Compact Dual-Wavelength Optical Fiber Sensor for the Simultaneous Measurement of the Refractive Index and Temperature of Liquid Samples
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Equipment
2.2. Design and Fabrication of the Dual-Wavelength Optical Fiber Sensor (DWOFS)
2.3. Optical Characterization
2.4. Refractive Index Measurement
2.5. Simultaneous Measurements of Temperature and Refractive Index
2.6. Data Processing and Analysis
3. Results and Discussion
3.1. Characterization of the Dual-Wavelength Optical Fiber Sensor to Refractive Index
3.2. Characterization of the Response of Dual-Wavelength Optical Fiber Sensor to Refractive Index and Temperature Changes
3.3. Measurement of the Thermo-Optic Coefficient of the Distilled Water and PDMS
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
Au | Gold |
Cr | Chromium |
DWOFS | Dual-wavelength optical fiber sensor |
FWHM | Full width at half maximum |
HTC | Hetero-core fiber |
HTCMMI | HTC structure MMI is based on MCM fiber structure with a NCF section |
HTCSPR | HTC structure SPR is based on MSM fiber structure that is coated with Cr and Au films |
MMF | Multimode fiber |
MNM | Multimode−no-core−multimode fiber structure |
MSM | Multimode−single-mode−multimode fiber structure |
NCF | No-core fiber |
NIR | Near infrared range |
OFRIS | Optical fiber refractive index sensor |
OSA | Optical spectrum analyzer |
PDMS | Polydimethylsiloxane |
SMF | Single-mode fiber |
SPR | Surface plasmon resonance |
TFBG | Tilted fiber Bragg grating |
TOC | Thermo-optical coefficient |
Vis | Visible range |
Minimum wavelength of the MMI-dip | |
Minimum wavelength of the SPR-dip |
References
- Hughes, E.; Jelks, V.; Hughes, D.L. The Determination of the Concentrations of Sugar Solutions by Laser Refractometry. J. Chem. Educ. 1988, 65, 1007. [Google Scholar] [CrossRef]
- Todaro, M.; Gannuscio, R.; Mancuso, I.; Ducato, B.; Scatassa, M.L. The Use of Brix Refractometer as a Simple and Economic Device to Estimate the Protein Content of Sheep Milk. Int. Dairy J. 2024, 154, 105940. [Google Scholar] [CrossRef]
- Raju, B.; Kumar, R.; Dhanalakshmi, S.; Dooly, G.; Duraibabu, D.B. Review of Fiber Optical Sensors and Its Importance in Sewer Corrosion Factor Analysis. Chemosensors 2021, 9, 118. [Google Scholar] [CrossRef]
- Otero, J.; Greci, G.; Perise, R.; Luis Aduriz, A. On the Use of Refractometers as a Standard Tool for Stock Density. Int. J. Gastron. Food Sci. 2024, 35, 100827. [Google Scholar] [CrossRef]
- Harini, V.K.; Meher, S.R.; Alex, Z.C. A Novel Refractive Index Based-Fiber Optic Sensor for Milk Adulteration Detection. Opt. Mater. 2024, 154, 115810. [Google Scholar] [CrossRef]
- Liu, Z.; Liu, G.; Shao, H.; Liu, X.; Liu, M.; Huang, S.; Fu, G.; Xu, H.; Gao, H. Refractometric Sensing of Silicon Layer Coupled Plasmonic–Colloidal Crystals. Mater. Lett. 2015, 140, 9–11. [Google Scholar] [CrossRef]
- Mezache, Z.; Hafdi, Z.; Tao, J. Design of a Novel Graphene Buzzle Metamaterial Refractometer for Sensing of Cancerous Cells in the Terahertz Regime. Optik 2023, 287, 171170. [Google Scholar] [CrossRef]
