The Associations of Circulating Sphingolipid Levels with Future Loss of Vibration and Light Pressure Sensation in the Lower Limb
Abstract
1. Introduction
2. Methods
2.1. Study Population
2.2. Sphingolipids
2.3. Vibration Sensation Testing
2.4. Pressure Sensation Testing
2.5. Covariates
2.6. Statistical Analyses
3. Results
3.1. Vibration Sensation
3.2. Light Pressure Sensation
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hicks, C.W.; Wang, D.; Windham, B.G.; Matsushita, K.; Selvin, E. Prevalence of peripheral neuropathy defined by monofilament insensitivity in middle-aged and older adults in two US cohorts. Sci. Rep. 2021, 11, 19159. [Google Scholar] [CrossRef]
- Barzilay, J.I.; Buzkova, P.; Longstreth, W.T., Jr.; Lopez, O.; Bleich, D.; Siscovick, D.; Newman, A.; Sarma, S.; Mukamal, K.J. The Association of Impaired Vibration Sensation in the Lower limb with Tests of Cognition in Older People. The Cardiovascular Health Study. Dement. Geriatr. Cogn. Disord. 2025, 54, 145–152. [Google Scholar] [CrossRef] [PubMed]
- Hicks, C.W.; Wang, D.; Matsushita, K.; Windham, B.G.; Selvin, E. Peripheral Neuropathy and All-Cause and Cardiovascular Mortality in U.S. Adults: A Prospective Cohort Study. Ann. Intern. Med. 2021, 174, 167–174. [Google Scholar] [CrossRef] [PubMed]
- Watson, J.C.; Dyck, P.J. Peripheral Neuropathy: A Practical Approach to Diagnosis and Symptom Management. Mayo Clin. Proc. 2015, 90, 940–951. [Google Scholar] [CrossRef] [PubMed]
- Zelnik, I.D.; Kim, J.L.; Futerman, A.H. The complex tail of circulating sphingolipids in atherosclerosis and cardiovascular disease. J. Lipid Atheroscler. 2021, 21, 268–281. [Google Scholar] [CrossRef]
- Riboni, L.; Viani, P.; Bassi, R.; Prinetti, A.; Tettamanti, G. The role of sphingolipids in the process of signal transduction. Prog. Lipid Res. 1997, 36, 153–195. [Google Scholar] [CrossRef]
- Iqbal, J.; Walsh, M.T.; Hammad, S.M.; Mahmood Hussain, M. Sphingolipids and Lipoproteins in Health and Metabolic Disorders. Trends Endocrinol. Metab. 2017, 28, 506–518. [Google Scholar] [CrossRef]
- Ali-Berrada, S.; Guitton, J.; Tan-Chen, S.; Gyulkhandanyan, A.; Jajduch, E.; He Stunff, H. Circulating Sphingolipids and Glucose Homeostasis: An Update. Int. J. Med. Sci. 2023, 24, 12720. [Google Scholar] [CrossRef]
- Gomez-Larrauri, A.; Larrea-Sebal, A.; Martín, C.; Gomez-Muñoz, A. The critical roles of bioactive sphingolipids in inflammation. J. Biol. Chem. 2025, 301, 110475. [Google Scholar] [CrossRef]
- Barisch, C.; Holthuis, J.C.M.; Cosentino, K. Membrane damage and repair: A thin line between life and death. Biol. Chem. 2023, 404, 467–490. [Google Scholar] [CrossRef]
- Hammad, S.M.; Lopes-Virella, M.F. Circulating Sphingolipids in Insulin Resistance, Diabetes and Associated Complications. Int. J. Mol. Sci. 2023, 24, 14015. [Google Scholar] [CrossRef]
- D’Angelo, G.; Moorthi, S.; Luberto, C. Role and Function of Sphingomyelin Biosynthesis in the Development of Cancer. Adv. Cancer Res. 2018, 140, 61–96. [Google Scholar] [CrossRef]
