class glycosides from the deep sea actinomycete Streptomyces lusitanus SCSIO LR32. J. Nat. Prod. 2012, 75, 202–208. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Liu, Z.; Li, S.; Yang, T.; Zhang, Q.; Ma, L.; Tian, X.; Zhang, H.; Huang, C.; Zhang, S.; et al. Spiroindimicins A-D: New bisindole alkaloids from a deep-sea-derived actinomycete. Org. Lett. 2012, 14, 3364–3367. [Google Scholar] [CrossRef]
- Hohmann, C.; Schneider, K.; Bruntner, C.; Irran, E.; Nicholson, G.; Bull, A.T.; Jones, A.L.; Brown, R.; Stach, J.E.; Goodfellow, M.; et al. Caboxamycin, a new antibiotic of the benzoxazole family produced by the deep-sea strain Streptomyces sp. NTK 937. J. Antibiot. 2009, 62, 99–104. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Q.; Li, S.; Chen, Y.; Tian, X.; Zhang, H.; Zhang, G.; Zhu, Y.; Zhang, S.; Zhang, W.; Zhang, C. New diketopiperazine derivatives from a deep-sea-derived Nocardiopsis alba SCSIO 03039. J. Antibiot. 2013, 66, 31–36. [Google Scholar] [CrossRef] [Green Version]
- Moushumi Priya, A.; Jayachandran, S. Induction of apoptosis and cell cycle arrest by Bis (2-ethylhexyl) phthalate produced by marine Bacillus pumilus MB 40. Chem. Biol. Interact. 2012, 195, 133–143. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.Y.; Zhang, Y.; Xu, X.Y.; Qi, S.H. Diverse deep-sea fungi from the South China sea and their antimicrobial activity. Curr. Microbiol. 2013, 67, 525–530. [Google Scholar] [CrossRef]
- Liu, Z.; Wang, Q.; Li, S.; Cui, H.; Sun, Z.; Chen, D.; Lu, Y.; Liu, H.; Zhang, W. Polypropionate Derivatives with Mycobacterium tuberculosis Protein Tyrosine Phosphatase B Inhibitory Activities from the Deep-Sea-Derived Fungus Aspergillus fischeri FS452. J. Nat. Prod. 2019, 82, 3440–3449. [Google Scholar] [CrossRef]
- Fredimoses, M.; Zhou, X.; Lin, X.; Tian, X.; Ai, W.; Wang, J.; Liao, S.; Liu, J.; Yang, B.; Yang, X.; et al. New prenylxanthones from the deep-sea derived fungus Emericella sp. SCSIO 05240. Mar. Drugs 2014, 12, 3190–3202. [Google Scholar] [CrossRef] [Green Version]
- Li, X.D.; Xu, G.M.; Zhang, P.; Wang, B.G. Antimicrobial Phenolic Bisabolanes and Related Derivatives from Penicillium aculeatum SD-321, a Deep Sea Sediment-Derived Fungus. J. Nat. Prod. 2015, 78, 844–849. [Google Scholar] [CrossRef]
- Guo, W.; Zhang, Z.; Zhu, T.; Gu, Q.; Li, D. Penicyclones A-E, Antibacterial Polyketides from the Deep-Sea-Derived Fungus Penicillium sp. F23-2. J. Nat. Prod. 2015, 78, 2699–2703. [Google Scholar] [CrossRef] [PubMed]
- Niu, S.; Si, L.; Liu, D.; Zhou, A.; Zhang, Z.; Shao, Z.; Wang, S.; Zhang, L.; Zhou, D.; Lin, W. Spiromastilactones: A new class of influenza virus inhibitors from deep-sea fungus. Eur. J. Med. Chem. 2016, 108, 229–244. [Google Scholar] [CrossRef]
- Liang, X.; Nong, X.H.; Huang, Z.H.; Qi, S.H. Antifungal and Antiviral Cyclic Peptides from the Deep-Sea-Derived Fungus Simplicillium obclavatum EIODSF 020. J. Agric. Food Chem. 2017, 65, 5114–5121. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Z.; Zhao, J.; Liu, D.; Proksch, P.; Zhao, Z.; Lin, W. Eremophilane-Type Sesquiterpenoids from an Acremonium sp. Fungus Isolated from Deep-Sea Sediments. J. Nat. Prod. 2016, 79, 1035–1047. [Google Scholar] [CrossRef] [PubMed]
