Evaluation of Phytoremediation Effectiveness Using Laser-Induced Breakdown Spectroscopy with Integrated Transfer Learning and Spectral Indices
Abstract
1. Introduction
2. Materials and Methods
2.1. Plant Cultivation and Heavy Metal Treatment
2.2. Sample Preparation and LIBS Data Collection
2.3. Determination of Cd and Zn Concentrations in S. alfredii and Soil
2.4. Calculation of Indicators to Evaluate Phytoremediation Effectiveness
2.5. Spectral Methods for Evaluating Phytoremediation Effectiveness
2.5.1. Concentration-Based Evaluation of Phytoremediation Effectiveness
2.5.2. Spectral Index-Based Evaluation of Phytoremediation Effectiveness
2.5.3. Accuracy Assessment of Spectra-Based Phytoremediation Evaluation
3. Results
3.1. Cd and Zn Concentrations and Phytoremediation Indicators
3.2. Evaluation of Phytoremediation Effectiveness Based on Concentration Prediction
3.2.1. Quantification of Cd and Zn in Shoots, Roots, and Soils
3.2.2. Phytoremediation Indicators Based on Concentration Prediction
3.3. Evaluation of Phytoremediation Effectiveness Based on Spectral Index
3.3.1. Spectral Index Construction
3.3.2. Phytoremediation Indicators Based on Spectral Index
3.4. Evaluation of Phytoremediation Effectiveness by Integrating Concentration Prediction and Spectral Index
4. Discussion
4.1. Performance of Heavy Metals Quantification
4.2. Strengths and Limitations of LIBS-Based Spectral Indices to Evaluate Phytoremediation Effectiveness
4.3. Future Perspectives
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| BCF | Bioconcentration factor |
| CARS | Competitive adaptive reweighted sampling |
| CNN | Convolutional neural network |
| FT | Fine-tuning |
| ICP-OES | Inductively coupled plasma optical emission spectrometry |
| LIBS | Laser-induced breakdown spectroscopy |
| LS-SVM | Least squares-support vector machine |
| MAPE | Mean absolute percentage error |
| NIST | National Institute of Standards and Technology |
| PEN | Plant effective number |
| PLSR | Partial least squares regression |
| R2 | Coefficient of determination |
| RE | Removal efficiency |
| RMSE | Root mean square error |
| SI | Spectral index |
| TF | Translocation factor |
References
- Wu, Y.; Li, X.; Yu, L.; Wang, T.; Wang, J.; Liu, T. Review of Soil Heavy Metal Pollution in China: Spatial Distribution, Primary Sources, and Remediation Alternatives. Resour. Conserv. Recycl. 2022, 181, 106261. [Google Scholar] [CrossRef]
- Cunningham, S.D.; Berti, W.R.; Huang, J.W. Phytoremediation of Contaminated Soils. Trends Biotechnol. 1995, 13, 393–397. [Google Scholar] [CrossRef]
- Ranđelović, D.; Jakovljević, K.; Zeremski, T.; Pošćić, F.; Baltrėnaitė-Gedienė, E.; Noulas, C.; Mašková, P.; Jurković, J.; Baragaño Coto, D.; Milićević, T.; et al. Phytoremediation Potential of Metallophytes in Europe: Progress, Enhancement Strategies, and Biomass Utilisation. J. Environ. Manag. 2025, 391, 126516. [Google Scholar] [CrossRef]
