Construction of a Photonic Crystal (PC) Film Sensing Platform Based on Calcium Alginate Hydrogel for the Trichlorfon Detection
Abstract
1. Introduction
2. Materials and Methods
2.1. Reagents and Instruments
2.2. Inhibitory Effect of Trichlorfon on AChE
2.3. Preparation of PC Film
2.4. Procedures of Trichlorfon Detection
2.5. Detection of Trichlorfon in Real Samples
2.6. Development of Portable Equipment and Software
3. Results and Discussion
3.1. Feasibility Study
3.2. Characterization of PC Film
3.3. Optimization of the PC Film Sensing Platform
3.4. Performance of the PC Film Sensing Platform
3.5. Detection of Trichlorfon Residues in Practical Samples
3.6. Use of Portable Device for the Detection of Trichlorfon
4. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
PC | Photonic crystal |
AChE | Acetylcholinesterase |
OPs | Organophosphorus pesticides |
MRLs | Maximum residue limits |
SERS | Surface enhanced Raman scattering |
MOF | Metal-organic framework |
MPH | Methyl parathion hydrolase |
OPH | Organophosphorus hydrolase |
PBG | Photonic band-gap |
SEM | Scanning electron microscopy |
AFM | Atomic force microscopy |
HF | Hydrofluoric acid |
RSD | Relative standard deviation |
References
- Chen, Q.; Sun, Y.; Liu, S.; Zhang, J.; Zhang, C.; Jiang, H.; Han, X.; He, L.; Wang, S.; Zhang, K. Colorimetric and fluorescent sensors for detection of nerve agents and organophosphorus pesticides. Sens. Actuators B Chem. 2021, 344, 130278. [Google Scholar] [CrossRef]
- Pundir, C.S.; Malik, A.; Preety. Bio-sensing of organophosphorus pesticides: A review. Biosens. Bioelectron. 2019, 140, 111348. [Google Scholar] [CrossRef]
- Zhang, Z.; Ma, H.; Mo, H.; Zhu, N. Organophosphorus Pesticide Photoelectrochemical/Electrochemical Dual-Mode Smartsensors Derived from Synergistic Co,N-TiO2@ZrO2/3DGH Platform. Chemosensors 2025, 13, 167. [Google Scholar] [CrossRef]
- Alhamami, M.A.M.; Algethami, J.S.; Rizk, M.A.; Abbas, A.M.; Khairy, G.M. A New Chemosensor Based on a Luminescent Complex for the Investigation of Some Organophosphorus Pesticides in Environmental Samples. Chemosensors 2022, 10, 391. [Google Scholar] [CrossRef]
- Liu, J.; Xu, D.; Xu, G.; Li, X.; Dong, J.; Luan, X.; Du, X. Smart controlled-release avermectin nanopesticides based on metal–organic frameworks with large pores for enhanced insecticidal efficacy. Chem. Eng. J. 2023, 475, 146312. [Google Scholar] [CrossRef]
- Xiao, X.; Liao, W.; Ma, R.; Huang, L.; Yang, Y. A colorimetric analytical method based on a TCPP–CuCo2O4-like peroxidase for the detection of trichlorfon. Anal. Methods 2023, 15, 4331–4337. [Google Scholar] [CrossRef]
- Yuan, S.; Yu, H.; Guo, Y.; Xie, Y.; Cheng, Y.; Qian, H.; Yao, W. Removal of trichlorfon and phoxim from pak choi (Brassica campestris ssp. chinensis) by combined ultrasonic and ozone treatment and their effects on quality. J. Food Process Eng. 2023, 46, e14458. [Google Scholar] [CrossRef]
- Jiang, J.; Deng, K.; Dao, F.; Li, P.; Huang, J. A recyclable AChE-nanoprobe based on nano-Fe3O4@CHO-β-CD for trichlorfon detection. Microchem. J. 2024, 197, 109860. [Google Scholar] [CrossRef]