- Niu, S.; Liu, D.; Shao, Z.; Proksch, P.; Lin, W. Eremophilane-type sesquiterpenoids in a deep-sea fungus Eutypella sp. activated by chemical epigenetic manipulation. Tetrahedron 2018, 74, 7310–7325. [Google Scholar] [CrossRef]
- Chen, S.; Wang, J.; Lin, X.; Zhao, B.; Wei, X.; Li, G.; Kaliaperumal, K.; Liao, S.; Yang, B.; Zhou, X.; et al. Chrysamides A-C, Three Dimeric Nitrophenyl trans-Epoxyamides Produced by the Deep-Sea-Derived Fungus Penicillium chrysogenum SCSIO41001. Org. Lett. 2016, 18, 3650–3653. [Google Scholar] [CrossRef] [PubMed]
- Lu, X.; He, J.; Wu, Y.; Du, N.; Li, X.; Ju, J.; Hu, Z.; Umezawa, K.; Wang, L. Isolation and Characterization of New Anti-Inflammatory and Antioxidant Components from Deep Marine-Derived Fungus Myrothecium sp. Bzo-l062. Mar. Drugs 2020, 18, 597. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Li, M.; Lin, Y.; Du, S.; Liu, Z.; Ju, J.; Suzuki, H.; Sawada, M.; Umezawa, K. Inhibition of cellular inflammatory mediator production and amelioration of learning deficit in flies by deep sea Aspergillus-derived cyclopenin. J. Antibiot. 2020, 73, 622–629. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.N.; Meng, L.H.; Wang, B.G. Progress in Research on Bioactive Secondary Metabolites from Deep-Sea Derived Microorganisms. Mar. Drugs 2020, 18, 614. [Google Scholar] [CrossRef] [PubMed]
- Sohn, J.H.; Lee, Y.R.; Lee, D.S.; Kim, Y.C.; Oh, H. PTP1B inhibitory secondary metabolites from marine-derived fungal strains Penicillium spp. And Eurotium sp. J. Microbiol. Biotechnol. 2013, 23, 1206–1211. [Google Scholar] [CrossRef] [Green Version]
- Niu, S.; Liu, Q.; Xia, J.M.; Xie, C.L.; Luo, Z.H.; Shao, Z.; Liu, G.; Yang, X.W. Polyketides from the Deep-Sea-Derived Fungus Graphostroma sp. MCCC 3A00421 Showed Potent Antifood Allergic Activities. J. Agric. Food Chem. 2018, 66, 1369–1376. [Google Scholar] [CrossRef]
- Niu, S.; Fan, Z.W.; Xie, C.L.; Liu, Q.; Luo, Z.H.; Liu, G.; Yang, X.W. Spirograterpene A, a Tetracyclic Spiro-Diterpene with a Fused 5/5/5/5 Ring System from the Deep-Sea-Derived Fungus Penicillium granulatum MCCC 3A00475. J. Nat. Prod. 2017, 80, 2174–2177. [Google Scholar] [CrossRef]
- Han, W.; Cai, J.; Zhong, W.; Xu, G.; Wang, F.; Tian, X.; Zhou, X.; Liu, Q.; Liu, Y.; Wang, J. Protein tyrosine phosphatase 1B (PTP1B) inhibitors from the deep-sea fungus Penicillium chrysogenum SCSIO 07007. Bioorg. Chem. 2020, 96, 103646. [Google Scholar] [CrossRef]
- Yao, Q.; Wang, J.; Zhang, X.; Nong, X.; Xu, X.; Qi, S. Cytotoxic Polyketides from the Deep-Sea-Derived Fungus Engyodontium album DFFSCS021. Mar. Drugs 2014, 12, 5902–5915. [Google Scholar] [CrossRef] [Green Version]
- Wang, F.Z.; Huang, Z.; Shi, X.F.; Chen, Y.C.; Zhang, W.M.; Tian, X.P.; Li, J.; Zhang, S. Cytotoxic indole diketopiperazines from the deep sea-derived fungus Acrostalagmus luteoalbus SCSIO F457. Bioorg. Med. Chem. Lett. 2012, 22, 7265–7267. [Google Scholar] [CrossRef]