- Yang, X.; Long, X.; Ni, W.; Fu, C. Sedum alfredii H: A New Zn Hyperaccumulating Plant First Found in China. Chin. Sci. Bull. 2002, 47, 1634–1637. [Google Scholar] [CrossRef]
- Yang, X.; Long, X.; Ye, H.; He, Z.; Calvert, D.V.; Stoffella, P.J. Cadmium Tolerance and Hyperaccumulation in a New Zn-Hyperaccumulating Plant Species (Sedum alfredii Hance). Plant Soil 2004, 259, 181–189. [Google Scholar] [CrossRef]
- Zhang, C.; Zhong, H.; Mathieu, J.; Zhou, B.; Dai, J.; Motelica-Heino, M.; Lavelle, P. Growing Maize While Biological Remediating a Multiple Metal-Contaminated Soil: A Promising Solution with the Hyperaccumulator Plant Sedum alfredii and the Earthworm Amynthas morrisi. Plant Soil 2024, 503, 201–215. [Google Scholar] [CrossRef]
- Yang, W.; Dai, J.; Liu, Z.; Deng, X.; Yang, Y.; Zeng, Q. Film Mulching Alters Soil Properties and Increases Cd Uptake in Sedum alfredii Hance-Oil Crop Rotation Systems. Environ. Pollut. 2023, 318, 120948. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Wang, L.; Xiao, Y.; Liu, Q.; Zhao, F.; Li, X.; Tang, L.; Liao, X. Migration and Transformation of Cd in Four Crop Rotation Systems and Their Potential for Remediation of Cd-Contaminated Farmland in Southern China. Sci. Total Environ. 2023, 885, 163893. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Cao, X.; Yao, Z.; Lin, Q.; Yan, B.; Cui, X.; He, Z.; Yang, X.; Wang, C.-H.; Chen, G. Phytoremediation of Cd-Contaminated Farmland Soil via Various Sedum alfredii-Oilseed Rape Cropping Systems: Efficiency Comparison and Cost-Benefit Analysis. J. Hazard. Mater. 2021, 419, 126489. [Google Scholar] [CrossRef]
- Buscaroli, A. An Overview of Indexes to Evaluate Terrestrial Plants for Phytoremediation Purposes (Review). Ecol. Indic. 2017, 82, 367–380. [Google Scholar] [CrossRef]
- Song, B.; Zeng, G.; Gong, J.; Liang, J.; Xu, P.; Liu, Z.; Zhang, Y.; Zhang, C.; Cheng, M.; Liu, Y.; et al. Evaluation Methods for Assessing Effectiveness of in Situ Remediation of Soil and Sediment Contaminated with Organic Pollutants and Heavy Metals. Environ. Int. 2017, 105, 43–55. [Google Scholar] [CrossRef]
- Sun, Y.; Zhou, Q.; Diao, C. Effects of Cadmium and Arsenic on Growth and Metal Accumulation of Cd-Hyperaccumulator Solanum nigrum L. Bioresour. Technol. 2008, 99, 1103–1110. [Google Scholar] [CrossRef]
- Neugschwandtner, R.W.; Tlustoš, P.; Komárek, M.; Száková, J. Phytoextraction of Pb and Cd from a Contaminated Agricultural Soil Using Different EDTA Application Regimes: Laboratory versus Field Scale Measures of Efficiency. Geoderma 2008, 144, 446–454. [Google Scholar] [CrossRef]
- Bedabati Chanu, L.; Gupta, A. Phytoremediation of Lead Using Ipomoea aquatica Forsk. in Hydroponic Solution. Chemosphere 2016, 156, 407–411. [Google Scholar] [CrossRef]