- Jensen, P.N.; Fretts, A.M.; Hoofnagle, A.N.; Sitlani, C.M.; McKnight, B.; King, I.B.; Siscovick, D.S.; Psaty, B.M.; Heckbert, S.R.; Mozaffarian, D.; et al. Plasma Ceramides and Sphingomyelins in Relation to Atrial Fibrillation Risk: The Cardiovascular Health Study. J. Am. Heart Assoc. 2020, 9, e012853. [Google Scholar] [CrossRef]
- Jensen, P.N.; Fretts, A.M.; Hoofnagle, A.N.; Sitlani, C.M.; McKnight, B.; King, I.B.; Siscovick, D.S.; Psaty, B.M.; Heckbert, S.R.; Mozaffarian, D.; et al. Plasma Ceramides and Sphingomyelins in Relation to Heart Failure Risk. Circ. Heart Fail. 2019, 12, e005708. [Google Scholar] [CrossRef]
- Moseholm, K.F.; Cronjé, H.T.; Koch, M.; Fitzpatrick, A.L.; Lopez, O.L.; Otto, M.C.d.O.; Longstreth, W.T.; Hoofnagle, A.N.; Mukamal, K.J.; Lemaitre, R.N.; et al. Circulating sphingolipids in relation to cognitive decline and incident dementia: The Cardiovascular Health Study. Alzheimer’s Dementia: Diagn. Assess. Dis. Monit. 2024, 16, e12623. [Google Scholar] [CrossRef] [PubMed]
- Moseholm, K.F.; Horn, J.W.; Fitzpatrick, A.L.; Djoussé, L.; Longstreth, W.T.; Lopez, O.L.; Hoofnagle, A.N.; Jensen, M.K.; Lemaitre, R.N.; Mukamal, K.J. Circulating sphingolipids and subclinical brain pathology: The cardiovascular health study. Front. Neurol. 2024, 15, 1385623. [Google Scholar] [CrossRef] [PubMed]
- Chowdhury, M.D.R.; Jin, H.K.; Bae, J.S. Diverse Roles of Ceramide in the Progression and Pathogenesis of Alzheimer’s Disease. Biomedicines 2022, 10, 1956. [Google Scholar] [CrossRef]
- van Kruining, D.; Luo, Q.; van Echten-Deckert, G.; Mielke, M.M.; Bowman, A.; Ellis, S.; Oliveira, T.G.; Martinez-Martinez, P. Sphingolipids as prognostic biomarkers of neurodegeneration, neuroinflammation, and psychiatric diseases and their emerging role in lipidomic investigation methods. Adv. Drug Deliv. Rev. 2020, 159, 232–244. [Google Scholar] [CrossRef]
- Bernal-Vega, S.; Garcia- Juarez, M.; Camacho-Morales, A. Contribution of ceramides metabolism in psychiatric disorders. J. Neurochem. 2023, 164, 708–724. [Google Scholar] [CrossRef] [PubMed]
- Fried, L.P.; Borhani, N.O.; Enright, P.; Furberg, C.D.; Gardin, J.M.; A Kronmal, R.; Kuller, L.H.; Manolio, T.A.; Mittelmark, M.B.; Newman, A. The Cardiovascular Health Study: Design and rationale. Ann. Epidemiol. 1991, 1, 263–276. [Google Scholar] [CrossRef]
- Mancini, A.; Imperlini, E.; Nigro, E.; Montagnese, C.; Daniele, A.; Orrù, S.; Buono, P. Biological and nutritional properties of palm oil and palmitic acid: Effects on health. Molecules 2015, 20, 17339–17361. [Google Scholar] [CrossRef]
- Kim, B.; Feldman, E.L. Insulin resistance in the nervous system. Trends Endocrinol. Metabol. 2012, 23, 133–141. [Google Scholar] [CrossRef] [PubMed]
- Czubowicz, K.; Strosznajder, R. Ceramide in the molecular mechanisms of neuronal cell death. The role of sphingosine-1-phosphate. Mol. Neurobiol. 2014, 50, 26–37. [Google Scholar] [CrossRef]
- Korbecki, J.; Bajdak-Rusinek, K. The effect of palmitic acid on inflammatory response in macrophages: An overview of molecular mechanisms. Inflamm. Res. 2019, 68, 915–932. [Google Scholar] [CrossRef]
