Potentiometric Determination of Biogenic Amines Using a Cucurbit[6]uril-PVC Sensing Membrane
Abstract
1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Sensor and ISM Preparation
2.3. Potentiometric Measurements
2.4. Selectivity
2.5. Real-Life Sample Analysis
2.6. Chromatographic Analysis
3. Results and Discussion
3.1. Membrane Composition Optimisation
3.2. Analytical Performance of the Sensor
3.3. Performance of the Sensor for Real-Life Samples
4. Conclusion
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Özogul, Y.; Özogul, F. Biogenic Amines Formation, Toxicity, Regulations in Food; Royal Society of Chemistry: London, UK, 2019. [Google Scholar]
- Ladero, V.; Calles-Enríquez, M.; Fernández, M.; A Alvarez, M. Toxicological effects of dietary biogenic amines. Curr. Nutr. Food Sci. 2010, 6, 145–156. [Google Scholar] [CrossRef]
- Paulsen, P.; Bauer, S.; Bauer, F.; Dicakova, Z. Contents of polyamines and biogenic amines in canned pet (dogs and cats) food on the Austrian market. Foods 2021, 10, 2365. [Google Scholar] [CrossRef] [PubMed]
- Paulsen, P.; Grossgut, R.; Bauer, F.; Rauscher-Gabernig, E. Estimates of maximum tolerable levels of tyramine content in foods in Austria. J. Food Nutr. Res. 2012, 51, 52–59. [Google Scholar]
- Almeida, C.M.; Magalhães, J.M.; Barroso, M.F.; Durães, L. Biogenic amines detection in food: Emerging trends in electrochemical sensors. Talanta 2025, 292, 127918. [Google Scholar] [CrossRef]
- Mietz, J.L.; Karmas, E. Polyamine and histamine content of rockfish, salmon, lobster, and shrimp as an indicator of decomposition. J. Assoc. Off. Anal. Chem. 1978, 61, 139–145. [Google Scholar] [CrossRef]
- Ruiz-Capillas, C.; Herrero, A.M. Impact of biogenic amines on food quality and safety. Foods 2019, 8, 62. [Google Scholar] [CrossRef] [PubMed]
- Moniente, M.; Botello-Morte, L.; García-Gonzalo, D.; Pagán, R.; Ontañón, I. Analytical strategies for the determination of biogenic amines in dairy products. Compr. Rev. Food Sci. Food Saf. 2022, 21, 3612–3646. [Google Scholar] [CrossRef] [PubMed]
- Tırıs, G.; Yanıkoğlu, R.S.; Ceylan, B.; Egeli, D.; Tekkeli, E.K.; Önal, A. A review of the currently developed analytical methods for the determination of biogenic amines in food products. Food Chem. 2023, 398, 133919. [Google Scholar] [CrossRef]
- Almeida, C.M.; Magalhães, J.M.; Barroso, M.F.; Durães, L. Latest advances in sensors for optical detection of relevant amines: Insights into lanthanide-based sensors. J. Mater. Chem. C 2022, 10, 15263–15276. [Google Scholar] [CrossRef]
- Vasconcelos, H.; Coelho, L.C.; Matias, A.; Saraiva, C.; Jorge, P.A.; de Almeida, J.M. Biosensors for Biogenic Amines: A Review. Biosensors 2021, 11, 82. [Google Scholar] [CrossRef]
- Gandhi, K.; Sharma, N.; Gautam, P.B.; Sharma, R.; Mann, B.; Pandey, V. Potentiometry. In Advanced Analytical Techniques in Dairy Chemistry; Springer: Berlin/Heidelberg, Germany, 2022; pp. 147–160. [Google Scholar]
- Poels, I.; Nagels, L. Potentiometric detection of amines in ion chromatography using macrocycle-based liquid membrane electrodes. Anal. Chim. Acta 2001, 440, 89–98. [Google Scholar] [CrossRef]
- Assaf, K.I.; Nau, W.M. Cucurbiturils: From synthesis to high-affinity binding and catalysis. Chem. Soc. Rev. 2015, 44, 394–418. [Google Scholar] [CrossRef] [PubMed]
- Zdarova Karasova, J.; Mzik, M.; Kucera, T.; Vecera, Z.; Kassa, J.; Sestak, V. Interaction of cucurbit [7] uril with oxime K027, atropine, and paraoxon: Risky or advantageous delivery system? Int. J. Mol. Sci. 2020, 21, 7883. [Google Scholar] [CrossRef]
- Ferreira, C.; Palmeira, A.; Sousa, E.; Amorim, C.G.; Araújo, A.N.; Montenegro, M.C. Supramolecular atropine potentiometric sensor. Sensors 2021, 21, 5879. [Google Scholar] [CrossRef]