- Antoniadis, V.; Levizou, E.; Shaheen, S.M.; Ok, Y.S.; Sebastian, A.; Baum, C.; Prasad, M.N.V.; Wenzel, W.W.; Rinklebe, J. Trace Elements in the Soil-Plant Interface: Phytoavailability, Translocation, and Phytoremediation—A Review. Earth-Sci. Rev. 2017, 171, 621–645. [Google Scholar] [CrossRef]
- Eid, E.M.; Galal, T.M.; Sewelam, N.A.; Talha, N.I.; Abdallah, S.M. Phytoremediation of Heavy Metals by Four Aquatic Macrophytes and Their Potential Use as Contamination Indicators: A Comparative Assessment. Environ. Sci. Pollut. Res. 2020, 27, 12138–12151. [Google Scholar] [CrossRef]
- Kumar, A.; Tripti; Raj, D.; Maiti, S.K.; Maleva, M.; Borisova, G. Soil Pollution and Plant Efficiency Indices for Phytoremediation of Heavy Metal(Loid)s: Two-Decade Study (2002–2021). Metals 2022, 12, 1330. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, T.; Li, H. Application of Laser-Induced Breakdown Spectroscopy (LIBS) in Environmental Monitoring. Spectrochim. Acta Part B At. Spectrosc. 2021, 181, 106218. [Google Scholar] [CrossRef]
- Jia, X.; O’Connor, D.; Shi, Z.; Hou, D. VIRS Based Detection in Combination with Machine Learning for Mapping Soil Pollution. Environ. Pollut. 2021, 268, 115845. [Google Scholar] [CrossRef]
- Singh, P.; Pani, A.; Mujumdar, A.S.; Shirkole, S.S. New Strategies on the Application of Artificial Intelligence in the Field of Phytoremediation. Int. J. Phytoremediat. 2023, 25, 505–523. [Google Scholar] [CrossRef]
- Rathod, P.H.; Rossiter, D.G.; Noomen, M.F.; van der Meer, F.D. Proximal Spectral Sensing to Monitor Phytoremediation of Metal-Contaminated Soils. Int. J. Phytoremediat. 2013, 15, 405–426. [Google Scholar] [CrossRef] [PubMed]
- Rathod, P.H.; Brackhage, C.; Van der Meer, F.D.; Müller, I.; Noomen, M.F.; Rossiter, D.G.; Dudel, G.E. Spectral Changes in the Leaves of Barley Plant Due to Phytoremediation of Metals—Results from a Pot Study. Eur. J. Remote Sens. 2015, 48, 283–302. [Google Scholar] [CrossRef]
- Rathod, P.H.; Brackhage, C.; Müller, I.; Van der Meer, F.D.; Noomen, M.F. Assessing Metal-Induced Changes in the Visible and near-Infrared Spectral Reflectance of Leaves: A Pot Study with Sunflower (Helianthus annuus L.). J. Indian Soc. Remote Sens. 2018, 46, 1925–1937. [Google Scholar] [CrossRef]
- Lu, Y.; Nie, L.; Guo, X.; Pan, T.; Chen, R.; Liu, X.; Li, X.; Li, T.; Liu, F. Rapid Assessment of Heavy Metal Accumulation Capability of Sedum alfredii Using Hyperspectral Imaging and Deep Learning. Ecotoxicol. Environ. Saf. 2024, 282, 116704. [Google Scholar] [CrossRef]
- Feng, X.; Chen, H.; Chen, Y.; Zhang, C.; Liu, X.; Weng, H.; Xiao, S.; Nie, P.; He, Y. Rapid Detection of Cadmium and Its Distribution in Miscanthus sacchariflorus Based on Visible and near-Infrared Hyperspectral Imaging. Sci. Total Environ. 2019, 659, 1021–1031. [Google Scholar] [CrossRef] [PubMed]