- Cai, S.; Zhu, T.; Du, L.; Zhao, B.; Li, D.; Gu, Q. Sterigmatocystins from the deep-sea-derived fungus Aspergillus versicolor. J. Antibiot. 2011, 64, 193–196. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Ye, D.; Shao, Z.; Cui, C.; Che, Y. A sterol and spiroditerpenoids from a Penicillium sp. isolated from a deep sea sediment sample. Mar. Drugs 2012, 10, 497–508. [Google Scholar] [CrossRef] [PubMed]
- Lin, X.; Zhou, X.; Wang, F.; Liu, K.; Yang, B.; Yang, X.; Peng, Y.; Liu, J.; Ren, Z.; Liu, Y. A new cytotoxic sesquiterpene quinone produced by Penicillium sp. F00120 isolated from a deep sea sediment sample. Mar. Drugs 2012, 10, 106–115. [Google Scholar] [CrossRef]
- Guo, W.; Peng, J.; Zhu, T.; Gu, Q.; Keyzers, R.A.; Li, D. Sorbicillamines A-E, nitrogen-containing sorbicillinoids from the deep-sea-derived fungus Penicillium sp. F23-2. J. Nat. Prod. 2013, 76, 2106–2112. [Google Scholar] [CrossRef]
- Lauritano, C.; Andersen, J.H.; Hansen, E.; Albrigtsen, M.; Escalera, L.; Esposito, F.; Helland, K.; Hanssen, K.; Romano, G.; Ianora, A. Bioactivity Screening of Microalgae for Antioxidant, Anti-Inflammatory, Anticancer, Anti-Diabetes, and Antibacterial Activities. Front. Mar. Sci. 2016, 3, 68. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Ye, D.; Chen, X.; Lu, X.; Shao, Z.; Zhang, H.; Che, Y. Breviane spiroditerpenoids from an extreme-tolerant Penicillium sp. isolated from a deep sea sediment sample. J. Nat. Prod. 2009, 72, 912–916. [Google Scholar] [CrossRef]
- Kawabata, T.; Lindsay, D.J.; Kitamura, M.; Konishi, S.; Nishikawa, J.; Nishida, S.; Kamio, M.; Nagai, H. Evaluation of the bioactivities of water-soluble extracts from twelve deep-sea jellyfish species. Fish. Sci. 2013, 79, 487–494. [Google Scholar] [CrossRef] [Green Version]
- Blunt, J.W.; Copp, B.R.; Keyzers, R.A.; Munro, M.H.G.; Prinsep, M.R. Marine natural products. Nat. Prod. Rep. 2015, 32, 116–211. [Google Scholar] [CrossRef] [Green Version]
- Newman, D.J.; Cragg, G.M. Natural products as sources of new drugs over the 30 years from 1981 to 2010. J. Nat. Prod. 2012, 75, 311–335. [Google Scholar] [CrossRef] [Green Version]
- Hitora, Y.; Takada, K.; Okada, S.; Ise, Y.; Matsunaga, S. (-)-Duryne and its homologues, cytotoxic acetylenes from a marine sponge Petrosia sp. J. Nat. Prod. 2011, 74, 1262–1267. [Google Scholar] [CrossRef]
- Desoubzdanne, D.; Marcourt, L.; Raux, R.; Chevalley, S.; Dorin, D.; Doerig, C.; Valentin, A.; Ausseil, F.; Debitus, C. Alisiaquinones and Alisiaquinol, dual inhibitors of Plasmodium falciparum enzyme targets from a new caledonian deep water sponge. J. Nat. Prod. 2008, 71, 1189–1192. [Google Scholar] [CrossRef]
- Paterson, I.; Dalby, S.M.; Roberts, J.C.; Naylor, G.J.; Guzmµn, E.A.; Isbrucker, R.; Pitts, T.P.; Linley, P.; Divlianska, D.; Reed, J.K.; et al. Leiodermatolide, a Potent Antimitotic Macrolide from the Marine Sponge Leiodermatium sp. Angew. Chem. 2011, 123, 3277–3281. [Google Scholar] [CrossRef] [Green Version]