- Kwon, B.; Lee, H.K.; Querfurth, H.W. Oleate prevents palmitate-induced mitochondrial dysfunction, insulin resistance and inflammatory signaling in neuronal cells. Biochim. Biophys. Acta 2014, 1843, 1402–1413. [Google Scholar] [CrossRef] [PubMed]
- Garner, A.E.; Smith, D.A.; Hooper, N.M. Sphingomyelin chain length influences the distribution of GPI-anchored proteins in rafts in supported lipid bilayers. Mol. Membr. Biol. 2007, 24, 233–242. [Google Scholar] [CrossRef]
- Milhas, D.; Clarke, C.J.; Hannun, Y.A. Sphingomyelin metabolism at the plasma membrane: Implications for bioactive sphingolipids. FEBS Lett. 2010, 584, 1887–1894. [Google Scholar] [CrossRef]
- Hammad, S.M.; Baker, N.L.; El Abiad, J.M.; Spassieva, S.D.; Pierce, J.S.; Rembiesa, B.; Bielawski, J.; Lopes-Virella, M.F.; Klein, R.L.; DCCT/EDIC Group of Investigators. Increased Plasma Levels of Select Deoxy-ceramide and Ceramide Species are Associated with Increased Odds of Diabetic Neuropathy in Type 1 Diabetes: A Pilot Study. Neuromolecular Med. 2017, 19, 46–56. [Google Scholar] [CrossRef]
- Song, L.; Han, R.; Yin, H.; Li, J.; Zhang, Y.; Wang, J.; Yang, Z.; Bai, J.; Guo, M. Sphingolipid metabolism plays a key role in diabetic peripheral neuropathy. Metabolomics 2022, 18, 32. [Google Scholar] [CrossRef]
- Rumora, A.E.; Guo, K.; Alakwaa, F.M.; Andersen, S.T.; Reynolds, E.L.; Jørgensen, M.E.; Witte, D.R.; Tankisi, H.; Charles, M.; Savelieff, M.G.; et al. Plasma lipid metabolites associate with diabetic polyneuropathy in a cohort with type 2 diabetes. Ann. Clin. Transl. Neurol. 2021, 8, 1292–1307. [Google Scholar] [CrossRef] [PubMed]
- Afshinnia, F.; Reynolds, E.L.; Rajendiran, T.M.; Soni, T.; Byun, J.; Savelieff, M.G.; Looker, H.C.; Nelson, R.G.; Michailidis, G.; Callaghan, B.C.; et al. Serum lipidomic determinants of human diabetic neuropathy in type 2 diabetes. Ann. Clin. Transl. Neurol. 2022, 9, 1392–1404. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Liu, Z.; Yang, Q.; Qiao, H.; Yin, Y.; Zhao, Z.; Shao, X. Causal relationships between plasma lipidome and diabetic neuropathy: A Mendelian randomization study. Front. Endocrinol. 2025, 15, 1398691. [Google Scholar] [CrossRef] [PubMed]

| Q1 | Q2 | Q3 | Q4 | |
|---|---|---|---|---|
| Ceramide-16 Levels (μg/mL) Range (n) | 0.12–0.22 (555) | 0.22–0.25 (547) | 0.25–0.29 (554) | 0.29–0.80 (552) |
| BASELINE CHARACTERISTICS | ||||
| Age (years) | 75.34 (4.32) | 75.55 (4.24) | 75.49 (4.33) | 75.68 (4.66) |
| Male sex | 237 (42.7%) | 209 (38.2%) | 226 (40.8%) | 196 (35.5%) |
| African American race | 101 (18.2%) | 85 (15.5%) | 65 (11.7%) | 73 (13.2%) |
| Education, at least 12th grade | 452 (81.4%) | 431 (78.8%) | 416 (75.1%) | 411 (74.5%) |
| Any ADL difficulty | 75 (13.7%) | 69 (12.7%) | 63 (11.6%) | 80 (14.7%) |
| Very Good to Excellent self-reported health | 241 (43.4%) | 223 (40.8%) | 199 (35.9%) | 174 (31.5%) |
| Heavy Alcohol Use (>7 drinks/week) | 76 (13.7%) | 59 (10.8%) | 64 (11.6%) | 50 (9.1%) |
| Smoking Status | ||||