- Winefordner, J.D.; Gornushkin, I.B.; Correll, T.; Gibb, E.; Smith, B.W.; Omenetto, N. Comparing Several Atomic Spectrometric Methods to the Super Stars: Special Emphasis on Laser Induced Breakdown Spectrometry, LIBS, a Future Super Star. J. Anal. At. Spectrom. 2004, 19, 1061–1083. [Google Scholar] [CrossRef]
- Guo, L.; Zhang, D.; Sun, L.; Yao, S.; Zhang, L.; Wang, Z.; Wang, Q.; Ding, H.; Lu, Y.; Hou, Z.; et al. Development in the Application of Laser-Induced Breakdown Spectroscopy in Recent Years: A Review. Front. Phys. 2021, 16, 22500. [Google Scholar] [CrossRef]
- Lu, Y.; Tao, Z.; Nie, L.; Guo, X.; Pan, T.; Chen, R.; Li, T.; Kong, W.; Liu, F. Quantitative Elemental Mapping of Heavy Metals Translocation and Accumulation in Hyperaccumulator Plant Using Laser-Induced Breakdown Spectroscopy with Interpretable Deep Learning. Comput. Electron. Agric. 2025, 230, 109907. [Google Scholar] [CrossRef]
- Li, S.; Xu, L.; Jing, Y.; Yin, H.; Li, X.; Guan, X. High-Quality Vegetation Index Product Generation: A Review of NDVI Time Series Reconstruction Techniques. Int. J. Appl. Earth Obs. Geoinf. 2021, 105, 102640. [Google Scholar] [CrossRef]
- Tayade, R.; Yoon, J.; Lay, L.; Khan, A.L.; Yoon, Y.; Kim, Y. Utilization of Spectral Indices for High-Throughput Phenotyping. Plants 2022, 11, 1712. [Google Scholar] [CrossRef]
- Kubier, A.; Wilkin, R.T.; Pichler, T. Cadmium in Soils and Groundwater: A Review. Appl. Geochem. 2019, 108, 104388. [Google Scholar] [CrossRef]
- Kaur, H.; Garg, N. Zinc Toxicity in Plants: A Review. Planta 2021, 253, 1–28. [Google Scholar] [CrossRef]
- Natasha, N.; Shahid, M.; Bibi, I.; Iqbal, J.; Khalid, S.; Murtaza, B.; Bakhat, H.F.; Farooq, A.B.U.; Amjad, M.; Hammad, H.M.; et al. Zinc in Soil-Plant-Human System: A Data-Analysis Review. Sci. Total Environ. 2022, 808, 152024. [Google Scholar] [CrossRef]
- Li, T.; Di, Z.; Yang, X.; Sparks, D.L. Effects of Dissolved Organic Matter from the Rhizosphere of the Hyperaccumulator Sedum alfredii on Sorption of Zinc and Cadmium by Different Soils. J. Hazard. Mater. 2011, 192, 1616–1622. [Google Scholar] [CrossRef]
- Chen, Z.; Liu, Q.; Chen, S.; Zhang, S.; Wang, M.; Mujtaba Munir, M.A.; Feng, Y.; He, Z.; Yang, X. Roles of Exogenous Plant Growth Regulators on Phytoextraction of Cd/Pb/Zn by Sedum alfredii Hance in Contaminated Soils. Environ. Pollut. 2022, 293, 118510. [Google Scholar] [CrossRef]
- Peng, J.; Liu, F.; Shen, T.; Ye, L.; Kong, W.; Wang, W.; Liu, X.; He, Y. Comparative Study of the Detection of Chromium Content in Rice Leaves by 532 nm and 1064 nm Laser-Induced Breakdown Spectroscopy. Sensors 2018, 18, 621. [Google Scholar] [CrossRef]
- NIST Atomic Spectra Database. Available online: https://www.nist.gov/pml/atomic-spectra-database (accessed on 10 December 2025).