- Tudi, M.; Daniel Ruan, H.; Wang, L.; Lyu, J.; Sadler, R.; Connell, D.; Chu, C.; Phung, D.T. Agriculture Development, Pesticide Application and Its Impact on the Environment. Int. J. Environ. Res. Public Health 2021, 18, 1112. [Google Scholar] [CrossRef]
- Chang, X.; Wang, X.; Feng, J.; Su, X.; Liang, J.; Li, H.; Zhang, J. Impact of chronic exposure to trichlorfon on intestinal barrier, oxidative stress, inflammatory response and intestinal microbiome in common carp (Cyprinus carpio L.). Environ. Pollut. 2020, 259, 113846. [Google Scholar] [CrossRef]
- Zheng, K.; Lin, R.; Liu, X.; Wu, X.; Chen, R.; Yang, M. Multiresidue Pesticide Analysis in Tea Using GC–MS/MS to Determine 12 Pesticide Residues (GB 2763-2021). Molecules 2022, 27, 8419. [Google Scholar] [CrossRef]
- Zhao, F.; Liu, X.; Li, X.; Cai, Z.; Zhang, Y. Two-dimensional photonic crystal acetylcholinesterase hydrogel and organohydrogel sensors for efficient detection of organophosphorus compounds. Biosens. Bioelectron. 2025, 267, 116845. [Google Scholar] [CrossRef] [PubMed]
- Zhao, D.; Yan, Z.; Xiao, X. Peroxidase-mimetic carbon dot based nanozyme hydrogel colorimetric sensor for visual trichlorfon detection. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2025, 336, 126027. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Yu, L.; Jiang, X.; Li, Y.; He, X.; Chen, L.; Zhang, Y. Recent advances in photonic crystal-based chemical sensors. Chem. Commun. 2024, 60, 9177–9193. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Chen, X.-Y.; Chen, J. A bimetallic nanozyme with high peroxidase-like activity for visual detection of organophosphorus pesticides. Talanta 2025, 295, 128309. [Google Scholar] [CrossRef] [PubMed]
- Geng, L.; Wang, H.; Li, Z.; Huang, J.; Sun, X.; Guo, Y.; Du, F. Research progress on molecularly imprinted polymers (MIPs)-based sensors for the detection of organophosphorus pesticides. Food Chem. 2025, 490, 145137. [Google Scholar] [CrossRef]
- Jiang, J.; Deng, K.; Duan, R.; An, C.; Dao, F.; Huang, J. Iron/manganese-zeolitic imidazolate framework (Fe/Mn-ZIF) nanozyme combined with acetylcholinesterase for colorimetric rapid detection of organophosphorus pesticides. Food Chem. 2025, 473, 143090. [Google Scholar] [CrossRef]
- Maguire, W.J.; Call, C.W.; Cerbu, C.; Jambor, K.L.; Benavides-Montes, V.E. Comprehensive Determination of Unregulated Pesticide Residues in Oregon Cannabis Flower by Liquid Chromatography Paired with Triple Quadrupole Mass Spectrometry and Gas Chromatography Paired with Triple Quadrupole Mass Spectrometry. J. Agric. Food Chem. 2019, 67, 12670–12674. [Google Scholar] [CrossRef]
- Zhang, P.; Sun, T.; Rong, S.; Zeng, D.; Yu, H.; Zhang, Z.; Chang, D.; Pan, H. A sensitive amperometric AChE-biosensor for organophosphate pesticides detection based on conjugated polymer and Ag-rGO-NH2 nanocomposite. Bioelectrochemistry 2019, 127, 163–170. [Google Scholar] [CrossRef]