- Na, M.; Ding, Y.; Wang, B.; Tekwani, B.L.; Schinazi, R.F.; Franzblau, S.; Kelly, M.; Stone, R.; Li, X.C.; Ferreira, D.; et al. Anti-infective discorhabdins from a deep-water alaskan sponge of the genus Latrunculia. J. Nat. Prod. 2010, 73, 383–387. [Google Scholar] [CrossRef] [Green Version]
- Lauritano, C.; Martínez, K.A.; Battaglia, P.; Granata, A.; de la Cruz, M.; Cautain, B.; Martín, J.; Reyes, F.; Ianora, A.; Guglielmo, L. First evidence of anticancer and antimicrobial activity in Mediterranean mesopelagic species. Sci. Rep. 2020, 10, 4929. [Google Scholar] [CrossRef]
- Appleton, D.R.; Chuen, C.S.; Berridge, M.V.; Webb, V.L.; Copp, B.R. Rossinones A and B, biologically active meroterpenoids from the antarctic ascidian, Aplidium species. J. Org. Chem. 2009, 74, 9195–9198. [Google Scholar] [CrossRef]
- Wangun, H.V.; Wood, A.; Fiorilla, C.; Reed, J.K.; McCarthy, P.J.; Wright, A.E. Gymnochromes e and F, Cytotoxic Phenanthroperylenequinones from a Deep-Water Crinoid, Holopus rangii. J. Nat. Prod. 2010, 73, 712–715. [Google Scholar] [CrossRef] [Green Version]
- Andrianasolo, E.H.; Haramaty, L.; McPhail, K.L.; White, E.; Vetriani, C.; Falkowski, P.; Lutz, R. Bathymodiolamides A and B, ceramide derivatives from a deep-sea hydrothermal vent invertebrate mussel, Bathymodiolus thermophilus. J. Nat. Prod. 2011, 74, 842–846. [Google Scholar] [CrossRef] [Green Version]
Marine Organism | Compound | Activity/Experimental Model | Depth/Site | Concentrations | Ref. |
---|---|---|---|---|---|
Salinispora tropica | Salinosporamide A | Proteasome inhibitor against NCI-H226-non-small cell lung cancer, SF-539 CNS cancer, SK-MEL-28 skin melanoma, and MDA-MB-435 breast cancer. | 1100 m Tropical and subtropical marine sediments | LC50 < 10 nM | [23] |
Streptomyces sp. NTK 935 | Benzoxacystol 245 | Inhibit recombinant Glycogen synthase kinase 3 beta (GSK-3β) | 3814 m Canary basin | IC50 = 1.35 ± 0.15 μM | [25] |
Streptomyces sp. M-207 | Lobophorin K | Antiproliferative activity against: MiaPaca-2 and MCF7 | 1800 m Lophelia pertusa | IC50 = 34.0 ± 85.1 and 23.0 ± 8.9 μM, respectively | [26] |
Bacillus subtilis B5 | 7, 13-epoxyl-macrolatin A | Inhibitor of LPS-induced inflammatory mediator expression in RAW 264.7 cells | 3000 m Pacific Ocean | From 50 to 40 μM | [27] |
Marianactinospora thermotolerans SCSIO00652 | Marinacarbolines A–D 13-N-demethyl-methylpendolmycin Methylpendolmycin-14-O-α-glucoside | Antimalarial activity against: Plasmodium falciparum | 3865 m South China Sea | IC50 = (A) 1.92 μM (C) 3.09 μM, (D) 5.39 μM | [28] |
Marinactinospora thermotolerans SCSIO 00652 | Marthiapeptide A | Antimicrobial against: M. luteus, S. aureus, B. subtilis, B. thuringiensis | 3865 m South China Sea | MIC = 2, 8.4 and 2 μg/mL | [29] |
Marinactinospora thermotolerans SCSIO 00652 | Marthiapeptide A | Cytotoxic activity against a panel of human cancer cell lines | 3865 m South China Sea | IC50 = ranging from 0.38 to 0.52 μM | [29] |
Streptomyces scopuliridis SCSIOZJ 46 | Desotamide B, C, D | Antimicrobial against: S. aureus, S. pneumoniae, MRSE shhs-E1 | 3536 m South China Sea | MIC = 16, 12.5, and 32 μg/mL, respectively | [30] |