- Gomes Amorim, C.; Araújo, A.; da Conceição Montenegro, M. Use of cucurbit [6] uril as ionophore in ion selective electrodes for etilefrine determination in pharmaceuticals. Electroanalysis 2019, 31, 2171–2178. [Google Scholar] [CrossRef]
- Pereira, A.; Araújo, A.; Montenegro, M.; Amorim, C.G. A simpler potentiometric method for histamine assessment in blood sera. Anal. Bioanal. Chem. 2020, 412, 3629–3637. [Google Scholar] [CrossRef]
- Gil, R.L.; Amorim, C.M.; Montenegro, M.d.C.B.; Araújo, A.N. Cucurbit [8] uril-based potentiometric sensor coupled to HPLC for determination of tetracycline residues in milk samples. Chemosensors 2022, 10, 98. [Google Scholar] [CrossRef]
- Umezawa, Y.; Umezawa, K.; Sato, H. Selectivity coefficients for ion-selective electrodes: Recommended methods for reporting KA, Bpot values (Technical Report). Pure Appl. Chem. 1995, 67, 507–518. [Google Scholar] [CrossRef]
- Umezawa, Y.; Bühlmann, P.; Umezawa, K.; Tohda, K.; Amemiya, S. Potentiometric selectivity coefficients of ion-selective electrodes. Part I. Inorganic Cations (Technical Report). Pure Appl. Chem. 2000, 72, 1851–2082. [Google Scholar] [CrossRef]
- Angulo, M.F.; Flores, M.; Aranda, M.; Henriquez-Aedo, K. Fast and selective method for biogenic amines determination in wines and beers by ultra high-performance liquid chromatography. Food Chem. 2020, 309, 125689. [Google Scholar] [CrossRef] [PubMed]
- Almeida, C.M.; Barroso, M.F.; Moreira, M.M.; Magalhães, J.M.; Durães, L. Direct Electrochemical Detection of Tyramine in Beer Samples Using a MWCNTs Modified GCE. Sensors 2025, 25, 3322. [Google Scholar] [CrossRef]
- Bakker, E.; Pretsch, E. Potentiometric sensors for trace-level analysis. TrAC Trends Anal. Chem. 2005, 24, 199–207. [Google Scholar] [CrossRef]
- Zdrachek, E.; Bakker, E. Potentiometric sensor array with multi-nernstian slope. Anal. Chem. 2020, 92, 2926–2930. [Google Scholar] [CrossRef]
- de Labastida, M.F.; Yaroshchuk, A. Transient membrane potential after concentration step: A new method for advanced characterization of ion-exchange membranes. J. Membr. Sci. 2019, 585, 271–281. [Google Scholar] [CrossRef]
- Sandifer, J.R. Implications of ion-exchange kinetics on ion-selective electrode responses and selectivities. Anal. Chem. 1989, 61, 2341–2347. [Google Scholar] [CrossRef]
- Thuéry, P. Supramolecular assemblies built from lanthanide ammoniocarboxylates and cucurbit [6] uril. CrystEngComm 2012, 14, 8128–8136. [Google Scholar] [CrossRef]
- Pechhold, W.; Liska, E.; Grossmann, H.; Hagele, P. Recommendations for nomenclature of ion-selective electrodes. Pure Appl. Chem. 1976, 48, 10.1351. [Google Scholar] [CrossRef]
- Andre, R.S.; Mercante, L.A.; Facure, M.H.; Sanfelice, R.C.; Fugikawa-Santos, L.; Swager, T.M.; Correa, D.S. Recent progress in amine gas sensors for food quality monitoring: Novel architectures for sensing materials and systems. ACS Sens. 2022, 7, 2104–2131. [Google Scholar] [CrossRef] [PubMed]
- Steiner, M.-S.; Meier, R.J.; Duerkop, A.; Wolfbeis, O.S. Chromogenic sensing of biogenic amines using a chameleon probe and the red− green− blue readout of digital camera images. Anal. Chem. 2010, 82, 8402–8405. [Google Scholar] [CrossRef]
- Yoon, H.; Park, J.H.; Choi, A.; Hwang, H.-J.; Mah, J.-H. Validation of an HPLC analytical method for determination of biogenic amines in agricultural products and monitoring of biogenic amines in Korean fermented agricultural products. Toxicol. Res. 2015, 31, 299–305. [Google Scholar] [CrossRef] [PubMed]
- Kashyap, S.; Tehri, N.; Verma, N.; Gahlaut, A.; Hooda, V. Recent advances in development of electrochemical biosensors for the detection of biogenic amines. 3 Biotech 2023, 13, 2. [Google Scholar] [CrossRef]
- Lange, J.; Wittmann, C. Enzyme sensor array for the determination of biogenic amines in food samples. Anal. Bioanal. Chem. 2002, 372, 276–283. [Google Scholar] [CrossRef] [PubMed]