- Lan, F.; Luo, F.; Mazumder, P.; Yang, Z.; Meng, L.; Bao, Z.; Zhou, J.; Zhang, Y.; Liang, S.; Shi, Z.; et al. Dual-Band Refractometric Terahertz Biosensing with Intense Wave-Matter-Overlap Microfluidic Channel. Biomed. Opt. Express 2019, 10, 3789. [Google Scholar] [CrossRef]
- Tan, R.X.; Ibsen, M.; Tjin, S.C. Optical Fiber Refractometer Based Metal Ion Sensors. Chemosensors 2019, 7, 63. [Google Scholar] [CrossRef]
- Sharma, S.; Mishra, S.K. Exploiting the Advantages of Ag/ITO/Enzyme Trapped Gel Layers to Develop a Highly Sensitive and Selective Fiber Optic Plasmonic Urea Sensor. Chemosensors 2023, 11, 421. [Google Scholar] [CrossRef]
- Jing, J.; Wang, T.; Guo, Y.; Zhou, W. ITO Film-Coated SPR Sensor Based on Plastic Optical Fiber for Seawater Salinity Measurement. J. Light. Technol. 2024, 42, 8933–8942. [Google Scholar] [CrossRef]
- Imas, J.J.; Zamarreño, C.R.; Del Villar, I.; Da Silva, J.C.C.; Oliveira, V.; Matías, I.R. Optical Fiber Thermo-Refractometer. Opt. Express 2022, 30, 11036. [Google Scholar] [CrossRef]
- Szczerska, M. Temperature Sensors Based on Polymer Fiber Optic Interferometer. Chemosensors 2022, 10, 228. [Google Scholar] [CrossRef]
- Matějec, V.; Kašík, I.; Bartoň, I. Fiber-Optic Nanosensors for Chemical Detection. Chemosensors 2023, 11, 521. [Google Scholar] [CrossRef]
- Gong, P.; Li, X.; Zhao, Q.; Zhou, X.; Zhang, Y.; Zhao, Y. Lab on a Single Fiber: A Three-Parameter Sensor Based on Triple-SPR for One-to-One Detection of DNA, pH and Temperature. Sens. Actuators B Chem. 2024, 401, 134957. [Google Scholar] [CrossRef]
- Silva, S.; Frazão, O.; Santos, J.L.; Malcata, F.X. A Reflective Optical Fiber Refractometer Based on Multimode Interference. Sens. Actuators B Chem. 2012, 161, 88–92. [Google Scholar] [CrossRef]
- Tang, J.; Zhou, J.; Guan, J.; Long, S.; Yu, J.; Guan, H.; Lu, H.; Luo, Y.; Zhang, J.; Chen, Z. Fabrication of Side-Polished Single Mode-Multimode-Single Mode Fiber and Its Characteristics of Refractive Index Sensing. IEEE J. Sel. Top. Quantum Electron. 2017, 23, 238–245. [Google Scholar] [CrossRef]
- Gao, R.X.; Liu, W.J.; Wang, Y.Y.; Wang, Q.; Zhao, F.; Qu, S.L. Design and Fabrication of SMS Fiber Refractometer for Liquid. Sens. Actuators A Phys. 2012, 179, 5–9. [Google Scholar] [CrossRef]
- Jha, R.; Villatoro, J.; Badenes, G.; Pruneri, V. Refractometry Based on a Photonic Crystal Fiber Interferometer. Opt. Lett. 2009, 34, 617. [Google Scholar] [CrossRef]
- Silva, S.; Santos, J.L.; Malcata, F.X.; Kobelke, J.; Schuster, K.; Frazão, O. Optical Refractometer Based on Large-Core Air-Clad Photonic Crystal Fibers. Opt. Lett. 2011, 36, 852. [Google Scholar] [CrossRef]
- Xia, T.-H.; Zhang, A.P.; Gu, B.; Zhu, J.-J. Fiber-Optic Refractive-Index Sensors Based on Transmissive and Reflective Thin-Core Fiber Modal Interferometers. Opt. Commun. 2010, 283, 2136–2139. [Google Scholar] [CrossRef]