Streptomyces drozdowiczii SCSIO10141 | Marfomycins A, B, E | Antimicrobial against: M. luteus | 1396 m South China Sea | MIC = 0.25, 4, and 4 μg/mL, respectively | [31] |
Streptomyces sp. SCSIO 01127 | Lobophorin F | Antimicrobial against: S. aureus, E. faecalis | 1350 m South China Sea | MIC = 8 μg/mL for both | [32] |
Streptomyces sp. 12A35 | Lobophorin H | Antimicrobial against: B. subtilis | 2134 m South China Sea | MIC = 3.13 μg/mL | [33] |
Verrucosispora sp. AB 18-032 | Abyssomicin C | Antimicrobial against: MRSA, vancomycin resistant Enterococcus faecium, S. aureus | 289 m Japanese Sea | MIC = 4 μg/mL and 13 μg/mL | [34] |
Streptomyces niveus SCSIO3406 | Marfuraquinocins A, C, D | Antimicrobial against: S. aureus, MRSE shhs-E1 | 3536 m South China Sea | MIC = 8 μg/mL | [35] |
Micromonospora matsumotoense M-412 | Paulomycin G | Antimicrobial against: E. coli strains MB5746 and MRSA | 2000 m Cantabrian Sea sediments | MIC90 = 4.5 and 50 μg/mL, respectively | [36] |
Micromonospora matsumotoense M-412 | Paulomycin G | Antiproliferative against HepG2, MCF7, MiaPaca-2. | 2000 m Cantabrian Sea sediments | IC50 = 4.30 ± 0.42 μM, 1.58 ± 0.12 μM, 2.70 ± 0.25 μM, respectively | [36] |
Bacillus subtilis | Lipoamicoumacins A–D, bacilosarcin analogue and six amicoumacins | Cytotoxicity against HeLa cells and antibacterial activity against B. subtilis, S. aureus and Laribacter hongkongensis | 1000 m Red Sea | - | [37] |
Dermacoccus abyssi sp. | Dermacozines F and G | Cytotoxic activity against the leukaemia cell line K562 | 10,898 m Mariana Trench sediment | IC50 values of 9 and 7 μM | [38] |
Pseudonocardia sp. SCSIO 01299 | Pseudonocardians A–C | Cytotoxic activity against SF-268, MCF-7 and NCI-H460 | 3258 m South China Sea | IC50 from 0.01 to 0.21 μM | [39] |
Pseudonocardia sp. SCSIO 01299 | Pseudonocardians A–C | Antibacterial activities against S. aureus ATCC 29213, Enterococcus faecalis ATCC 29,212 and Bacillus thuringensis SCSIO BT01 | 3258 m South China Sea | MIC values of 1–4 μg mL−1 | [39] |
Streptomyces lusitanus | Grincamycin A–E | Cytotoxic activity against HepG2, SW-1990, HeLa, NCI-H460, MCF-7 and B16 | 3370 m South China Sea | IC50 from 1.1 to 31 μM | [40] |
Streptomyces sp. SCSIO 03032 | Spiroindimicins B, C and D | Cytotoxic activity against several cancer cell lines | 3412 m Indian Ocean | IC50 from 4 to 12 μg mL−1 for Spiroindimicin B, IC50 from 6 to 15 μg mL−1 for Spiroindimicin C, - | [41] |
Streptomyces sp. NTK 937 | Caboxamycin | Inhibitory activity against Gram-positive bacteria, B. subtilis, S. lentus, S. epidermidis, the yeast Candida glabrata, the phytopathogenic bacteria Xanthomonas campestris and Ralstonia solanacearum, and against the opportunistic pathogen Staphylococcus epidermidis | 3814 m Atlantic Ocean | IC50 = 8 μM, 20 μM, 43 μM, 117 μM, 43 μM, 176 μM and 43 μM, respectively | [42] |
Streptomyces sp. NTK 937 | Caboxamycin | Cytotoxic activity towards gastric adenocarcinoma (AGS), HepG2 and MCF-7. | 3814 m Atlantic Ocean | IC50 = 28.6–29.4 μM | [42] |