- Leys, C.; Ley, C.; Klein, O.; Bernard, P.; Licata, L. Detecting Outliers: Do Not Use Standard Deviation around the Mean, Use Absolute Deviation around the Median. J. Exp. Soc. Psychol. 2013, 49, 764–766. [Google Scholar] [CrossRef]
- Miller, J. Reaction Time Analysis with Outlier Exclusion: Bias Varies with Sample Size. Q. J. Exp. Psychol. A 1991, 43, 907–912. [Google Scholar] [CrossRef]
- Shin, H.C.; Gao, M.; Lu, L.; Xu, Z.; Yao, J.; Summers, R.M. Deep Convolutional Neural Networks for Computer-Aided Detection: CNN Architectures, Dataset Characteristics and Transfer Learning. IEEE Trans. Med. Imaging 2016, 35, 1285–1298. [Google Scholar] [CrossRef]
- Vrbančič, G.; Podgorelec, V. Transfer Learning with Adaptive Fine-Tuning. IEEE Access 2020, 8, 196197–196211. [Google Scholar] [CrossRef]
- Peng, L.; Wu, H.; Gao, M.; Yi, H.; Xiong, Q.; Yang, L.; Cheng, S. TLT: Recurrent Fine-Tuning Transfer Learning for Water Quality Long-Term Prediction. Water Res. 2022, 225, 119171. [Google Scholar] [CrossRef] [PubMed]
- Montgomery, D.C. Introduction to Statistical Quality Control, 8th ed.; John Wiley & Sons: Hoboken, NJ, USA, 2019. [Google Scholar]








| Batch | Element | Treatment Groups (mg/kg) | ||||||
|---|---|---|---|---|---|---|---|---|
| CK | A | B | C | D | E | F | ||
| Batch 1 | Cd | 0 | 5 | 10 | 25 | 50 | / | / |
| Zn | 250 | 500 | 1000 | 1500 | / | / | ||
| M (Cd/Zn) | 5/250 | 10/500 | 25/1000 | 50/1500 | / | / | ||
| Batch 2 | Cd | 0 | 1 | 5 | 10 | 25 | 50 | 100 |
| Zn | 100 | 250 | 500 | 1000 | 1500 | 2500 | ||
| M (Cd/Zn) | 1/100 | 5/250 | 10/500 | 25/1000 | 50/1500 | 100/2500 | ||
| Element | Dataset | Batch 1 | Batch 2 | ||||
|---|---|---|---|---|---|---|---|
| Shoot | Root | Soil | Shoot | Root | Soil | ||
| Cd | Training set | 27 × 3 | 27 | 27 × 3 | 46 | 40 | 46 × 3 |
| Test set | 9 × 3 | 9 | 9 × 3 | 15 | 13 | 15 × 3 | |
| Zn | Training set | 27 × 3 | 27 | 27 × 3 | 45 | 39 | 45 × 3 |
| Test set | 9 × 3 | 9 | 9 × 3 | 15 | 13 | 15 × 3 | |
| Model | Training Set | Test Set | ||||
|---|---|---|---|---|---|---|
| R2 | RMSE (mg/kg) | Test Samples | R2 | RMSE (mg/kg) | MAPE (%) | |
| PLSR-1 | 0.9848 | 64.33 | Shoots & roots (Batch 2) | 0.6524 | 286.25 | 113.35 |
| Soil (Batch 1 & 2) | - | 749.91 | 31,279.75 | |||
| PLSR-2 | 0.9640 | 88.21 | Shoots & roots (Batch 2) | 0.9621 | 94.55 | 42.86 |
| Soil (Batch 1 & 2) | - | 46.36 | 1393.35 | |||
| Plant & soil (All) | 0.9758 | 76.74 | 769.87 | |||
| LS-SVM-1 | 0.9984 | 20.87 | Shoots & roots (Batch 2) | - | 550.35 | 344.27 |
| Soil (Batch 1 & 2) | - | 652.12 | 28,434.28 | |||
| LS-SVM-2 | 0.9987 | 16.77 | Shoots & roots (Batch 2) | 0.9729 | 79.89 | 35.91 |
| Soil (Batch 1 & 2) | 0.7209 | 13.84 | 172.33 | |||
| Plant & soil (All) | 0.9869 | 56.54 | 85.84 | |||
| CNN-1 | 0.9964 | 27.43 | Shoots & roots (Batch 2) | 0.2427 | 422.51 | 232.37 |
| Soil (Batch 1 & 2) | - | 265.52 | 8687.22 | |||
| FT-CNN | 0.9918 | 33.60 | Shoots & roots (Batch 2) | 0.9788 | 70.71 | 19.94 |
