Development of a New Analytical Method for Determination of Veterinary Drug Oxyclozanide by Electrochemical Sensor and Its Application to Pharmaceutical Formulation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Apparatus
2.2. Chemicals and Reagents
2.3. Analytical Procedures
3. Results and Discussion
3.1. Cyclic Voltammetry
3.2. Square Wave Anodic Stripping Voltammetry
3.2.1. Influence of pH and Square Wave Parameters
3.2.2. Quantitative Study
3.2.3. Interference Study
3.2.4. Application to Pharmaceutical Formulation and Tap Water
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Klatte, S.; Schaefer, H.; Hempel, M. Pharmaceuticals in the environment—A short review on options to minimize the exposure of humans, animals and ecosystems. Sustain. Chem. Pharm. 2017, 5, 61–66. [Google Scholar] [CrossRef]
- Rather, J.A.; Jain, R. Stripping voltammetric detection of nephrotoxic drug cefitizoxime in wastewater. Anal. Chem. Res. 2015, 4, 13–19. [Google Scholar] [CrossRef] [Green Version]
- Lanusse, C.E.; Virkel, G.L.; Alvarez, L.I. Anticestodal and Antitrematodal Drugs. In Veterinary Pharmacology and Therapeutics, 9th ed.; Riviere, J.E., Papich, M.G., Adams, H.R., Eds.; Wiley-Blackwell: Hoboken, NJ, USA, 2009; pp. 1081–1101. [Google Scholar]
- Kinsella, B.; Lehotay, S.J.; Mastovska, K.; Lightfield, A.R.; Furey, A.; Danaher, M. New method for the analysis of flukicide and other anthelmintic residues in bovine milk and liver using liquid chromatography-tandem mass spectrometry. Anal. Chim. Acta. 2009, 637, 196–207. [Google Scholar] [CrossRef]
- Rajamuthiah, R.; Fuchs, B.B.; Conery, A.L.; Kim, W.; Jayamani, E.; Kwon, B.; Ausubel, F.M.; Mylonakis, E. Repurposing salicylanilide anthelmintic drugs to combat drug resistant Staphylococcus aureus. PLoS ONE 2015, 10, e0124595. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, J.L.; Si, H.F.; Zhou, X.Z.; Shang, X.F.; Li, B.; Zhang, J.Y. High prevalence of fasciolosis and evaluation of the efficacy of anthelmintics against Fasciola hepatica in buffaloes in Guangxi, China. Int. J. Parasitol. Parasites Wildl. 2019, 8, 82–87. [Google Scholar] [CrossRef] [PubMed]
- Khan, A.R.; Akhtar, M.J.; Mahmood, R.; Ahmed, S.M.; Malook, S.; Iqbal, M. LC assay method for oxfendazole and oxyclozanide in pharmaceutical preparation. J. Pharm. Biomed. 2000, 22, 111–114. [Google Scholar] [CrossRef]
- Jo, K.; Cho, H.J.; Yi, H.; Cho, S.M.; Park, J.A.; Kwon, C.H.; Park, H.R.; Kwon, K.S.; Shin, H.C. Determination of oxyclozanide in beef and milk using high-performance liquid chromatography system with UV detector. Lab Anim. Res. 2011, 27, 37–40. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mohamed, A.O.; Ramadan, N.K.; Shawky, S.E.; Salem, M.Y. Simultaneous determination of oxyclozanide and levamisole by spectrophotometric and chromatographic methods. J. Appl. Pharm. Sci. 2014, 4, 36–45. [Google Scholar]
- Patel, M.B.; Patel, R.K.; Patel, S.G.; Patel, A.J. Development and validation of HPTLC method for simultaneous estimation of levamisole hydrochloride and oxyclozanide in its bulk and pharmaceutical dosage form. Austin Chromatogr. 2017, 4, 1045. [Google Scholar]
- Li, S.P.; Huang, X.H.; Wang, W.; Yan, C.Y.; Kong, X.K. Simultaneous determination of phenolic and salicylanilide anthelmintics multi-residues in cattle and ovine tissues by HPLC MS/MS. Chin. J. Anal. Chem. 2014, 42, 423–428. [Google Scholar]
- Sakamoto, M.; Takebe, K.; Sasamoto, T.; Kusano, T.; Hayashi, H.; Kanai, S.; Kanda, M.; Nagayama, T. Determination of bithionol, nitroxynil, oxyclozanide, and tribromsalan in milk with liquid choromatography coupled with tandem mass spectrometry. J. AOAC Int. 2010, 93, 1340–1346. [Google Scholar] [CrossRef] [Green Version]