Streptomyces sp. NTK 937 | Caboxamycin | Weak inhibitor of bovine brain phosphodiesterase | 3814 m Atlantic Ocean | IC50 = 148 μM | [42] |
Nocardiopsis alba | Diketopiperazines | Cytotoxicity against MCF7 and SF-268 human cancer cell lines | 1000 m Indian Ocean | IC50 = 4.6 and 12.7 μM, respectively | [43] |
Bacillus pumilus MB 40 | Bis (2-ethylhexyl) phthalate (BEHP) | Antiproliferative effect against human erythroleukemic K562 through apoptosis. | 1000 m Red Sea | IC50 = 21 μM | [44] |
Marine Organism | Compounds | Activity/Experimental Model | Depth/Site | Concentrations | Ref. |
---|---|---|---|---|---|
Aspergillus fischeri FS452 | Fiscpropionates A and C | Inhibitory activities against Mycobacterium tuberculosis protein-tyrosine phosphatase B | 3000 m Indian Ocean | IC50 = 5.1 and 4 μM, respectively | [46] |
Emericella sp. SCSIO05240 | Emerixanthones A and C | Antibacterial activity against E. coli, K. pneumoniae, S. aureus, E.faecalis, A. Baumanni, A. hydrophila | 3258 m South China Sea | Diameters of inhibition zones were 4–6 mm | [47] |
Emericella sp. SCSIO05240 | Emerixanthone D | Antifungal activity against Fusarium sp., Penicillium sp., Aspergillus niger, Rhizoctonia solani, Fusariumoxy sporium f. sp. niveum, Fusariumoxy sporium f. sp. cucumeris | 3258 m South China Sea | Diameters of inhibition zones were 3–4 mm | [47] |
Penicillium aculeatum SD-321 | Compound 1 (peniciaculin A) Compounds 2 (peniciaculin B) and 4 (1-hydroxyboivinianin A) Compound 6 (bisabolane) | Antibacterial activity against: Micrococcus luteus and Vibrio alginolyticus Edwardsiella tarda and Vibrio harveyi Staphyloccocus aureus and Vibrio parahemolyticus | 2038 m South China Sea | MIC = 1.0 and 2.0 μg/mL, respectively MIC = 8.0 and 4.0 μg/mL, respectively MIC = 0.5 μg/mL | [48] |
Penicillium aculeatum SD-321 | Compound 1 (peniciaculin A) Compounds 7 and 10 (bisabolanes) | Antifungal activity against: Alternaria brassicae Gaeumannomyces graminis | 2038 m South China Sea | MIC = 0.5 μg/mL MIC = 0.5 μg/mL | [48] |
Penicillium sp. F23-2 | Penycyclones A–E | Antimicrobial activity against the Gram-positive bacterium Staphylococcus aureus | 5080 m Jiaozhou Bay, Qingdao, China | MIC = 0.3 to 1.0 μg/mL | [49] |
Spiromastix sp. MCCC3A00308 | Spiromastilactones A–M | Antiviral activity against influenza virus replication in vitro | 2869 m South Atlantic | Table 3 in the reference | [50] |
Simplicillium oblavatum EIODSF 020 | Simplicilliumtide J, Verlamelins A and B | Antifungal activity against Aspergillus versicolor and Curvularia australiensis | 4571 m East Indian Ocean | MIC = 50 μg/mL | [51] |
Simplicillium oblavatum EIODSF 020 | Simplicilliumtide J, Verlamelins A and B | Antiviral activity against HSV-1 | 4571 m East Indian Ocean | IC50 = 14.0, 16.7 and 15.6 μM/mL, respectively | [51] |
Acremonium sp. | Acremeremophilanes B and E | Inhibitory effects towards LPS-induced NO production in RAW 264.7 | 2869 m South Atlantic Ocean | EC50 = 8 μM and 15 μM, respectively | [52] |
Eutypella sp. MCCC3A00281 | Eutyperemophilanes I and J | Inhibitory effects towards LPS-induced NO production in RAW 264.7 | 5610 m South Atlantic Ocean | IC50 = 8.6 and 13 μM | [53] |