- Wimmer, B.; Pattky, M.; Zada, L.G.; Meixner, M.; Haderlein, S.B.; Zimmermann, H.-P.; Huhn, C. Capillary electrophoresis-mass spectrometry for the direct analysis of glyphosate: Method development and application to beer beverages and environmental studies. Anal. Bioanal. Chem. 2020, 412, 4967–4983. [Google Scholar] [CrossRef]
- Deng, G.; Chen, H.; Shi, Q.; Ren, L.; Liang, K.; Long, W.; Lan, W.; Han, X.; She, Y.; Fu, H. Colorimetric assay based on peroxidase-like activity of dodecyl trimethylammonium bromide-tetramethyl zinc (4-pyridinyl) porphyrin for detection of organophosphorus pesticides. Microchim. Acta 2022, 189, 375. [Google Scholar] [CrossRef]
- Feng, D.; Wei, F.; Wu, Y.; Tan, X.; Li, F.; Lu, Y.; Fan, G.; Han, H. A novel signal amplified electrochemiluminescence biosensor based on MIL-53(Al)@CdS QDs and SiO2@AuNPs for trichlorfon detection. Analyst 2021, 146, 1295–1302. [Google Scholar] [CrossRef]
- Ye, C.; He, M.; Zhu, Z.; Shi, X.; Zhang, M.; Bao, Z.; Huang, Y.; Jiang, C.; Li, J.; Wu, Y. A portable SERS sensing platform for the multiplex identification and quantification of pesticide residues on plant leaves. J. Mater. Chem. C 2022, 10, 12966–12974. [Google Scholar] [CrossRef]
- Wei, D.; Wang, Y.; Zhu, N.; Xiao, J.; Li, X.; Xu, T.; Hu, X.; Zhang, Z.; Yin, D. A Lab-in-a-Syringe Device Integrated with a Smartphone Platform: Colorimetric and Fluorescent Dual-Mode Signals for on-Site Detection of Organophosphorus Pesticides. ACS Appl. Mater. Interfaces 2021, 13, 48643–48652. [Google Scholar] [CrossRef] [PubMed]
- Xie, T.; Cao, Z.; Li, Y.; Li, Z.; Zhang, F.-L.; Gu, Y.; Han, C.; Yang, G.; Qu, L. Highly sensitive SERS substrates with multi-hot spots for on-site detection of pesticide residues. Food Chem. 2022, 381, 132208. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Lu, S.; Cai, R.; Tan, W. Rapid water-responsive shape memory films for smart resistive bending sensors. Nano Today 2021, 38, 101202. [Google Scholar] [CrossRef]
- Lin, F.-R.; Liu, Z.-Y.; Zhang, H.; Liu, M.; Luo, H.-B.; Zou, Y.; Ren, X.-M. Proton conductive thin films of metal-organic framework for impedance detection of formic acid. Microporous Mesoporous Mater. 2023, 360, 112722. [Google Scholar] [CrossRef]
- Qi, F.; Lan, Y.; Meng, Z.; Yan, C.; Li, S.; Xue, M.; Wang, Y.; Qiu, L.; He, X.; Liu, X. Acetylcholinesterase-functionalized two-dimensional photonic crystals for the detection of organophosphates. RSC Adv. 2018, 8, 29385–29391. [Google Scholar] [CrossRef]
- Li, T.; Liu, G.; Kong, H.; Yang, G.; Wei, G.; Zhou, X. Recent advances in photonic crystal-based sensors. Coord. Chem. Rev. 2023, 475, 214909. [Google Scholar] [CrossRef]
- Wu, S.; Xia, H.; Xu, J.; Sun, X.; Liu, X. Manipulating Luminescence of Light Emitters by Photonic Crystals. Adv. Mater. 2018, 30, 1803362. [Google Scholar] [CrossRef]
- Chen, Q.; Wang, C.; Wang, S.; Zhou, J.; Wu, Z. A responsive photonic crystal film sensor for the ultrasensitive detection of uranyl ions. Analyst 2020, 145, 5624–5630. [Google Scholar] [CrossRef]
- Ding, H.; Liu, C.; Ye, B.; Fu, F.; Wang, H.; Zhao, Y.; Gu, Z. Free-Standing Photonic Crystal Films with Gradient Structural Colors. ACS Appl. Mater. Interfaces 2016, 8, 6796–6801. [Google Scholar] [CrossRef]