| Never | 256 (46.1%) | 279 (51.0%) | 260 (46.9%) | 277 (50.2%) |
| Former | 257 (46.3%) | 230 (42.0%) | 241 (43.5%) | 229 (41.5%) |
| Current | 42 (7.6%) | 38 (6.9%) | 53 (9.6%) | 46 (8.3%) |
| Waist Circumference (cms) | 96.66 (13.07) | 97.14 (11.98) | 96.98 (12.04) | 98.44 (13.20) |
| Weight (lbs) | 163.35 (31.75) | 161.77 (29.31) | 160.48 (29.35) | 160.62 (32.24) |
| Height (cms) | 165.20 (9.31) | 164.36 (9.47) | 164.86 (9.08) | 164.06 (9.40) |
| SBP (mm Hg) | 132.97 (18.91) | 132.11 (18.95) | 133.69 (21.46) | 134.76 (20.14) |
| DBP (mmHg) | 69.84 (10.21) | 69.64 (11.37) | 70.14 (11.11) | 70.27 (10.97) |
| Blocks Walked in Prior Week | 43.85 (63.80) | 42.35 (58.31) | 43.36 (62.05) | 34.32 (55.18) |
| PREVALENT DISEASES | ||||
| CHD | 93 (16.8%) | 103 (18.8%) | 102 (18.4%) | 123 (22.3%) |
| MI | 46 (8.3%) | 51 (9.3%) | 42 (7.6%) | 55 (10.0%) |
| Stroke | 12 (2.2%) | 16 (2.9%) | 25 (4.5%) | 27 (4.9%) |
| CHF | 22 (4.0%) | 23 (4.2%) | 27 (4.9%) | 30 (5.4%) |
| HTN | 310 (55.9%) | 294 (53.7%) | 317 (57.2%) | 311 (56.3%) |
| Cancer (ever) | 106 (19.1%) | 113 (20.7%) | 93 (16.8%) | 111 (20.1%) |
| Diabetes Status † | ||||
| Never | 455 (82.0%) | 463 (84.6%) | 447 (80.7%) | 406 (73.6%) |
| Incident | 15 (2.7%) | 10 (1.8%) | 22 (4.0%) | 25 (4.5%) |
| Prevalent | 85 (15.3%) | 74 (13.5%) | 85 (15.3%) | 121 (21.9%) |
| LABORATORY TESTS | ||||
| Total Cholesterol (mg/mL) | 194.38 (35.60) | 207.32 (33.10) | 214.97 (34.89) | 224.61 (36.63) |
| HDL-C (mg/mL) | 56.44 (15.36) | 54.53 (13.74) | 52.08 (13.78) | 52.12 (14.12) |
| LDL-C (mg/mL) | 114.89 (31.29) | 126.68 (29.84) | 133.51 (30.81) | 139.73 (33.42) |
| Triglycerides (mg/mL) | 117.03 (67.09) | 132.13 (75.01) | 151.56 (84.80) | 171.92 (98.72) |
| CRP (mg/L) | 4.31 (7.40) | 5.02 (8.45) | 4.51 (8.15) | 6.21 (11.50) |
| IL-6 (pg/mL) | 2.96 (1.89) | 3.02 (1.88) | 3.12 (2.08) | 3.37 (2.13) |
| eGFRcystatin (mL/min/1.73 m2) | 72.34 (16.68) | 69.93 (15.51) | 68.92 (17.19) | 67.14 (17.24) |
| FIELD CENTER | ||||
| North Carolina | 142 (25.6%) | 119 (21.8%) | 144 (26.0%) | 142 (25.7%) |
| California | 137 (24.7%) | 163 (29.8%) | 141 (25.5%) | 149 (27.0%) |
| Maryland | 105 (18.9%) | 118 (21.6%) | 126 (22.7%) | 145 (26.3%) |
| Pennsylvania | 171 (30.8%) | 147 (26.9%) | 143 (25.8%) | 116 (21.0%) |
| Variable | Model 1 | Model 2 | Model 3 |
|---|---|---|---|
| SM-14 | 1.04 (0.81,1.33), 0.76 | 0.97 (0.75,1.26), 0.83 | 0.98 (0.74,1.29), 0.88 |
| SM-16 | 1.23 (0.69,2.17), 0.48 | 1.76 (0.97,3.18), 0.06 | 2.08 (1.11, 3.90), 0.02 |
| SM-18 | 1.16 (0.83,1.62), 0.39 | 1.16 (0.82,1.63), 0.41 | 1.16 (0.80,1.67), 0.43 |
| SM-20 | 0.84 (0.56,1.26), 0.39 | 0.76 (0.50,1.16), 0.20 | 0.73 (0.47,1.14), 0.16 |
| SM-22 | 0.81 (0.54,1.22), 0.32 | 0.71 (0.47,1.09), 0.12 | 0.66 (0.42,1.04), 0.07 |
| SM-24 | 0.73 (0.51,1.04), 0.08 | 0.71 (0.49,1.03), 0.07 | 0.68 (0.46,0.998), 0.049 |
| Cer-16 | 1.31 (0.89,1.95), 0.17 | 1.38 (0.92,2.06), 0.12 | 1.47 (0.96,2.26), 0.08 |
| Cer-18 | 1.15 (0.93,1.41), 0.19 | 1.12 (0.91,1.38), 0.30 | 1.10 (0.88,1.38), 0.42 |