- Ai, Y.; Sun, Y.N.; Liu, L.; Yao, F.Y.; Zhang, Y.; Guo, F.Y.; Zhao, W.J.; Liu, J.L.; Zhang, N. Determination of biogenic amines in different parts of Lycium barbarum L. by HPLC with precolumn dansylation. Molecules 2021, 26, 1046. [Google Scholar] [CrossRef]
- Ahmad, W.; Mohammed, G.; Al-Eryani, D.; Saigl, Z.; Alyoubi, A.; Alwael, H.; Bashammakh, A.; O’Sullivan, C.; El-Shahawi, M. Biogenic amines formation mechanism and determination strategies: Future challenges and limitations. Crit. Rev. Anal. Chem. 2020, 50, 485–500. [Google Scholar] [CrossRef] [PubMed]
- Buschmann, H.-J.; Mutihac, L.; Jansen, K.; Schollmeyer, E. Cucurbit [6] uril as ligand for the complexation of diamines, diazacrown ethers and cryptands in aqueous formic acid. J. Incl. Phenom. Macrocycl. Chem. 2005, 53, 281–284. [Google Scholar] [CrossRef]
- Yang, L.; Kan, J.; Wang, X.; Zhang, Y.; Tao, Z.; Liu, Q.; Wang, F.; Xiao, X. Study on the binding interaction of the α, α’, δ, δ’-tetramethylcucurbit [6] uril with biogenic amines in solution and the solid state. Front. Chem. 2018, 6, 289. [Google Scholar] [CrossRef]
- Bakker, E.; Pretsch, E.; Bühlmann, P. Selectivity of potentiometric ion sensors. Anal. Chem. 2000, 72, 1127–1133. [Google Scholar] [CrossRef]
- Shulman, K.I.; Walker, S.E. Refining the MAOI diet: Tyramine content of pizzas and soy products. J. Clin. Psychiatry 1999, 60, 191–193. [Google Scholar] [CrossRef]





| Sensor | PVC % (w/w) | PVC-COOH % (w/w) | DOS % (w/w) | 2-NPOE % (w/w) |
|---|---|---|---|---|
| S1 | - | 30 | 68 | - |
| S2 | - | 30 | - | 68 |
| S3 | 30 | - | 68 | - |
| S4 | 30 | - | - | 68 |
| Amine | Slope (mV/Decade) | LOD (mol L−1) | Linear Range (mol L−1) |
|---|---|---|---|
| TYR | 48.6 (s.d. 2.9) | 2.4 × 10−5 | 3 × 10−5 to 1 × 10−2 |
| HIS | 25.5 (s.d. 1.1) | 2.8 × 10−6 | 5 × 10−6 to 1 × 10−2 |
| PUT | 25.4 (s.d. 1.9) | 3.3 × 10−5 | 5 × 10−5 to 1 × 10−3 |
| CAD | 30.6 (s.d. 8.4) | 5.2 × 10−5 | 5 ×10−5 to 1 × 10−2 |
| SMD | 17.8 (s.d. 0.8) | 6.2 × 10−6 | 1 × 10−5 to 1 × 10−2 |
| SPM | 21.1 (s.d. 0.8) | 1 × 10−5 | 1 × 10−5 to 1 × 10−2 |
| Method | LOD (mol L−1) | Linear Range (mol L−1) | Reference |
|---|---|---|---|
| Amperometry (TYR) | 6.2 × 10−7 | 1 × 10−6–1 × 10−3 | [33] |
| Chromogenic (TYR) | 2 × 10−5 | 4 × 10−5–1 × 10−3 | [31] |
| Enzyme Sensor (TYR) | 9 × 10−5 | up to 1.8 × 10−3 | [34] |
| HPLC (various) | 1.5 × 10−8 | 1 × 10−6–5 × 10−6 | [35] |
| PVC-Cu[6] (TYR) | 2.4 × 10−5 | 3 × 10−5–1 × 10−2 | This work |
| Soy Sauce Sample | HPLC (mg kg−1) | Cu[6]uril-PVC (mg kg−1) |
|---|---|---|
| Paladim® | 19.3 (s.d. 1.1) | 31.59 (s.d. 0.88) |
| Pingo doce® | 22.1 (s.d. 1.8) | 34.55 (s.d. 0.79) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Almeida, C.M.R.; Miranda, J.L.A.; Moreira, M.M.; Magalhães, J.M.C.S.; Barroso, M.F.; Durães, L. Potentiometric Determination of Biogenic Amines Using a Cucurbit[6]uril-PVC Sensing Membrane. Chemosensors 2026, 14, 4. https://doi.org/10.3390/chemosensors14010004
Almeida CMR, Miranda JLA, Moreira MM, Magalhães JMCS, Barroso MF, Durães L. Potentiometric Determination of Biogenic Amines Using a Cucurbit[6]uril-PVC Sensing Membrane. Chemosensors. 2026; 14(1):4. https://doi.org/10.3390/chemosensors14010004
Chicago/Turabian StyleAlmeida, Cláudio M. R., Joana L. A. Miranda, Manuela M. Moreira, Júlia M. C. S. Magalhães, Maria F. Barroso, and Luisa Durães. 2026. "Potentiometric Determination of Biogenic Amines Using a Cucurbit[6]uril-PVC Sensing Membrane" Chemosensors 14, no. 1: 4. https://doi.org/10.3390/chemosensors14010004
APA StyleAlmeida, C. M. R., Miranda, J. L. A., Moreira, M. M., Magalhães, J. M. C. S., Barroso, M. F., & Durães, L. (2026). Potentiometric Determination of Biogenic Amines Using a Cucurbit[6]uril-PVC Sensing Membrane. Chemosensors, 14(1), 4. https://doi.org/10.3390/chemosensors14010004