- Maity, A.; Mujumdar, S.; Polshettiwar, V. Self-Assembled Photonic Crystals of Monodisperse Dendritic Fibrous Nanosilica for Lasing: Role of Fiber Density. ACS Appl. Mater. Interfaces 2018, 10, 23392–23398. [Google Scholar] [CrossRef] [PubMed]
- Qin, T.; Hong, Y.; Han, D.; Li, S.; Ning, B.; Li, Z.; Wang, J.; Bai, J.; Gao, Z.; Peng, Y. Aptamer-based photonic crystals enable ultra-trace detection of staphylococcal enterotoxin B without labels. Food Chem. 2022, 391, 133271. [Google Scholar] [CrossRef] [PubMed]
- Askar, K.; Leo, S.-Y.; Xu, C.; Liu, D.; Jiang, P. Rapid electrostatics-assisted layer-by-layer assembly of near-infrared-active colloidal photonic crystals. J. Colloid Interface Sci. 2016, 482, 89–94. [Google Scholar] [CrossRef] [PubMed]
- Senbua, W.; Mearnchu, J.; Wichitwechkarn, J. Easy-to-use and reliable absorbance-based MPH-GST biosensor for the detection of methyl parathion pesticide. Biotechnol. Rep. 2020, 27, e00495. [Google Scholar] [CrossRef]
- Walker, J.P.; Kimble, K.W.; Asher, S.A. Photonic crystal sensor for organophosphate nerve agents utilizing the organophosphorus hydrolase enzyme. Anal. Bioanal. Chem. 2007, 389, 2115–2124. [Google Scholar] [CrossRef]
- Li, X.; Jia, M.; Yu, L.; Li, Y.; He, X.; Chen, L.; Zhang, Y. An ultrasensitive label-free biosensor based on aptamer functionalized two-dimensional photonic crystal for kanamycin detection in milk. Food Chem. 2023, 402, 134239. [Google Scholar] [CrossRef]
- Li, X.; Jiang, C.; Yang, X.; Zhao, T.; Jin, X.; Jiang, S.; Duan, P. Free-standing iridescent films: Crafting circularly polarized luminescence from blue to NIR-II for enhanced anti-counterfeiting performance. Nano Today 2024, 55, 102197. [Google Scholar] [CrossRef]
- Orosco, M.M.; Pacholski, C.; Miskelly, G.M.; Sailor, M.J. Protein-Coated Porous-Silicon Photonic Crystals for Amplified Optical Detection of Protease Activity. Adv. Mater. 2006, 18, 1393–1396. [Google Scholar] [CrossRef]
- Li, G.; Leng, M.; Wang, S.; Ke, Y.; Luo, W.; Ma, H.; Guan, J.; Long, Y. Printable structural colors and their emerging applications. Mater. Today 2023, 69, 133–159. [Google Scholar] [CrossRef]
- Von Freymann, G.; Kitaev, V.; Lotsch, B.V.; Ozin, G.A. Bottom-up assembly of photonic crystals. Chem. Soc. Rev. 2013, 42, 2528–2554. [Google Scholar] [CrossRef]
- Gao, W.; Rigout, M.; Owens, H. Self-assembly of silica colloidal crystal thin films with tuneable structural colours over a wide visible spectrum. Appl. Surf. Sci. 2016, 380, 12–15. [Google Scholar] [CrossRef]
- Sun, H.; Zhong, H.; Chen, X.; Gan, Y.; Wang, W.; Zhou, C.; Lin, C. New modes of converting chemical information with colloidal photonic crystal sensing units. Talanta 2024, 267, 125154. [Google Scholar] [CrossRef]
- Li, B.; Wu, W.; Lin, J.-M.; Wang, T.; Hu, Q.; Yu, L. Water in liquid crystal emulsion-based sensing platform for colorimetric detection of organophosphorus pesticide. Food Chem. 2024, 436, 137732. [Google Scholar] [CrossRef]