- Xu, F.; Chen, D.; Peng, B.; Xu, J.; Wu, G. All-Fiber Refractometer Based on Core Mismatch Structure. Laser Phys. 2012, 22, 1577–1580. [Google Scholar] [CrossRef]
- Watanabe, K.; Matsubara, S.; Kubota, Y. A Hetero-Core Fiber Sensor Using OTDR. Trans. Soc. Instrum. Control Eng. 1999, 35, 32–37. [Google Scholar] [CrossRef]
- Hu, H.; Song, X.; Han, Q.; Chang, P.; Zhang, J.; Liu, K.; Du, Y.; Wang, H.; Liu, T. High Sensitivity Fiber Optic SPR Refractive Index Sensor Based on Multimode-No-Core-Multimode Structure. IEEE Sens. J. 2020, 20, 2967–2975. [Google Scholar] [CrossRef]
- Galván-Navarro, E.D.; Alonso-Murias, M.; Monzón-Hernández, D.; Pérez-Aguilar, H. Optical Fiber Curvature Sensor Used to Measure the Surface Profile of 3-D Printing Objects. IEEE Sens. J. 2024, 24, 1479–1485. [Google Scholar] [CrossRef]
- Lang, T.; Cao, B.; Shen, C.; Shi, G. Multimode-Coreless-Multimode Fiber Biosensor Based on Surface Plasmon Resonance. J. Phys. D Appl. Phys. 2019, 52, 195204. [Google Scholar] [CrossRef]
- Ren, Z.; Huang, Z.; Wang, F.; Wu, J.; Zhou, J.; Wang, Z.; Zhang, Y.; Wang, Z.; Dong, J.; Liu, D.; et al. Tilted Fiber Bragg Grating Surface Plasmon Resonance Based Optical Fiber Cadmium Ion Trace Detection. Sens. Actuators B Chem. 2023, 393, 134247. [Google Scholar] [CrossRef]
- Fabian, N.S.; Socorro-Leranoz, A.B.; Villar, I.D.; Diaz, S.; Matias, I.R. Multimode-Coreless-Multimode Fiber-Based Sensors: Theoretical and Experimental Study. J. Light. Technol. 2019, 37, 3844–3850. [Google Scholar] [CrossRef]
- Zhang, Y.; Xue, J.; Liu, W.; Zhang, Y.; Li, S.; Liu, Z.; Lai, B.; Zhang, J.; Yuan, L. Cascaded Dual-Channel Fiber SPR Sensor Based on Ge 2 Sb 2 Te 5. IEEE Sens. J. 2022, 22, 4083–4089. [Google Scholar] [CrossRef]
- Yin, Z.; Jing, X.; Li, K.; Zhang, Z. SPR Dual-Parameter Sensor With Ag/MoS Composite Film for Refractive Index Detection in High-Temperature Environment. IEEE Sens. J. 2024, 24, 6159–6165. [Google Scholar] [CrossRef]
- Zhang, Q.; Liu, H.; Li, B.; Zhang, F.; Yan, X.; Zhang, X.; Wang, F.; Cheng, T. A Dual-Channel Surface Plasmon Resonance Sensor for the Liquid Refractive Index and Temperature Measurement Based on Hollow-Core Fiber. IEEE Sens. J. 2022, 22, 7785–7791. [Google Scholar] [CrossRef]
- Wang, H.; Chen, S.; Dai, W.; Xie, T.; Pan, P.; Luo, J.; Fu, H. Dual-Channel SPR Sensor Based on MSM Fiber for Detection of Glucose Concentration and Temperature. IEEE Photonics Technol. Lett. 2022, 34, 919–922. [Google Scholar] [CrossRef]
- Li, B.; Yan, X.; Zhang, X.; Wang, F.; Li, S.; Suzuki, T.; Ohishi, Y.; Cheng, T. No-Core Optical Fiber Sensor Based on Surface Plasmon Resonance for Glucose Solution Concentration and Temperature Measurement. Opt. Express 2021, 29, 12930. [Google Scholar] [CrossRef]
- Yin, Z.; Jing, X. Low Crosstalk Dual-Parameter No-Core Fiber-Based SPR Sensor With Differentiated Silver Film Thickness. IEEE Sens. J. 2024, 24, 22404–22409. [Google Scholar] [CrossRef]
- Li, L.; Zhang, Y.; Zheng, W.; Lv, R.; Zhao, Y. Dual-Channel in-Fiber SPR Sensor for Simultaneous and Highly Sensitive Measurement of Salinity and Temperature. Opt. Lett. 2023, 48, 952. [Google Scholar] [CrossRef]