| Soil (Batch 1 & 2) | 0.9824 | 3.48 | 17.62 | |||
| Plant & soil (All) | 0.9917 | 45.05 | 13.62 | |||
| Model | Training Set | Test Set | ||||
|---|---|---|---|---|---|---|
| R2 | RMSE (mg/kg) | Test Samples | R2 | RMSE (mg/kg) | MAPE (%) | |
| PLSR-1 | 0.9972 | 501.69 | Shoots & roots (Batch 2) | - | 9183.69 | 186.90 |
| Soil (Batch 1 & 2) | - | 18,700.09 | 2696.36 | |||
| PLSR-2 | 0.9891 | 781.66 | Shoots & roots (Batch 2) | 0.9360 | 1115.85 | 17.34 |
| Soil (Batch 1 & 2) | 0.5802 | 493.13 | 242.04 | |||
| Plant & soil (All) | 0.9884 | 806.21 | 110.03 | |||
| LS-SVM-1 | 1.0000 | 34.95 | Shoots & roots (Batch 2) | - | 5274.03 | 225.32 |
| Soil (Batch 1 & 2) | - | 10,013.06 | 2387.11 | |||
| LS-SVM-2 | 1.0000 | 0.66 | Shoots & roots (Batch 2) | 0.9654 | 819.77 | 12.11 |
| Soil (Batch 1 & 2) | 0.9694 | 133.08 | 57.49 | |||
| Plant & soil (All) | 0.9944 | 562.33 | 29.92 | |||
| CNN-1 | 0.9979 | 400.06 | Shoots & roots (Batch 2) | 0.3742 | 3488.88 | 94.04 |
| Soil (Batch 1 & 2) | - | 1684.97 | 194.27 | |||
| FT-CNN | 0.9969 | 327.20 | Shoots & roots (Batch 2) | 0.9733 | 721.31 | 9.96 |
| Soil (Batch 1 & 2) | 0.9912 | 71.25 | 7.44 | |||
| Plant & soil (All) | 0.9956 | 497.77 | 7.95 | |||
| Dataset | Reference Indicator | Spectral Index | Model | Recovery Rate (%) | |
|---|---|---|---|---|---|
| Fitting Function | R2 | ||||
| Cd | BCF | Exponential fitting | 0.7535 | 138.02 | |
| TF | Exponential fitting | 0.6569 | 107.45 | ||
| PEN | Power function | 0.7845 | 113.15 | ||
| RE | Quadratic polynomial fitting | 0.6554 | 145.16 | ||
| Zn | BCF | Quadratic polynomial fitting | 0.7898 | 130.49 | |
| TF | Quadratic polynomial fitting | 0.5805 | 102.24 | ||
| PEN | Power function | 0.8561 | 117.78 | ||
| RE | Quadratic polynomial fitting | 0.9084 | 101.06 | ||
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Lu, Y.; Tao, Z.; Guo, X.; Li, T.; Kong, W.; Liu, F. Evaluation of Phytoremediation Effectiveness Using Laser-Induced Breakdown Spectroscopy with Integrated Transfer Learning and Spectral Indices. Chemosensors 2026, 14, 29. https://doi.org/10.3390/chemosensors14020029
Lu Y, Tao Z, Guo X, Li T, Kong W, Liu F. Evaluation of Phytoremediation Effectiveness Using Laser-Induced Breakdown Spectroscopy with Integrated Transfer Learning and Spectral Indices. Chemosensors. 2026; 14(2):29. https://doi.org/10.3390/chemosensors14020029
Chicago/Turabian StyleLu, Yi, Zhengyu Tao, Xinyu Guo, Tingqiang Li, Wenwen Kong, and Fei Liu. 2026. "Evaluation of Phytoremediation Effectiveness Using Laser-Induced Breakdown Spectroscopy with Integrated Transfer Learning and Spectral Indices" Chemosensors 14, no. 2: 29. https://doi.org/10.3390/chemosensors14020029
APA StyleLu, Y., Tao, Z., Guo, X., Li, T., Kong, W., & Liu, F. (2026). Evaluation of Phytoremediation Effectiveness Using Laser-Induced Breakdown Spectroscopy with Integrated Transfer Learning and Spectral Indices. Chemosensors, 14(2), 29. https://doi.org/10.3390/chemosensors14020029