- Dinç, E.; Onur, F. Comparative study of the ratio spectra derivative spectrophotometry, derivative spectrophotometry and Vierordt’s method applied to the analysis of oxfendazole and oxyclozanide in a veterinary formulation. Analusis 1997, 25, 55–59. [Google Scholar]
- Cai, Z.Q.; Zhu, Y.X.; Zhang, Y. Simultaneous determination of dissolved anthracene and pyrene in aqueous solution by synchronous fluorimetry. Spectrochim. Acta 2008, 69, 130–133. [Google Scholar] [CrossRef] [PubMed]
- Mailu, S.N.; Waryo, T.T.; Ndangili, P.M.; Ngece, F.R.; Baleg, A.A.; Baker, P.G.; Iwuoha, E.I. Determination of anthracene on ag-au alloy nanoparticles/overoxidized-polypyrrole composite modified glassy carbon electrodes. Sensors 2010, 10, 9449–9465. [Google Scholar] [CrossRef] [PubMed]
- Demir, E.; İnam, O.; İnam, R.; Aboul-Enein, H.Y. Voltammetric determination of ophthalmic drug dexamethasone using poly-glycine multi walled carbon nanotubes modified paste electrode. Curr. Anal. Chem. 2018, 14, 83–89. [Google Scholar] [CrossRef]
- Elfiky, M.; Salahuddin, N.; Hassanein, A.; Matsuda, A.; Hattori, T. Detection of antibiotic Ofloxacin drug in urine using electrochemical sensor based on synergistic effect of different morphological carbon materials. Microchem. J. 2019, 146, 170–177. [Google Scholar] [CrossRef]
- Falone, M.F.; Salamanca-Neto, C.A.R.; Moraes, J.T.; Sartori, E.R. Electrochemical evaluation and voltammetric determination of laxative drug bisacodly on boron-doped diamond electrode. Measurement 2019, 137, 464–469. [Google Scholar] [CrossRef]
- Silva, R.O.; Silva, E.A.; Fiorucci, A.R.; Ferreira, V.S. Electrochemically activated multi-walled carbon nanotubes modified screen-printed electrode for voltammetric determination of sulfentrazone. J. Electroanal. Chem. 2019, 835, 220–226. [Google Scholar] [CrossRef]
- Lu, J.; Sun, Y.; Waterhouse, G.I.N.; Xu, Z. A voltammetric sensor based on the use of reduced graphene oxide and hollow gold nanoparticles for the quantification of methyl parathion and parathion in agricultural products. Adv. Polym. Technol. 2018, 37, 3629–3638. [Google Scholar] [CrossRef]
- Cheng, Y.; Hao, Z.; Haoab, C.; Dengab, Y.; Liab, X.; Li, K.; Zhao, Y. A review of modification of carbon electrode material in capacitive deionization. RSC Adv. 2019, 9, 24401–24419. [Google Scholar] [CrossRef]
- Shetti, N.P.; Malode, S.J.; Nandibewoor, S.T. Electrochemical behavior of an antiviral drug acyclovir at fullerene-C60-modified glassy carbon electrode. Bioelectrochemistry 2012, 88, 76–83. [Google Scholar] [CrossRef] [PubMed]
- Brycht, M.; Kaczmarska, K.; Uslu, B.; Ozkan, S.A.; Skrzypek, S. Sensitive determination of anticancer drug imatinib in spikes human urine samples by differential pulse voltammetry on anodically pretreated boron-doped diamond electrode. Diam. Relat. Mater. 2016, 68, 13–22. [Google Scholar] [CrossRef]
- Acar, E.T.; Atun, G. Sensitive determination of nicotine on polyNiTSPc electrodeposited glassy carbon electrode: Investigation of reaction mechanism. Electroanalysis 2018, 30, 2994–3002. [Google Scholar] [CrossRef]
- Demir, E.; İnam, R.; Ozkan, S.A.; Uslu, B. Electrochemical behavior of tadalafil on TiO2 nanoparticles-MWCNT composite paste electrode and its determination in pharmaceutical dosage forms and human serum samples using anodic stripping square wave voltammetry. J. Solid State Electrochem. 2014, 18, 2709–2720. [Google Scholar] [CrossRef]