- Siyu, E.; Zhang, Y.N.; Han, B.; Zheng, W.; Wu, Q.L.; Zheng, H.K. Two-Channel Surface Plasmon Resonance Sensor for Simultaneous Measurement of Seawater Salinity and Temperature. IEEE Trans. Instrum. Meas. 2020, 69, 7191–7199. [Google Scholar] [CrossRef]
- Zhou, L.; Tong, R.; Wu, S.; Zheng, H. Dual-Channel SPR Sensor Based on an MMF-DHSMF-NCF Reflective Structure. Sens. Actuators A Phys. 2024, 379, 115944. [Google Scholar] [CrossRef]
- Wang, H.; Wu, M.; Zhou, J.; Zheng, S.; Xie, T.; Dai, W.; Fu, H.; Lv, W.; Chen, N.; Bu, Y. SPR Sensor Based on Cascaded NCF and U-Shaped Multimode Fibers for Simultaneous Detection of Refractive Index and Temperature. IEEE Sens. J. 2023, 23, 16851–16858. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, Q.; Wang, Y.; Ling, Q.; Jiang, X.; Yu, Z.; Guan, Z.; Chen, D.; Zhang, Y. Temperature and Surrounding Refractive Index Insensitive Bending Sensor Based on a Novel Cascaded All-Fiber Structure. IEEE Sens. J. 2023, 23, 21321–21326. [Google Scholar] [CrossRef]
- Wang, Y.; Tong, R.; Zhao, K.; Xing, B.; Li, X.; Hu, S.; Zhao, Y. Optical Fiber Sensor Based on SPR and MZI for Seawater Salinity and Temperature Measurement. Opt. Laser Technol. 2023, 162, 109315. [Google Scholar] [CrossRef]
- Zheng, H.K.; Zhao, Y.; Lv, R.Q.; Lin, Z.T.; Wang, X.X.; Zhou, Y.F.; Chen, S.Z. Reflective Optical Fiber Sensor Based on Dual Fabry Perot Cavities for Simultaneous Measurement of Salinity and Temperature. IEEE Sens. J. 2021, 21, 27495–27502. [Google Scholar] [CrossRef]
- Wu, M.; Zhou, J.; Wang, H.; Zheng, S.; Xie, T.; Fu, H.; Chen, N.; Bu, Y. Temperature-Compensated Highly Sensitive Reflective SPR Fiber Sensor Based on Tapered Seven-Core Fiber. IEEE Sens. J. 2024, 24, 14328–14334. [Google Scholar] [CrossRef]
- Zhao, J.; Liu, R.; Wang, M.; Zhao, J.; Zhang, Y.; Zhao, Y. Integrated Hybrid Optical Fiber Mach-Zehnder Interferometers for Simultaneous Measurement of Seawater Temperature and Salinity. Sens. Actuators A Phys. 2024, 380, 116065. [Google Scholar] [CrossRef]
- Liu, W.; He, H.; You, Y.; Zhu, J.; Zhang, Y.; Liu, Z. Simultaneous Measurement of Temperature and RI Based on a Novel Peanut-Shaped OFS. IEEE Sens. J. 2025, 25, 545–550. [Google Scholar] [CrossRef]
- Díaz-Herrera, N.; Viegas, D.; Jorge, P.A.S.; Araújo, F.M.; Santos, J.L.; Navarrete, M.C.; González-Cano, A. Fibre-Optic SPR Sensor with a FBG Interrogation Scheme for Readout Enhancement. Sens. Actuators B Chem. 2010, 144, 226–231. [Google Scholar] [CrossRef]
- Yi, D.; Chen, Y.; Geng, Y.; Teng, F.; Li, Y.; Liu, F.; Li, X.; Hong, X. Interrogation Technique Analyses of a Hybrid Fiber Optic Sensor Based on SPR and MMI. Opt. Express 2020, 28, 20764. [Google Scholar] [CrossRef]
- Rao, S.; Mallemace, E.D.; Cocorullo, G.; Faggio, G.; Messina, G.; Della Corte, F.G. Temperature Dependence of the Thermo-Optic Coefficient in 4H-SiC and GaN Slabs at the Wavelength of 1550 Nm. Sci. Rep. 2022, 12, 4809. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhao, P.; Lin, P.; Sun, F. Thermo-Optic Coefficients of Polymers for Optical Waveguide Applications. Polymer 2006, 47, 4893–4896. [Google Scholar] [CrossRef]