Penicillium chrysogenum SCSIO411001 | Trans-epoxyamides, chrysamides C | Inhibitory effects on the Interleukin-17 production | 3386 m Indian Ocean | 1 μM for 40.06% of inhibition | [54] |
Myrothecium sp. BZO-L062 | (−)-1S-myrothecol and (+)-1R-myrothecol | Anti-inflammatory, inhibiting NO formation in LPS-treated macrophage-like cells | 2130 m Yongxing Island | EC50 = 1.20 and 1.41 μg/mL | [55] |
Aspergillus sp. SCSIOW2 | Cyclopenol and cyclopenin | Inhibited the LPS-induced formationof nitric oxide and the secretion of IL-6 in RAW 264.7 cells | 2439 m South China Sea | IC50 = 50–100 μM | [56] |
Penicillium chrysogenum MCCC 3A00292 | Cyclopenol | Inhibition of human Bladder cancer cell line BIU-87 | - | IC50 = 8.34 μM | [57] |
Penicillium spp. and Eurotium sp. | Fructigenine A, cyclopenol, echinulin, flavoglaucin, and viridicatol | Inhibition of protein-tyrosine phosphatase 1B | - Wan Island, Korea | IC50 = 10.7, 30.0, 29.4, 13.4, and 64.0 μM, respectively | [58] |
Graphostroma sp. MCC3A00421 | Reticulol | Decrease the rates of degranulation and histamine release in RBL-2H3 cells | 2721 m Atlantic hydrotermal sulfide | IC50 =13.5 and 13.7 μM | [59] |
Penicillum granulatum MCCC 3A00475 | Spirograterpene A | Antiallergic activity | 2284 m Prydz Bay of Antarctica | 20 μg/mL | [60] |
Penicillium chrysogenum SCSIO 07007 | Chrysopyrones A and B | Inhibited protein-tyrosine phosphatase-1B (PTP1B) involved in diabetes mellitus | 1000 m Western Atlantic | IC50 = 9.32 and 27.8 μg/mL, respectively | [61] |
Engyodontium album DFFSCS021 | Engyodontiumone H (Compound 8) and a polyketide (Compound 16) Compounds 8 and the polyketides compounds 15 and 16 | Cytotoxic activity against human histiocitic lumphoma U937 Antibacterial activity against Escherichia coli and Bacillus subtilis | 3739 m South China Sea | IC50 = 4.9 and 8.8 μM, respectively MIC ≤ 64 μg/mL | [62] |
Acrostalagmus luteoalbus SCSIO F457 | Luteoalbusins A, B | Cytotoxic activity against SF-268, MCF-7, NCI-H460 and HepG2 | 2801 m South China Sea | IC50 from 0.23 to 1.31 μM | [63] |
Aspergillus versicolor | Oxisterigmatocystin A–C | Cytotoxic activity against A549 and HL-60 | 800 m Pacific Ocean | Moderate low micromolar cytotoxicity | [64] |
Penicillium sp. MCCC 3A00005 | Brevione I | Cytotoxicity against MCF-7 cells and A549 cells | 5115 m East Pacific | IC50 = 7.44 μM and 32.5 μM, respectively | [65] |
Penicillium sp. MCCC 3A00005 | Brevione A | Cytotoxicity against MCF-7 cells | 5115 m East Pacific | IC50 = 28.4 μM | [65] |
Penicillium sp. F00120 | Penicilliumin A | Moderately inhibited the in vitro proliferation of mouse melanoma (B16), human melanoma (A375), and human cervical carcinoma (Hela) cell lines | 1300 m South China Sea | GI50 = 27.37, 22.88, and 44.05 μg/mL, respectively | [66] |
Penicillium sp. F23-2 | Sorbicillamines A–E | Cytotoxic activity on HeLa, BEL-7402, HEK-293, HCT-116, and P388 cell line | 5080 m Huiquan bay, yellow Sea | IC50 > 10 μM | [67] |