- Lu, Z.; Zhang, H.; Huang, J.; Zhong, Y.; Wang, M.; Zhang, L.; Wang, D. Gelatinase-responsive photonic crystal membrane for pathogenic bacteria detection and application in vitro health diagnosis. Biosens. Bioelectron. 2022, 202, 114013. [Google Scholar] [CrossRef]
- Ping, J.; Wu, W.; Qi, L.; Liu, J.; Liu, J.; Zhao, B.; Wang, Q.; Yu, L.; Lin, J.-M.; Hu, Q. Hydrogel-assisted paper-based lateral flow sensor for the detection of trypsin in human serum. Biosens. Bioelectron. 2021, 192, 113548. [Google Scholar] [CrossRef]
- Li, S.; Yang, F.; Li, J.; Zou, Y.; Jia, Q. Construction of CuNCs/AgNPs based fluorescent platform for specific enzyme-free detection of trichlorfon. Anal. Chim. Acta 2025, 1356, 344030. [Google Scholar] [CrossRef] [PubMed]
- Hong, C.; Wu, S.; Chen, S.; Lin, Z.; Chen, Q. Highly sensitive colorimetric method for the detection of organophosphorus pesticides based on H2O2 etching of silver-coated gold nanostars. Sens. Actuators B Chem. 2025, 425, 137004. [Google Scholar] [CrossRef]
- Liu, Q.; Jiang, M.; Ju, Z.; Qiao, X.; Xu, Z. Development of direct competitive biomimetic immunosorbent assay based on quantum dot label for determination of trichlorfon residues in vegetables. Food Chem. 2018, 250, 134–139. [Google Scholar] [CrossRef] [PubMed]
Detection Method | Linear Range | Limit of Detection | Reference |
---|---|---|---|
Fluorescent platform | 1~6000 μg/L | 36 μg/L | [48] |
Colorimetric method | 100–5000 μg/L | 98 μg/L | [49] |
Microfluidic paper-based phosphorus-detection chip method | 7400~27,200 μg/L | 1650 μg/L | [3] |
Biomimetic immunosorbent assay | 6.4~20,000 μg/L | 9 μg/L | [50] |
Two-dimensional photonic crystal hydrogel | 0.5~2600 μg/L | 0.57 μg/L | [12] |
Photonic crystal film method | 1~250 μg/L | 0.4 μg/L | This work |
Sample | Added (mg/kg) | Found (mg/kg) | Recovery (%) | RSD (%, n ≥ 3) |
---|---|---|---|---|
Apple 1 | 0.2 | 0.1896 | 94.8 | 3.1 |
Apple 2 | 0.1 | 0.1203 | 120.3 | 7.5 |
Apple 3 | 0.05 | 0.0583 | 116.6 | 7.9 |
Apple 4 | 0.01 | 0.0118 | 118.0 | 17.7 |
Apple 5 | 0.001 | 0.0008 | 80.0 | 8.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ren, J.; Li, X.; Wang, Z.; Yu, L. Construction of a Photonic Crystal (PC) Film Sensing Platform Based on Calcium Alginate Hydrogel for the Trichlorfon Detection. Chemosensors 2025, 13, 306. https://doi.org/10.3390/chemosensors13080306
Ren J, Li X, Wang Z, Yu L. Construction of a Photonic Crystal (PC) Film Sensing Platform Based on Calcium Alginate Hydrogel for the Trichlorfon Detection. Chemosensors. 2025; 13(8):306. https://doi.org/10.3390/chemosensors13080306
Chicago/Turabian StyleRen, Junjie, Xia Li, Zhongxing Wang, and Li Yu. 2025. "Construction of a Photonic Crystal (PC) Film Sensing Platform Based on Calcium Alginate Hydrogel for the Trichlorfon Detection" Chemosensors 13, no. 8: 306. https://doi.org/10.3390/chemosensors13080306
APA StyleRen, J., Li, X., Wang, Z., & Yu, L. (2025). Construction of a Photonic Crystal (PC) Film Sensing Platform Based on Calcium Alginate Hydrogel for the Trichlorfon Detection. Chemosensors, 13(8), 306. https://doi.org/10.3390/chemosensors13080306