- Serna, T.B.; Felipe, D.G.; Andrade, A.A.; Pilla, V. Thermo-Optical Characterization of Fluorescent Materials Based on Edible Vegetable Oils. Dye. Pigment. 2025, 236, 112662. [Google Scholar] [CrossRef]
- Toma, M.; Jonas, U.; Mateescu, A.; Knoll, W.; Dostalek, J. Active Control of SPR by Thermoresponsive Hydrogels for Biosensor Applications. J. Phys. Chem. C 2013, 117, 11705–11712. [Google Scholar] [CrossRef]
- Gao, Z.; Chen, H.; Liu, Y.; Wang, C.; Zhang, S.; Li, S. A Dual-Channel Sensor Based on Long-Range Surface Plasmon Resonance for BSA Concentration and Temperature Measurement. IEEE Sens. J. 2023, 23, 28075–28083. [Google Scholar] [CrossRef]
- Velázquez-González, J.S.; Monzón-Hernández, D.; Moreno-Hernández, D.; Martínez-Piñón, F.; Hernández-Romano, I. Simultaneous Measurement of Refractive Index and Temperature Using a SPR-Based Fiber Optic Sensor. Sens. Actuators B Chem. 2017, 242, 912–920. [Google Scholar] [CrossRef]
- Jenkins, F.A.; White, H.E. Fundamentals of Optics, 4th ed.; McGraw-Hill Primis Custom Publishing: New York, NY, USA, 2001. [Google Scholar]
- Duo, Y.; Yuzhi, C.; Youfu, G.; Fei, T.; Yong, L.; Xuejin, L.; Xueming, H. Low Crosstalk Hybrid Fiber Optic Sensor Based on Surface Plasmon Resonance and MMI. Opt. Lett. 2020, 45, 117. [Google Scholar] [CrossRef]
- Burnett, J.H. Measurement of the Refractive Index and Thermo-Optic Coefficient of Water near 193 Nm. J. Micro/Nanopatterning Mater. Metrol. 2004, 3, 68. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Serrano-Arévalo, K.I.; Rodríguez-Sevilla, E.; Alonso-Murias, M.; Pérez-Aguilar, H.; Monzón-Hernández, D. Compact Dual-Wavelength Optical Fiber Sensor for the Simultaneous Measurement of the Refractive Index and Temperature of Liquid Samples. Chemosensors 2025, 13, 198. https://doi.org/10.3390/chemosensors13060198
Serrano-Arévalo KI, Rodríguez-Sevilla E, Alonso-Murias M, Pérez-Aguilar H, Monzón-Hernández D. Compact Dual-Wavelength Optical Fiber Sensor for the Simultaneous Measurement of the Refractive Index and Temperature of Liquid Samples. Chemosensors. 2025; 13(6):198. https://doi.org/10.3390/chemosensors13060198
Chicago/Turabian StyleSerrano-Arévalo, Karla Ivonne, Erika Rodríguez-Sevilla, Monserrat Alonso-Murias, Héctor Pérez-Aguilar, and David Monzón-Hernández. 2025. "Compact Dual-Wavelength Optical Fiber Sensor for the Simultaneous Measurement of the Refractive Index and Temperature of Liquid Samples" Chemosensors 13, no. 6: 198. https://doi.org/10.3390/chemosensors13060198
APA StyleSerrano-Arévalo, K. I., Rodríguez-Sevilla, E., Alonso-Murias, M., Pérez-Aguilar, H., & Monzón-Hernández, D. (2025). Compact Dual-Wavelength Optical Fiber Sensor for the Simultaneous Measurement of the Refractive Index and Temperature of Liquid Samples. Chemosensors, 13(6), 198. https://doi.org/10.3390/chemosensors13060198