| Cer-20 | 1.19 (0.93,1.52), 0.16 | 1.18 (0.92,1.52), 0.20 | 1.14 (0.87,1.49), 0.35 |
| Cer-22 | 1.07 (0.80,1.44), 0.65 | 0.96 (0.71,1.31), 0.81 | 0.92 (0.66,1.28), 0.60 |
| Cer-24 | 0.90 (0.63,1.28), 0.55 | 0.89 (0.62,1.28), 0.52 | 0.84 (0.57,1.24), 0.38 |
| SL Species | Model 1 | Model 2 | Model 3 |
|---|---|---|---|
| SM-14 | 0.95 (0.71, 1.26), 0.70 | 0.92 (0.69, 1.24), 0.59 | 0.93 (0.69, 1.26), 0.65 |
| SM-16 | 1.33 (0.62, 2.86), 0.47 | 2.01 (0.90, 4.48), 0.09 | 2.46 (1.05, 5.76), 0.04 |
| SM-18 | 1.33 (0.82, 2.13), 0.24 | 1.34 (0.82, 2.19), 0.25 | 1.32 (0.77, 2.27), 0.31 |
| SM-20 | 0.95 (0.56, 1.62), 0.85 | 0.87 (0.51, 1.47), 0.60 | 0.82 (0.46, 1.44), 0.49 |
| SM-22 | 0.99 (0.60, 1.63), 0.97 | 0.86 (0.52, 1.42), 0.54 | 0.79 (0.46, 1.34), 0.38 |
| SM-24 | 0.82 (0.53, 1.26), 0.36 | 0.79 (0.51, 1.23), 0.31 | 0.76 (0.48, 1.21), 0.24 |
| Cer-16 | 1.74 (1.01, 3.01), 0.046 | 1.96 (1.12, 3.43), 0.02 | 2.14 (1.16, 3.93), 0.01 |
| Cer-18 | 1.32 (0.97, 1.80), 0.07 | 1.29 (0.95, 1.75), 0.10 | 1.26 (0.91, 1.75), 0.17 |
| Cer-20 | 1.24 (0.89, 1.72), 0.21 | 1.20 (0.86, 1.67), 0.27 | 1.12 (0.79, 1.60), 0.52 |
| Cer-22 | 1.10 (0.77, 1.58), 0.61 | 0.99 (0.69, 1.44), 0.98 | 0.92 (0.62, 1.36), 0.66 |
| Cer-24 | 0.88 (0.59, 1.32), 0.54 | 0.88 (0.58, 1.34), 0.55 | 0.80 (0.51, 1.24), 0.32 |
| SL Species | Significant Interactions of SL Species with Diabetes Status |
|---|---|
| SM-14 | p = 0.02 |
| NEVER | 0.97 (0.62, 1.52) |
| PREVALENT | 1.06 (0.45, 2.48) |
| INCIDENT | 5.22 (1.58, 17.29) |
| CER-18 | p = 0.01 |
| NEVER | 0.78 (0.55,1.12) |
| PREVALENT | 2.38 (1.18, 4.78) |
| INCIDENT | 0.71 (0.25, 2.01) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barzilay, J.I.; Bartz, T.M.; Longstreth, W.T., Jr.; Strotmeyer, E.S.; Hoofnagle, A.N.; Siscovick, D.; Mukamal, K.J.; Lemaitre, R.N. The Associations of Circulating Sphingolipid Levels with Future Loss of Vibration and Light Pressure Sensation in the Lower Limb. Biomedicines 2025, 13, 2995. https://doi.org/10.3390/biomedicines13122995
Barzilay JI, Bartz TM, Longstreth WT Jr., Strotmeyer ES, Hoofnagle AN, Siscovick D, Mukamal KJ, Lemaitre RN. The Associations of Circulating Sphingolipid Levels with Future Loss of Vibration and Light Pressure Sensation in the Lower Limb. Biomedicines. 2025; 13(12):2995. https://doi.org/10.3390/biomedicines13122995
Chicago/Turabian StyleBarzilay, Joshua I., Traci M. Bartz, William T. Longstreth, Jr., Elsa S. Strotmeyer, Andrew N. Hoofnagle, David Siscovick, Kenneth J. Mukamal, and Rozenn N. Lemaitre. 2025. "The Associations of Circulating Sphingolipid Levels with Future Loss of Vibration and Light Pressure Sensation in the Lower Limb" Biomedicines 13, no. 12: 2995. https://doi.org/10.3390/biomedicines13122995
APA StyleBarzilay, J. I., Bartz, T. M., Longstreth, W. T., Jr., Strotmeyer, E. S., Hoofnagle, A. N., Siscovick, D., Mukamal, K. J., & Lemaitre, R. N. (2025). The Associations of Circulating Sphingolipid Levels with Future Loss of Vibration and Light Pressure Sensation in the Lower Limb. Biomedicines, 13(12), 2995. https://doi.org/10.3390/biomedicines13122995