Marine Organism | Activity/Experimental Model | Depth/Site | Concentrations | Ref. |
---|---|---|---|---|
Aegina citrea | Citotoxicity test against Leukemia L1210 cells | 200–1000 m Sagami Bay | IC50 = 100 mg/mL | [70] |
Crossota rufobrunea | Hemolytic activity test of suspension of sheep red blood cells | 200–1000 m Sagami Bay | ED50 = 100 mg/mL | [70] |
Atolla wyvillei | Crustacean letality test against shrimp Palaemon paucidens | 200–1000 m Sagami Bay | LD50 = 2 mg/g | [70] |
Marine Organism | Compound | Activity/Experimental Model | Depth/Site | Concentration | Ref. |
---|---|---|---|---|---|
Petrosia sp. | (−)-Duryne and (−)-Durynes B–F | Cytotoxic against HeLa cells | 415 m Japan | IC50 from 0.08 to 0.5 μM | [73] |
Xestospongia sp. | Alisiaquinones A–C | Antimalarial against Plasmodium falciparum | 250/400 m Australia | Submicromolar | [74] |
Leiodermatium sp. | Leiodermatolide | Antimitotic | 401 m USA | IC50 < 10 nM | [75] |
Latrunculia sp. | Discorhabdin A and Dihydrodiscorhabdin C | Anti-HCV | 230 m Alaska | EC90 < 10 μM | [76] |
Marine Organism | Activity/Experimental Model | Depth/Site | Concentrations | Ref. |
---|---|---|---|---|
Myctophum punctatum | Antiproliferative activity against A549 and MCF7 | 200–1000 m Straits of Messina (central Mediterranean Sea) | IC50 = 13.77–23.26 and 25.34–29.62 μg/mL, respectively | [77] |
Antibacterial activity against MRSA | IC50 = 40 and 320 μg/mL | |||
Meganyctiphanes norvegica | Antiproliferative activity against HepG2 | 200–1000 m Straits of Messina (central Mediterranean Sea) | IC50 = 3.81 and 7.51 μg/mL | [77] |
Antibacterial activity against MRSA | IC50 = 80–320 μg/mL |
Phylum | Marine Organism | Compound | Activity/Experimental Model | Depth/Site | Concentration | Ref. |
---|---|---|---|---|---|---|
Chordata | Aplidium sp. | Rossinones A and B | Antileukemic, anti-inflammatory and antiviral against HSV-1 | 200 m Antarctica | IC50 = 1.9 and 2.5 μM 2 μg/disk | [78] |
Echinodermata | Holopus rangii | Gymnochromes E and F | Antiproliferative against NCI/ADRRes | 358 m Caribbean | IC50 = 3.5 μM | [79] |
Mollusca | Bathymodiolus thermophilus | Bathymodiolamides A and B | Anticancer against HeLa and MCF-7 cell lines | 1733 m Mid-Atlantic ridge | IC50 = 0.4 μM and 0.5 μM; IC50 = 0.1 μM and 0.2 μM | [80] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saide, A.; Lauritano, C.; Ianora, A. A Treasure of Bioactive Compounds from the Deep Sea. Biomedicines 2021, 9, 1556. https://doi.org/10.3390/biomedicines9111556
Saide A, Lauritano C, Ianora A. A Treasure of Bioactive Compounds from the Deep Sea. Biomedicines. 2021; 9(11):1556. https://doi.org/10.3390/biomedicines9111556
Chicago/Turabian StyleSaide, Assunta, Chiara Lauritano, and Adrianna Ianora. 2021. "A Treasure of Bioactive Compounds from the Deep Sea" Biomedicines 9, no. 11: 1556. https://doi.org/10.3390/biomedicines9111556
APA StyleSaide, A., Lauritano, C., & Ianora, A. (2021). A Treasure of Bioactive Compounds from the Deep Sea. Biomedicines, 9(11), 1556. https://doi.org/10.3390/biomedicines9111556