- Li, L.; Zheng, H.; Guo, L.; Qu, L.; Yu, L. A sensitive and selective molecularly imprinted electrochemical sensor based on Pd-Cu bimetallic alloy functionalized graphene for detection of amaranth in soft drink. Talanta 2019, 197, 68–76. [Google Scholar] [CrossRef]
- Yalikun, N.; Mamat, X.; Li, Y.; Hu, X.; Wagberg, T.; Dong, Y.; Hu, G. Synthesis of an iron-nitrogen co-doped ordered mesoporous carbon-silicon nanocomposite as an enhanced electrochemical sensor for sensitive and selective determination of chloramphenicol. Colloids Surf. B Biointerfaces 2018, 172, 98–104. [Google Scholar] [CrossRef]
- Sabbaghi, N.; Noroozifar, M. Nanoraspberry-like copper/ reduced graphene oxide as new modifier for simultaneous determination of benzenediols isomers and nitrite. Anal. Chim. Acta 2019, 1056, 16–25. [Google Scholar] [CrossRef]
- Lovric, M.; Komorsky-Lovric, S. Square-wave voltammetry of an adsorbed reactant. J. Electroanal. Chem. Interfacial. Electrochem. 1988, 248, 239–253. [Google Scholar] [CrossRef]
- Currie, L.A. International recommendations offered on analytical detection and quantification concepts and nomenclature. Anal. Chim. Acta 1999, 391, 103–134. [Google Scholar] [CrossRef]
Parameters | Performance Data |
---|---|
Peak potential (mV) | 780 |
Linearity range (mg/L) | 0.058 – 4.00 |
Slope (µA L/mg) | 65.52 ± 2.06 |
Intercept (µA) | 13.64 ± 2.60 |
Correlation coefficient | 0.995 |
Limit of determination (LOD) (µg/L) | 17.42 |
Limit of quantification (LOQ) (µg/L) | 58.07 |
Repeatability of peak current (RSD %)* | 2.08 |
Repeatability of peak potential (RSD %)* | 4.53 |
Interfering Species | Mass Ratio of 1:1 | Mass Ratio of 1:5 | Mass Ratio of 1:10 |
---|---|---|---|
Recoveries % | Recoveries % | Recoveries % | |
Gentamicin | 97.56 ± 1.88 | 96.20 ± 3.89 | 95.74 ± 2.95 |
Florfenicol | 99.74 ± 2.85 | 95.65 ± 1.51 | 90.33 ± 1.64 |
Levamisole | 102.92 ± 1.72 | 98.66 ± 3.58 | 94.25 ± 3.01 |
Oxfendazole | 98.35 ± 1.35 | 93.65 ± 2.19 | 86.99 ± 2.44 |
Cu (II) | 104.68 ± 2.01 | 104.20 ± 2.73 | 103.48 ± 3.74 |
Zn (II) | 98.15 ± 2.15 | 96.41 ± 2.75 | 91.63 ± 2.95 |
Pb (II) | 102.33 ± 1.60 | 102.29 ± 2.85 | 95.96 ± 2.02 |
Ba (II) | 100.50 ± 2.42 | 100.25 ± 1.76 | 100.15 ± 1.38 |
Fe (III) | 102.25 ± 0.59 | 98.36 ± 2.89 | 94.57 ± 2.28 |
SWSV (N = 3) | HPLC (N = 3) | |
---|---|---|
Labeled claim (mg) | 750.0 | 750.0 |
Amount found (mg ± mg) | 761.1 ± 25.6 | 757.7 ± 12.9 |
RSD (%) | 3.40 | 0.69 |
Bias (%) | +1.50 | +1.02 |
Student t-test | 0.51 × (2.78) | |
Variance ratio F-test | 3.92 × (19.0) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Demir, E.; Silah, H. Development of a New Analytical Method for Determination of Veterinary Drug Oxyclozanide by Electrochemical Sensor and Its Application to Pharmaceutical Formulation. Chemosensors 2020, 8, 25. https://doi.org/10.3390/chemosensors8020025
Demir E, Silah H. Development of a New Analytical Method for Determination of Veterinary Drug Oxyclozanide by Electrochemical Sensor and Its Application to Pharmaceutical Formulation. Chemosensors. 2020; 8(2):25. https://doi.org/10.3390/chemosensors8020025
Chicago/Turabian StyleDemir, Ersin, and Hulya Silah. 2020. "Development of a New Analytical Method for Determination of Veterinary Drug Oxyclozanide by Electrochemical Sensor and Its Application to Pharmaceutical Formulation" Chemosensors 8, no. 2: 25. https://doi.org/10.3390/chemosensors8020025
APA StyleDemir, E., & Silah, H. (2020). Development of a New Analytical Method for Determination of Veterinary Drug Oxyclozanide by Electrochemical Sensor and Its Application to Pharmaceutical Formulation. Chemosensors, 8(2), 25. https://doi.org/10.3390/chemosensors8020025